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ABSTRACT: To facilitate the process of discovering brain structure-function associations from image and clinical data, we have 
developed classification tools for brain image data that are based on measures of dissimilarity between probability distributions. We 
propose statistical as well as non-statistical methods for classifying three dimensional probability distributions of regions of interest 
(ROIs) in brain images. The statistical methods are based on computing the Mahalanobis distance and Kullback-Leibler distance 
between a new subject and historic data sets related to each considered class. The new subject is predicted to belong to the class 
corresponding to the dataset that has the smaller distance from the given subject. The non-statistical methods consist of a sequence of 
partitioning the brain image into hyper-rectangles followed by applying supervised neural network models. Experiments performed 
on synthetic data representing mixtures of nine distributions as well as on realistic brain lesion distributions from a study of attention-
deficit hyperactivity disorder (ADHD) after closed head injury showed that all proposed methods are capable of providing accurate 
classification of the subjects with the Kullback-Leibler distance being the least sensitive on the size of the training set and on 
information about the new subject. The proposed statistical methods provide comparable classification to neural networks with 
appropriately generated attributes, while requiring less computational time. 
 
 
INTRODUCTION 
 
Data mining in brain imaging is proving to be an effective 
methodology for providing prognosis, treatment, and a better 
understanding of brain functionality. The detection of 
relationships between human brain structures and brain 
functions (i.e., human brain mapping) has been recognized as 
one of the main goals of the Human Brain Project [1]. 
Development of large databases [2,3,4] for the purpose of 
meta-analysis of data pooled from multiple studies is now 
funded by several government initiatives worldwide. These 
databases consist of a large collection of studies that include 3-
D images from different medical imaging modalities that 
capture structural (e.g., MRI1, CT2) and functional 
/physiological (e.g., PET3, fMRI4) information about the human 
brain.  Traditionally, two approaches have been used in 
functional brain mapping. The first approach seeks associations 
between lesioned structures and neurological or 
neuropsychological deficits. The second approach seeks 
associations between brain activations patterns and tasks 
performed. Independent of the approach used, a current 
obstacle in human brain mapping is the lack of methods to 
automatically classify ROIs (i.e., lesions, brain activations, etc) 
and quantitatively measure their levels of similarity.  
 
In this paper, in order to assist the process of discovering brain 
structure-function associations from image and clinical data and 
to make retrieval of similar brain scans possible, we have 

                                                           
1 MRI: Magnetic Resonance Imaging 
2 CT: Computed Tomography 
3 PET: Positron Emission Tomography 
4 fMRI: Functional MRI 

developed statistical and neural network methods for 
classification of brain image data based on measures of 
dissimilarity between 3-D probability distributions. Although 
the proposed methods can be used in classifying any type of 
ROIs here we apply them to lesion-deficit analysis and MR data 
sets. Given a clinical image of a new subject that contains a 
number of lesioned voxels, the goal is to determine whether it 
belongs to a group of subjects who did or did not develop 
attention-deficit hyperactivity disorder (ADHD) after closed 
head injury.  
 
In brain mapping, behavioral and image data are collected from 
patients and analyzed in order to detect associations among 
spatial regions of the brain and their functions. The image data 
resulting from scanning of the patient are multiple layers of 
images that are combined into a voxel-based 3-D 
representation. The first step in the process is to make data 
comparable across subjects. In particular for image data, the 
ROIs are identified (segmented) and image registration is 
performed to bring the patient’s image data into register, i.e., 
spatial coincidence, with a common spatial standard (i.e., a 
reference brain or anatomical atlas). The methods that we 
present are applied after these pre-processing steps are 
performed.   
 
BACKGROUND AND RELATED WORK 
 
Let x be a multivariate random variable that can assume any of 
the values from a multidimensional domain D. We denote by 
P(x) the probability that x falls into a subdomain V ⊂  D. More 
precisely, 

 P[x ∈  V] = 
V
∫ p(x)⋅dx 



 
where p(x) is a probability density function satisfying non-

negativity (p(x) ≥ 0) and normalization (
V
∫ p(x)⋅dx = 1) 

conditions. The probability density function p(x) uniquely 
determines a distribution of vectors x, drawn from the 
distribution. Each distribution can be characterized by its 
histogram [5] and a parametric one can also be specified by its 
parameters [5, 6]. 
 
The problem stated in the introduction can be formulated as 
follows. Let rxyz denote the value of a voxel (volume element) 
of a 3-D brain image (volume). In our study, a voxel has a 
value rxyz = 1 if it belongs to a lesion (such voxels are referred 
to as “lesioned voxels”). Otherwise, the voxel has a zero value 
(rxyz = 0). Given two sets SY and SN that contain coordinates of 
lesioned voxels for N subjects who did or did not develop 
ADHD respectively, the task is to identify whether a data set sz, 
that corresponds to lesioned voxels of a new subject, comes 
from the same distribution as the set SY or the set SN. 
Therefore, the objective is to characterize the distribution of the 
new data set sz and to compare it to two given distributions 
corresponding to subjects who did or did not develop ADHD. 
Methods for distinguishing among distributions can in general 
be categorized into: 

•  distance based methods 
•  maximum likelihood methods  

Distance based methods rely on an appropriately defined 
distance measure between distributions in order to determine to 
which existing distribution a new distribution is closer to. 
Frequently used distances include Euclidean distance, 
Mahalanobis distance [7], Bayesian distance [6], Patrick-Fisher 
distance [8], Bhattacharyya distance [9] and Kullback-Leibler 
distance [10].  
 
The Euclidean distance between two vectors depends on the 
sum of squared  diffrences of their components. Therefore, 
given two vectors x and y, the Euclidean distance between them 

is computed as dE = y)(xy)(x T −⋅− . Multivariate data with 
normal distribution tend to cluster about the mean vector µµµµ, 
falling in an ellipsoidally shaped cloud whose principal axes 
are eigenvectors of the covariance matrix [10]. When 
computing Mahalanobis distance, this fact is considered by 
including a covariance matrix Σ into calculation. Therefore, 
Mahalanobis distance between two vectors x and y, is measured 

as dM = y)(xy)(x T −⋅⋅− −1ΣΣΣΣ . The Mahalanobis distance 
equals to Euclidean distance only when the covariance matrix ΣΣΣΣ 
is an identity matrix. The Bayesian distance [6] differs from the 
Mahalanobis distance by incorporating information regarding 
the size of the distribution, as well as the a priori probability of 
the class. The former accommodates the normalization 
requirement, while the latter merely offsets the distance 
according to the relative frequency that one class occurs 
compared to another. Due to the offsets, the Bayesian 
“distance” does not satisfy the non-negativity requirement for 
metrics [6]. 
 
The Patrick-Fisher distance [8] between two vectors x and y is 

measured as dPF = 1)
2

( −+ yx ΣΣΣΣΣΣΣΣ
(x – y), where ΣΣΣΣx and ΣΣΣΣy are the 

corresponding covariance matrices. 
 

The Bhattacharyya distance between two vectors x and y is defined 
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where ΣΣΣΣx and ΣΣΣΣy have again the same meaning [9]. 
 
Unlike the previously mentioned distances, the Kullback-
Leibler (KL) distance dKL(p(⋅), q(⋅)) is defined as a measure of 
similarity between two distributions and is equivalent to 
relative entropy. Although nonnegative, and equal to zero only 
between the same vectors, the Kullback-Leibler distance is not 
a true metric, since it is not necessarily symmetric (dKL(p(⋅), 
q(⋅)) ≠ dKL(q(⋅), p(⋅))) and  does not satisfy the triangle 
inequality. 
 
In maximum likelihood methods, given a new distribution (new 
subject in our application) and estimated probability densities 
of existing distributions, a likelihood that a new distribution is 
same as one of existing distributions is computed. To perform a 
maximum likelihood technique, probability densities of the 
distributions should be estimated, which can be performed 
using parametric, non-parametric or semi-parametric techniques 
[6]. 
 
Various statistical and neural network techniques have been 
applied to different problems in brain image data analysis from 
image segmentation and registration [11] to detection of 
electromagnetic field sources [12,13,15] and analysis of fMRI 
activations. The divergence between probability distributions 
based on the Kullback-Leibler distance has been used in the 
analysis of the fMRI signal in order to construct a brain 
activation map [15]. In other studies, using statistical tests, the 
likelihood for particular voxels to exhibit significant changes 
between conditions is estimated [16]. Statistical methods such 
as SPM (statistical parametric mapping) [17,18,19] are of great 
value in the analysis of fMRI activations but they do not 
automatically classify or compare activations. Data mining 
methods have been recently applied to brain images in order to 
discover associations between lesions and deficits [20] (the 
interested reader can see [21] for a complete treatment). 
However, little work has been done in brain image data 
classification and efficient discovery of associations between 
structures and functions. 
 
METHODOLOGY 
 
In this paper, we present statistical and neural network methods 
for classifying three-dimensional probability distributions of 
regions of interest (ROIs) in brain images. The statistical 
methods are based on computing the Mahalanobis and 
Kullback-Leibler distances. The distances are computed 
between a new sample (subject) and data sets related to each 
considered class (distribution). In the neural network method, 
the brain images are partitioned into three-dimensional hyper-
rectangles and the neural networks are then applied on the 
obtained hyper-rectangles.  
 
Statistical Distance Based Methods 
 
Given two data sets SY and SN containing lesioned voxels 
respectively from two classes with subjects who did and did not 
develop ADHD, the task is to classify a new subject to one of 
these two classes. The new subject is specified through a data 
set sz containing a number of lesioned voxels. Therefore, the 



 

 pz(x)
 p(x)

 pz(x) 
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new sample sz is predicted to belong to the class that 
corresponds to one of the datasets SY or SN, which has the 
smaller distance from the given subject. 
 
The Mahalanobis distance and the Kullback-Leibler (KL) 
distance are considered in this paper. Given a new data set sz, 
the Mahalanobis distance between the new subject sz and an 
existing data set S (SY or SN) is computed as: 

 dM = )()( Ss
T

Ss zz
µµµµµµµµµµµµµµµµ −⋅⋅− −1ΣΣΣΣ  

where 
zsµµµµ and Sµµµµ are mean vectors of the data sets sz and S 

respectively, and Σ is the pooled sample covariance matrix [5] 
given as: 
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with 
zsΣΣΣΣ and ΣS denoting covariance matrices of data sets sz 

and S,  respectively. 
 
The Kullback-Leibler distance for distinguishing between the 
new subject sz and an existing data set S (SY or SN) is defined 
as: 
 dKL(sz, S) = ∫

D

pz(x) ln          ⋅⋅⋅⋅dx 

where pz(x) and p(x) are probability densities corresponding to 
the distributions from which data sets sz and S are drawn 
respectively. Although dKL(sz, S) + dKL(S, sz) is a true distance 
metric, we consider only dKL(sz, S) thus consistently measuring 
the divergence between sz and S. However, in order to compute 
this Kullback-Leibler divergence, these distributions need to be 
estimated beforehand. In the following text, we present the 
algorithm for this estimation. 
 
Since the data sets SY, SN and sz obtained from medical imaging 
or simulation contain discrete values for lesioned voxels, here 
Kullback-Leibler divergence is computed using the following 
discrete approximation: 
 dKL(SZ, S) = ∑

D
 pz(x) ln          ⋅ ∆∆∆∆x  

where pz(x) and p(x) are estimated discrete probability 
densities, and ∆∆∆∆x is the product of discretization intervals in 
each dimension. 
 
The estimation of distribution histograms is performed using 
the following procedure. 
 
1. Discretization. The brain image data set is given with 

lesioned voxels inside the domain that is discretized into a 
Nx* Ny * Nz three-dimensional grid. For each of the three 
dimensions, the interval [1,Ni] (i = x, y, z) is divided into k 
equal intervals thus resulting in k3 equal three-dimensional 
hyper-rectangles. The initial histogram is obtained by 
approximating the distribution in each 3-D hyper-rectangle 
by the ratio of lesioned voxels that fall inside the hyper-
rectangle and the total number of lesioned voxels inside the 
brain volume [6]. 

2. Histogram padding. After performing the discretization 
step, the number of histogram hyper-rectangles is smaller 
than the number of possible discrete location of voxels. In 
order to match the resolution of original data, the 
histogram resolution is increased such that the 
representative value for each 3-D cube is repeated k times. 

The histogram is then scaled such that the sum of all values 
still equals to one (Figure 1). After performing this 
operation, the number of histogram values is equal to the 
number of hyper-rectangles in an original Nx* Ny * Nz 
three-dimensional grid.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Illustration of histogram padding for 1-D histograms. 
Each of the values (represented as arrows) is converted into r = 
5 equal values that correspond to new smaller bins. 
 
3. Histogram smoothing. To avoid the problem of 

discontinuity between histogram values at boundaries of 
initial k3 bins [6], padded histograms are smoothed using a 
3-D low-pass filter with a specified window of size w3 
discretization intervals. A simple filter whose output is the 
average of the inputs within the window with size w 
(Figure 2) is applied. 

 
 
 
Figure 2. Smoothed histogram after applying filtering with w=2 
to padded histogram from Fig 1b. 
 
4. Histogram modification. Due to the presence of the finite 

number of voxels in the brain image data set, it is possible 
that some 3-D bins in the estimated histogram do not 
contain any examples [6], even after the histogram 
smoothing performed in Step 3. Hence, in that case, the 
estimated density corresponding to empty 3-D cube would 
be zero although the true density might be not. This may 
cause problems in computing the Kullback-Leibler 
distance, since some of the values p1(x)⋅⋅⋅⋅log(p1(x)/ p2(x)) 
from a sum will be computed as infinity. To avoid this 
problem, a small positive value is added to estimated 
densities, such that the normalization condition (sum of 
densities = 1) remains satisfied. 

 
By estimating the histograms using the procedure explained 
above, we avoid averaging of histograms for a comparatively 
small number of samples that could occur if the histogram is 
directly estimated on 3-D hyper-rectangles corresponding to the 
original discretization intervals. 
 
Neural Network Method 
 
An optional method for classifying new subjects based on neu-
ral networks is proposed, since such universal approximators 

(a) Original histogram 

(b) Histogram after padding 



 
were often reported to outperform the alternatives for 
classification of real life non-linear phenomena [14]. 
In order to apply a neural network model to the problem of 
classification between classes of subjects who did and did not 
develop ADHD, the value of each voxel can be treated as an 
attribute. However, the number of voxels in a brain image is 
usually in the order of 107 and training a neural network model 
with such large number of input attributes is infeasible in many 
realistic applications, due to the curse of dimensionality effect 
as well as computational issues of non-linear optimization. 
Therefore, there is a need to reduce the number of attributes 
that are used for constructing a neural network model. 
 
For attribute reduction, our proposed method first partitions the 
brain volume into a number of 3-D hyper-rectangles. In order 
to be able to compare the obtained classification results to the 
results achieved by statistical methods, as a partitioning 
algorithm we use the same discretization procedure explained 
at Step 1 in the previous section. The voxels inside the small 3-
D hyper-rectangles are averaged over the total number of 
voxels inside 3-D hyper-rectangles and these averaged values 
of voxels are treated as new attributes for training with the 
neural network classification model. For determining the 
minimal number of hyper-rectangles sufficient for successful 
classification using the neural network, discretization is 
incrementally increased until satisfactory classification 
accuracy is achieved. 
 
We trained multilayer (2-layered) feedforward neural network 
classification models with the number of hidden neurons equal 
to the number of input attributes, although experiments with a 
fixed number of hidden neurons were also performed. The 
neural network classification models had the number of output 
nodes equal to the number of classes, where the predicted class 
was from the output with the largest response. We used two 
learning algorithms: resilient propagation [22] and Levenberg-
Marquardt [23]. 
 
EXPERIMENTAL RESULTS 
 
Our experiments were tested on synthetic data and on realistic 
brain lesion distributions generated using a lesion-deficit 
simulator [24]. 
 
Experiments on synthetic data  
 
Synthetic data used in our experiments contained samples from 
two mixtures of nine normal distributions. We were varying the 
parameters (means and variances) of mixture components, thus 
constructing different mixtures of distributions (see Figure 3).  

 
Figure 3. Two mixtures of distributions that differ only in the 
variance of the distribution components 
 
In the first series of experiments, the distribution components 
had the same variances but different means for each class. We 
have repeated the experiments through 200 rounds, and each 
round consisted of random drawing of a new subject from one 

of the classes. The classification performance was monitored by 
measuring accuracy rate as the ratio of the number of rounds 
when a new subject was correctly classified and the total 
number of rounds. The subjects contained the number of 
lesioned voxels that varied from 50 to 500. 
 
When using the Mahalanobis distance, we were able to 
adequately classify a new set of samples that belonged to one of 
two mixtures in 90% to 99% of cases, depending on the size of 
sets SY, SN and the number of lesioned voxels in a new subject 
(Figure 4). Analyzing the charts from Figure 4, it can be 
noticed that the prediction error of our classification methods 
decreased when the size of sets SY, SN increased and when the 
number of lesioned voxels increased too.  
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predicting the mixture with larger variances (from 50% to 99%) 
(Figure 5). 
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a) Subjects who belong to the distribution with smaller variance 
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b) Subjects who belong to the distribution with larger variance 
Figure 5. The prediction error when classifying new subjects 
from two distributions with different component variances 
using Mahalanobis distance. The variance of distributions was 
0.01 and 0.1. 
 
The method based on computing the KL distance was more 
successful in predicting new subjects when they belonged to 
one of the distributions. When predicting the mixture of 
distributions with smaller variance, the accuracy varied from 
14% for the small size of the set SY to 99% for the larger size 
of set SY (Figure 6), which is much better than using 
Mahalanobis distance. When predicting the mixture of 
distributions with larger variances, the method with KL 
distance was able to perform almost perfect classification in all 
cases (error less than 1%). 
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Figure 6. The prediction error when classifying new subjects 
from the distribution with smaller component variances using KL 
distance. The variance of one distributions was 0.01 and 0.1. 
 

By applying the proposed neural networks method to the 
mixture of distributions when they differ only in variance 
components, we failed to achieve good classification when 
using only 23 3-D hyper-rectangles (accuracy was around 50%). 
However, when we used 33 3-D hyper-rectangles, the 
classification accuracy drastically improved (from 55% for 
small number of lesioned voxels and small sizes of set SY to 
99% for large size SY and large number of lesioned voxels in a 
new subject). The achieved accuracy for both distributions was 
similar, and only the accuracy for the distribution with smaller 
variance is reported in Figure 7. The reason for poor 
performance of neural network classification models when 
using only 8 3-D hyper-rectangles was in totally overlapping 
distributions in obtained hyper-rectangles, and similar averaged 
number of lesioned voxels in those hyper-rectangles, such that 
the discriminative attributes were not relevant.  
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Figure 7. The prediction error when classifying new subjects by 
partitioning into 33 3-D hyper-rectangles and then applying 
neural networks 
 
Analyzing the Figures 5-7, it is evident that the method with 
Mahalanobis distance was inferior to the method of computing 
KL distance and to the neural network model. The more 
detailed comparison of all proposed methods for chosen size of 
set SY and the number of lesioned voxels is shown in Table 1, 
which also indicates the poor quality of method with 
Mahalonobis distance. This was probably due to the fact that 
the Mahalanobis distance is based on the assumption that 
compared distributions are normal ones. 
 
Table 1. The comparison of prediction errors among proposed 
methods for classifying a new subject (The number of subjects 
was 5, and the number of lesioned voxels per subject was 200) 
 Distribution components differ in 

Method Mean (0.6) Variance (1. 0.01, 2.  0.1)
Mahalanobis 1.9 64.0 
Kullback-Leibler 0 57.0 

23 rectangles 3.0 50.0 Neural 
Network 33 rectangles 0.3 44.3 
 
 
Experiments on realistic data 
 
The segmentation of ROIs in the study was performed manually 
by a neuroradiologist using thresholding. A nonlinear method 
based on a 3-D elastically deformable model [24] was used to 
register the ROIs to the Tailarach anatomical atlas [25]. After a 
normalization of image data to a common coordinate system, 
we applied the proposed methods to lesion-deficit analysis and 
magnetic resonance imaging data sets. We performed 
classification of realistic brain lesion distributions that were 
generated using a lesion-deficit simulator [26] with the spatial 
statistical model conforming to the Frontal Lobe Injury in 
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Childhood (FLIC) study [27]. The subjects were classified into 
two classes according to subsequent development of ADHD 
after closed head injury. Therefore, there were two distributions 
corresponding to subjects who developed ADHD (“yes 
ADHD” class) and did not develop ADHD (“no ADHD” class) 
(Figure 8). Given a new subject with a set of lesioned voxels, 
the goal was to determine the more plausible class. The 
subjects contained the number of lesioned voxels that varied 
from 50 to 500, although in the specific FLIC study [26] 
approximately 200 lesioned voxels is present on average per 3-
D brain image (i.e., per subject). 
 
In experiments, we varied both the size of data sets for the 
classes and the number of lesioned voxels belonging to a new 
subject. For each combination of these parameters, we 
performed the experiments through a specified number of 
rounds (200 in our experiments). Each round consisted of 
random drawing of a new subject from one of the classes. The 
classification performance was again monitored by measuring 
accuracy rate computed as for synthetic data. 

 
Figure 8. Distributions for “yes ADHD” and “no ADHD” class 
 
Experiments on realistic brain lesion distributions showed that 
the proposed method based on Mahalanobis distance could 
provide more reliable and more accurate classification between 
the subjects regarding the development of ADHD than when 
classifying the subjects from synthetic data. Figure 9 
demonstrates that the classification with error less than 10% 
was possible both for the subjects who did and who did not 
develop ADHD, when a sufficient knowledge of the 
distribution corresponding to the subject was available. This 
was apparent especially when 150 or more lesioned voxels are 
available for a new subject. The prediction was perfect (0% 
error) when the number of lesioned voxels in a new subject was 
larger than 1000. It is interesting to notice that the classification 
accuracy was slightly better when predicting subjects in “yes” 
ADHD class than in “no ADHD class” (Figure 9). 
 
The method based on Kullback-Leibler (KL) distance was even 
more successful in classification of new subjects, especially 
when classifying subjects with a small number of lesioned 

voxels comparable to the size of data sets for the classes 
(Figure 10). When the number of lesioned voxels per a subject 
was 50 or 100, the prediction error was less than 2% and when 
more than 200, the prediction was always perfect (0% 
prediction error). 

 
a) Subjects who developed ADHD 

 
b) Subjects who did not develop ADHD 

Figure 9. The prediction error when classifying new subjects 
using Mahalanobis distance 

  
When performing the proposed method of partitioning the brain 
image into 3-D hyper-rectangles and applying neural network 
models, the prediction results were again comparable to KL 
method. For small number of lesioned voxels in a new subject 
(10, 50, 100), prediction accuracy achieved by neural network 
was better that using statistical methods. However, when this 
number of lesioned voxels increased, there was no significant 
increase in prediction accuracy achieved by neural networks. 
Our experiments have shown that the number of 3-D hyper-
rectangles sufficient for satisfactory prediction was fairly small 
(only 23 and 33 3-D hyper-rectangles). 
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Figure 10. The prediction error when classifying new subjects by 
partitioning into 23 hyper-rectangles and then applying neural 
networks 
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Figure 11. The prediction error when classifying new subjects 
by partitioning into 33 hyper-rectangles and then applying neural 
networks 
 
The more comprehensive evaluation of all proposed methods 
applied on realistic data is shown in Table 2. It is evident again 
that the method with Mahalanobis distance is inferior when 
comparing to the method with KL distance. On the other side, 
neural network models were not so successful as for synthetic 
data, but they are still able of achieving comparable accuracy to 
the method with computing KL distance. 
 
Table 2. The comparison of prediction errors among proposed 
methods for classifying a new subject (The number of subjects 
was 20 and 50, while the number of lesioned voxels per subject 
was fixed to average number of voxels per brain volume – 200) 

Prediction Error (%) (# of subjects, # of lesioned voxels ) 
Method (20, 200) (50, 200) 

Mahalanobis 10.0 10.0 
Kullback-Leibler 0 0 

23 rectangles 3.8 1.3 Neural 
Network 33 rectangles 4.0 2.0 
 
 
DISCUSSION 
 
We proposed several methods for distinguishing between the 
distributions of lesioned voxels on MRI images for subjects 
who did and did not develop ADHD. There are several 
assumptions on which our methods are based. The proposed 
techniques operate within the accuracy of the segmentation of 
registration procedures used. Finally, the experiments are 
performed under the assumption that all the subjects in training 
and test sets have the same number of lesioned voxels (equal to 
the average number obtained from FLIC study). However, more 
realistic results could be obtained using data sets where the 
number of lesions per subject and their size follow 
corresponding distributions observed on real-life data [26]. 
 
In this paper, we propose non-parametric methods for modeling 
densities of data distributions. While more versatile, such 
methods typically require a higher number of data examples 
(total number of lesioned voxels) compared to parametric ones. 
Work in progress includes the examination of parametric 
methods for learning distributions, such as expectation-
maximization algorithm [10] and clustering algorithms for 
partitioning distributions into distinct regions [28,29].   
 
The proposed technique for the histogram computation 
involved the initial estimation on a coarse grid, followed by 
interpolation and smoothing in order to obtain histograms on 
the same grid as the underlying data. Since the voxel density is 

uniform in all three dimensions, during the estimation of initial 
histograms, we maintained the same number of discretization 
intervals in each direction.  However, it is possible to avoid the 
interpolation phase by direct estimation of histograms on the 
original grid (where the number of discretization intervals for 
histogram estimation is equal to the data resolution) followed 
by three-dimensional filtering to smooth estimated values. 
Therefore, future work is necessary to determine the real 
necessity for this interpolation. However, the smoothing phase 
seems to be necessary to ensure statistically significant 
estimation, since the number of data points (lesioned voxels) is 
typically much smaller than the number of bins that correspond 
to the original grid. 
 
The proposed neural network methods use attributes generated 
by averaging the lesioned voxels in closed spatial subregions. 
These methods are successful in classification if the number of 
lesioned voxels in these subregions differs significantly for two 
considered distributions. If the distributions have sufficiently 
different means, this condition is satisfied for a small number of 
subdomains. However, when distinguishing distributions with 
the same means and similar variances, results comparable to 
those obtained using statistical methods can be achieved only 
for a sufficiently large number of subdomains (hyper-
rectangles), which was evident from the results on synthetic 
data. 
 
In this paper, the subregions are of equal size to the hyper-
rectangles used for histogram estimation and we did not attempt 
to optimize the number and the shape of these subregions. 
Work in progress includes the development of an adaptive 
procedure for determining appropriate partitioning of the three-
dimensional domain into subdomains for optimal attribute 
generation. 
 
Results on synthetic data suggest that all proposed methods 
provide almost perfect classification if the underlying 
distributions differ significantly in their means. However, when 
distributions differ slightly in variances of mixture components, 
the method based on Mahalanobis distance gradually ceased to 
provide useful classification, since these methods implicitly 
assume the normality of data distribution. In contrast, the 
method based on Kullback-Leibler distance provided good 
results, assuming that the size of training sets were large 
enough so that histograms of underlying distributions could be 
properly estimated.  
 
Results on realistic data generated using a lesion-deficit 
simulator suggest that the proposed techniques are applicable 
for classification on subjects that have the number of lesioned 
voxels close to real-life cases (the average of 200 per 3-D brain 
image in the specific FLIC study [26]). Higher number of 
available subjects for model training usually resulted in higher 
accuracy. Correct classification in 95% cases was achieved 
when the number of lesioned voxels in a new subject was 100-
150 or more. Among all examined methods, the Kullback-
Leibler method was the least sensitive on the size of training set 
and the number of lesion voxels. The obtained results suggest 
that the proposed statistical methods provide comparable 
classification accuracy to neural networks with appropriately 
generated attributes, while requiring less computational time.  
 
In general, all proposed methods have been shown capable of 
providing accurate classification of the subjects regarding the 
development of ADHD. In addition to lesion-deficit analysis, 



 
the proposed techniques are applicable not only to the 
discussed domain but also to a much wider class of problems 
involving task-activation analysis and classification of 3D-
probabilistic activation maps, such as those generated by 
statistical parametric maps (SPM). 
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