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Abstract. Large amount of available information does not necessarily imply 
that induction algorithms must use all this information. Samples often provide 
the same accuracy with less computational cost. We propose several effective 
techniques based on the idea of progressive sampling when progressively larger 
samples are used for training as long as model accuracy improves. Our sam-
pling procedures combine all the models constructed on previously considered 
data samples. In addition to random sampling, controllable sampling based on 
the boosting algorithm is proposed, where the models are combined using a 
weighted voting. To improve model accuracy, an effective pruning technique 
for inaccurate models is also employed. Finally, a novel sampling procedure for 
spatial data domains is proposed, where the data examples are drawn not only 
according to the performance of previous models, but also according to the spa-
tial correlation of data. Experiments performed on several data sets showed that 
the proposed sampling procedures outperformed standard progressive sampling 
in both the achieved accuracy and the level of data reduction. 

1   Introduction 

Many existing data analysis algorithms require all the data to be resident in a main 
memory, which is clearly untenable in many large databases nowadays. Even fast data 
mining algorithms designed to run in a main memory with a linear asymptotic time 
may be prohibitively slow, when data is stored on a disk, due to the many orders of 
magnitude difference between main and secondary memory retrieval time. 

While data mining methods are faster when used on smaller data sets, the demand 
for accurate models often requires the use of large data sets that allow algorithms to 
discover complex structure and make accurate parameter estimates. Therefore, one of 
the most important data mining problems is to determine a reasonable upper bound of 
the data set size needed for building sufficiently accurate model. Oates and Jensen [1] 
found that increasing the amount of data used to build a model often results in a linear 
increase in model size, even when additional complexity causes no significant increase 
in model accuracy. Despite the promise of the better parameter estimation, models 
built with large amounts of data are often needlessly complex and cumbersome. 

Data reduction can also be extremely helpful for data mining from very large dis-
tributed databases. In the contemporary data mining community, the majority of the 
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work for learning in a distributed environment considers only two possibilities: mov-
ing all data into a centralized location for further processing, or leaving all data in 
place and producing local predictive models, which are later moved and combined via 
one of the standard machine learning methods [2]. With the emergence of new high-
cost networks and huge amounts of collected data, the former approach may be too 
expensive, while the latter too inaccurate. Therefore, reducing the size of databases by 
several orders of magnitude and without loss of extractable information could speed 
up the data transfer for a more efficient and a more accurate centralized learning. 

In this paper we propose a novel technique for data reduction based on the idea of 
progressive sampling [3]. Progressive sampling starts with a small sample in an initial 
iteration and uses progressively larger ones in subsequent iterations until model accu-
racy no longer improves. As a result, a near-optimal minimal size of the data set 
needed for efficient learning an acceptably accurate model is identified. Instead of 
constructing a single predictor on identified data set, our approach attempts to reuse 
the most accurate and sufficiently diverse classifiers built in sampling iterations and to 
combine their predictions. In order to further improve achieved prediction accuracy, 
we propose a weighted sampling, based on a boosting technique [4], where the predic-
tion models in subsequent iterations are built on those examples on which the previous 
predictor had poor performance. Similar techniques of active or controllable sampling 
are related to windowing [5], wherein subsequent sampling chooses training instances 
for which the current model makes the largest errors. However, simple active sam-
pling is notoriously ill behaved on noisy data, since subsequent samples contain in-
creasing amount of noise and performance often decrease as sampling progresses [6]. 

In addition, both the number and the size of spatial databases are rapidly growing, 
because huge amounts of data have been collected in various GIS applications ranging 
from remote sensing and satellite telemetry systems, to computer cartography and 
environmental planning. Therefore the data reduction of very large spatial databases is 
of fundamental importance for efficient spatial data analysis. Hence, in this paper we 
also propose the method for efficient progressive sampling of spatial databases, where 
the sampling procedure is controlled not only by the accuracy of previous prediction 
models but also by considering spatially correlated data points. In our approach, the 
data points that are highly spatially correlated are not likely to be sampled together in 
the same sample, since they bear less useful data information than two non-correlated 
data points. The objective of this approach is to further reduce the size of spatial data 
set and to allow more efficient learning in such domains. 

The proposed sampling methods applied to several very large data sets indicate that 
the both a general purpose and a spatial progressive sampling technique can learn 
faster than the standard progressive sampling [3], and also can outperform the stan-
dard progressive sampling in the achieved prediction accuracy. 

2   Progressive Sampling 

Given a data set with N examples, our goal is to determine its minimal size nmin, for 
which we aim to achieve a sufficiently accurate prediction model. The modification of 
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geometric progressive sampling [3] is used in order to maximize accuracy of learned 
models. The central idea of the progressive sampling is to use a sampling schedule: 

S = {n0, n1, n2, n3, ..., nk} (1) 

where each ni is an integer that specifies the size of a sample to be provided to a 
training algorithm at iteration i. Here, the ni is defined as: 

ni = n0 ⋅ ai (2) 

where a is a constant which defines how fast we increase the size of the sample pre-
sented to an induction algorithm during sampling iterations. The relationship between 
sample size and model accuracy is depicted by a learning curve (Fig. 1). The horizon-
tal axis represents n, the number of instances in a given training set, that can vary 
between zero and the maximal number of instances N.  The vertical axis represents the 
accuracy of the model produced by a training algorithm when given a training set with 
n instances. Learning curves typically have a steep slope portion early in the curve, a 
more gently sloping middle part, and a plateau late in the curve. The plateau occurs 
when adding additional data instances is not likely to significantly improve prediction. 
Depending on the data, the middle part and the plateau can be missing from the learn-
ing curve, when N is small. Conversely, the plateau region can constitute the majority 
of curves when N is very large. In a recent study of two large business data sets, Har-
ris-Jones and Haines [7] found that learning curves reach a plateau quickly for some 
algorithms, but small accuracy improvements continue up to N for other algorithms. 
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Fig. 1. Learning curve 

The progressive sampling [3] was designed to increase the speed of inductive learn-
ing by providing roughly the same accuracy and using significantly smaller data sets 
than available. We used this idea to further increase the speed of inductive learning for 
very large databases and also to attempt to improve the total prediction accuracy. 

3   Progressive Boosting 

The proposed progressive boosting algorithm is based on an integration of Ada-
boost.M2 procedure [4] into the standard progressive sampling technique described at 
Section 2. The AdaBoost.M2 algorithm proceeds in a series of T rounds. In each 
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• Given: Set S {(x1, y1), … , (xN, ym)} xi ∈X, with labels yi ∈Y = {1, …, C} 
• Let B = {(i, y): i = 1,…,N, y ≠ yi}. Let t = 0. 
• Initialize the distribution D1 over the examples, such that D1(i) = 1/N. 
• REPEAT 
1. t = t + 1 
2. Draw a sample Qt that contains n0 ⋅ at-1 data instances according to the 

distribution Dt. 
3. Train a weak learner Lt using distribution Dt 
4. Compute the pseudo-loss of hypothesis ht: 

εt = )),(),(1)(,(
2
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5. Set βt = εt / (1 - εt) and wt = (1/2)⋅(1-ht(xi, y)+ht(xi, yi)) 
6. Update Dt :    Dt+1 (i, y) = tw

ttt ZyiD β⋅)/),((   
where Zt is a normalization constant chosen such that Dt+1 is a distribution. 

7. Combine all weak hypotheses into a single hypothesis:  
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• UNTIL (accuracy of Ht is not significantly larger than accuracy of Ht-1) 
8. - Sort the classifiers from ensemble according to their accuracy. 

- REPEAT removing classifiers with accuracy less than prespecified threshold 
  UNTIL there is no longer improvement in prediction accuracy

round t, a weak learning algorithm is called and presented with a different distribution 
Dt that is altered by emphasizing particular training examples. The distribution is 
updated to give wrong classifications higher weights than correct classifications. The 
entire weighted training set is given to the weak learner to compute the weak hypothe-
sis ht. At the end, all weak hypotheses are combined into a single hypothesis hfn. 

Instead of sampling the same number of data points at each boosting iteration t, our 
progressive boosting algorithm (Fig. 2) draws nt data points (nt = n0⋅at-1) according to 
the sampling schedule S (equation 1). Therefore, we start with a small sample contain-
ing n0 data points, and in each subsequent boosting round we increase the size of the 
sample used for learning a weak classifier Lt. Each weak classifier produces a weak 
hypothesis ht. At the end of each boosting round t all weak hypotheses are combined 
into a single hypotheses Ht. However, the distribution for drawing data samples in 
subsequent sampling iterations is still updated according to the performance of a sin-
gle classifier constructed in the current sampling iteration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The progressive boosting algorithm for data reduction 

We always stop the progressive sampling procedure when the accuracy of the hy-
pothesis Ht, obtained in the t-th sampling iteration, lies in 95% confidence interval of 
the prediction accuracy of hypothesis Ht-1 achieved in the (t-1)-th sampling iteration:  

acc(Ht) ∈ [acc(Ht-1), acc(Ht-1) + 1.645 ⋅
N

HaccHacc tt ))(1()( 11 −− −⋅ ] (3) 
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where acc(Hj) represents classification accuracy achieved by hypothesis Hj con-
structed in j-th sampling iteration on the entire training set. 

It is well known in machine learning theory that an ensemble of classifiers must be 
both diverse and accurate in order to improve the overall prediction accuracy. Diver-
sity of classifiers is achieved by learning classifiers on different data sets obtained 
through weighted sampling in each sampling iteration. Nevertheless, some of the clas-
sifiers constructed in early sampling iterations may not be accurate enough due to 
insufficient number of data examples used for learning. Therefore, before combining 
the classifiers constructed in sampling iterations, we prune the classifier ensemble by 
removing all classifiers whose accuracy on a validation set is less than some prespeci-
fied threshold until the accuracy of the ensemble no longer improves. A validation set 
is determined before starting the sampling procedure as a 30% sample of the entire 
training data set. Assuming that the entire training set is much larger than the reduced 
data set used for learning, our choice of the validation sets should not introduce any 
significant unfair bias, since only the small fraction of data points from the reduced 
data set are included in the validation set. When the reduced data set is not signifi-
cantly smaller than the entire training set, the unseen separated test and validation sets 
are used for estimating the accuracy of the proposed methods. 

Since our goal is to identify a non-redundant representative subset, the usual way of 
drawing samples with replacement used in the AdaBoost.M2 procedure cannot be 
employed here. Therefore, the reminder stochastic sampling without replacement [8] 
is used, where the data examples cannot be sampled more than once. Therefore, as a 
representative subset we obtain a set of distinct data examples with no duplicates. 

4   Spatial Progressive Boosting 

Spatial data represent a collection of attributes whose dependence is strongly related 
to a spatial location where observations close to each other are more likely to be simi-
lar than observations widely separated in space. Explanatory attributes, as well as the 
target attribute in spatial data sets are very often highly spatially correlated. It is clear 
that data redundancy in spatial databases may be partially due to different reasons than 
in non-spatial data sets and therefore the standard sampling procedures may not be 
appropriate for spatial data sets. 

In the most common geographic information science (GIS) applications the fixed-
length grid is regular and therefore the standard method to determine the degree of 
correlation between neighboring points in such spatial data is to construct a correlo-
gram [9]. The correlogram represents a plot of the autocorrelation coefficient com-
puted as a function of separation distance between spatial data instances (Fig. 3). One 
of the main characteristics of the spatial correlogram is its range, which corresponds to 
a distance where spatial dependency starts to disappear, e.g. where the absolute value 
of the correlogram drops somewhere around 0.1. 

Our spatial sampling procedure represents a modification of the proposed progres-
sive boosting technique, described in Section 3. The general algorithm for progressive 
boosting, presented in Fig. 2 still remains the same, but the procedure for sampling the 
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data examples in subsequent sampling iterations according to the given distribution is 
adapted to the spatial domain data. In standard sampling without replacement [8] 
when the data example is sampled once, it cannot be sampled again. In our spatial 
modification of sampling procedure, when a data instance (shown as ο in Fig. 4) is 
drawn once, not only that instance cannot be sampled again but also all its neighboring 
points, represented with � and ◊ in Fig. 4. How many neighbors are excluded from 
further sampling depends on the degree of correlation and also on the number of data 
points required to be drawn in current sampling iteration. If the number of points 
needed to be sampled prevails the number of available data examples for sampling, 
the farthest square of points (examples denoted as ◊ in Fig. 4) is then included in the 
set of examples available for sampling. This allows a more uniform sampling across 
the spatial data set, while still concentrating on more difficult examples for learning. 

The spatial progressive boosting employs the same algorithm as one shown in Fig. 
2, but uses our modified spatial sampling procedure. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A spatial correlogram with a 40 m  Fig. 4. The scheme for sampling data 
range                       examples in spatial data sets 

5   Experimental Results 

An important issue in progressive sampling based techniques is the type of the model 
used for training through iterations. We used non-linear 2-layer feedforward neural 
network (NN) models that generally have a large variance, meaning that their accuracy 
can largely differ over different weight’s initial conditions and choice of training data. 
In such situations using the progressive sampling procedure may effect in significant 
errors in the estimation of nmin. In order to alleviate the effect of neural network insta-
bility in our experiments, the prediction accuracy is averaged over 20 trials of the 
proposed algorithms, i.e. the sampling procedures are repeated 20 times and accura-
cies achieved at the same sampling round for all 20 trials are averaged. Since it is 
unlikely that the progressive sampling technique always stops at the same sampling 
iteration in each of these trials, we simply determined the number of sampling itera-
tions in the first trial of progressive sampling technique, and all other trials for all 
sampling variants were repeated for such identified number of sampling iterations. To 
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investigate real generalization properties of built NN models, we tested our classifica-
tion models on the entire training set and on an unseen data with a similar distribution. 

The number of hidden neurons in our NN models was equal to the number of input 
attributes. The NN classification models had the number of output nodes equal to the 
number of classes (3 in our experiments), where the class was predicted according to 
the output with the largest response. Resilient propagation (RP) [10] and Levenberg-
Marquardt (LM) [11] algorithms were used for learning, although better prediction 
accuracies were achieved using the LM learning algorithm, and only those results are 
reported here. The LM algorithm is a variant of Newton’s method, where the ap-
proximation of the Hessian matrix of mixed partial derivatives is obtained by averag-
ing outer products of estimated gradients. This is very well suited for small to me-
dium-size NN training through mean squared error minimization. 

We performed our experiments on several large data sets. The first data set was 
generated using our spatial data simulator [12] such that the distributions of generated 
data resembled the distributions of real life spatial data. A square shaped spatial data 
of size 5120 meters x 5120 meters sampled on a relatively dense spatial grid 
(10meters x 10 meters) resulted in 262,144 (5122) training instances. The obtained 
spatial data stemmed from a homogeneous distribution and had five continuous attrib-
utes and three equal size classes. 

The second data set was Covertype data, currently one of the largest databases in 
the UCI Database Repository [13]. This spatial data set contains 581,012 examples 
with 54 attributes and 7 target classes and represents the forest cover type for 30 x 30 
meter cells obtained from US Forest Service (USFS) Region 2 Resource Information 
System [14]. In Covertype data set, 40 attributes are binary columns representing soil 
type, 4 attributes are binary columns representing wilderness area, and the remaining 
10 are continuous topographical attributes. Since training of a neural network classi-
fier would be very slow if using all 40 attributes representing a soil type variable, we 
transformed them into 7 new ordered attributes. These 7 attributes were determined by 
computing relative frequencies of each of 7 classes in each of 40 soil types. Therefore, 
instead of using a single value for representing each soil type, we used a 7-
dimensional vector with values that could be considered continuous and therefore 
more appropriate for use with neural networks. This resulted in the transformed data 
set with 21 attributes. 

The experiments were also performed on Waveform and LED data sets from the 
UCI repository [13]. For the Waveform set, 100,000 instances with 21 continuous 
attributes and three equally sized classes were generated, while for the LED data set 
50,000 examples were generated for training and 50,000 examples were generated for 
testing. Both training and test data sets had 7 binary attributes and 10 classes. 

We first performed progressive sampling on all data sets, where in the schedule 
given in equation (2) we used a = 2. Therefore, randomly chosen data samples in 
subsequent sampling iterations were always twice larger than samples drawn in the 
previous iterations. Since in our sampling procedures all classifiers constructed in all 
previous sampling iterations are saved and together with the classifier from the current 
iteration are combined, we also used the progressive bagging scheme, where the clas-
sifiers constructed on randomly selected, progressively larger data samples were com-
bined into an ensemble using the same combining weights. Finally, we performed our 
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proposed progressive boosting technique for data reduction on all sets. The improve-
ment of classification accuracy during the sampling iterations on all considered data 
sets is shown at Fig. 5. 

In order to better compare our proposed sampling techniques with the progressive 
sampling, we stopped them in the same sampling iteration as we stopped the progres-
sive sampling. In this way, we are able to examine two effects of data reduction tech-
niques. First, we can observe what are the possible improvements in classification 
accuracy when the same size of data sample, necessary for constructing a sufficiently 
accurate model in progressive sampling, is used. Second, we are able to compare the 
level of data reduction by evaluating the sizes of data samples for which we achieve 
the same classification accuracy.  The possible savings in processing time were not 
reported due to lack of space, although these savings are proportional to the level of 
data reduction since the time for training NN models is proportional to data set size. 
All results in Fig. 5 are shown starting from the second or third sampling iteration 
since all the methods achieved the similar accuracies in a first few iterations. 
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Fig. 5. The classification accuracy as a function of sample size for different progres-
sive sampling techniques on four domains 

Analyzing the charts in Fig. 5, it is evident that the sampling methods involving the 
proposed model integration showed improvements both in prediction accuracy and in 
achieved data reduction as compared to the standard progressive sampling. The im-
provement in achieved final prediction accuracy was evident for synthetic spatial, 
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Covertype and LED data set, while the experiments performed on Waveform data sets 
resulted in similar final prediction accuracy for all proposed variants of sampling 
techniques probably due to high homogeneity of data. However, during the sampling 
(iterations 3 to 7, Fig. 5) progressive boosting was consistently achieving better pre-
diction accuracy than progressive bagging, although this difference was fairly small. 
The dominance of progressive boosting can be explained by the fact that the sampling 
procedure employed in progressive boosting attempted to rank sampling data exam-
ples from those that are more difficult for learning to those that are easier. Therefore, 
all advantages of standard boosting were also integrated in our progressive boosting 
technique. 

It is also evident that for the same level of data reduction (the same sampling itera-
tion that corresponds to training data of the same size) the achieved prediction accu-
racy was significantly higher when using progressive boosting and even progressive 
bagging instead of standard progressive sampling (Fig. 5). In addition, the same pre-
diction accuracy was achieved with much smaller data sets when using progressive 
boosting and bagging for data reduction instead of relaying on standard progressive 
sampling. For example, the prediction accuracy on the synthetic spatial data (Fig. 5a) 
that was achieved by progressive sampling technique with 65,664 examples (10 itera-
tions), was also achieved by the progressive boosting with 8,208 examples (7 itera-
tions). Hence, the gain of these three iterations was an about eight times smaller data 
set needed for progressive boosting as compared to the progressive sampling. 

The level of data reduction for different sampling techniques may be compared if 
we measure the minimum data sets needed for achieving the same accuracy. This 
prediction accuracy is determined when no further significant improvements in accu-
racy, obtained by progressive sampling, is observed. For easier comparison, the size 
of a reduced data set used to obtain this accuracy by progressive sampling served as a 
basic reduction level, and then we compared the enhancements of other data reduction 
techniques. Table 1 shows the level of data reduction for three used data sets. 

Table 1. The size of the data sets used for successful learning and their percentage of the 
original data set size when different sampling techniques are employed 

Method ↓↓↓↓ Data set→→→→ Synthetic Spatial Covertype LED Waveform 
Progressive Sampling 65,664 (25.1 %) 32,768 (5.6 %) 12,288 (25 %) 9,984 (9.9%) 
Progressive Bagging 16,416 (6.3 %) 8,192 (1.4 %) 3,072 (6.1 %) 9,984 (9.9%) 
Progressive Boosting 8,208 (3.1 %) 8,192 (1.4 %) 1,536 (3.1 % ) 9,984 (9.9%) 

 
It is evident from Table 1 that both sampling methods with model integration 

achieved better reduction performance than the standard progressive sampling. In 
model integration methods the reduced data set was four to eight times smaller than 
the reduced data set identified through standard progressive sampling. The only ex-
ception was the reduction of Waveform data sets (Table 1), where no additional 
reduction was achieved by combining different classifiers again due to high 
homogeneity of data. Nevertheless, when employing progressive boosting and 
progressive bagging techniques, there is an additional requirement to store all the 
previously constructed classifiers, or to save all data sets used for constructing these 
classifiers. Usually, storing only the constructed classifiers is beneficial when 
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ally, storing only the constructed classifiers is beneficial when employing an ensemble 
to make a prediction on an unseen data set with a similar distribution. However, very 
often there is a need for storing all necessary data examples needed for constructing 
all the classifiers. Since we use geometric progressive sampling, where the data sam-
ple in subsequent sampling iteration is twice larger from the sample used at the previ-
ous iteration, the total size of all previous data samples cannot be larger than the size 
of the data sample used in the current sampling iteration. Therefore, even in this case, 
according to Table 1 we can still achieve a better level of data reduction than the stan-
dard progressive sampling. 

We also performed experiments with pruning inaccurate classifiers constructed in 
progressive boosting iterations (Fig. 6). For geometric sampling schedule we again 
used a = 2. When pruning inaccurate classifiers, we always eliminated those classifiers 
that harmed the overall classification accuracy on the validation set. Again, the accu-
racies on the entire training set are shown starting from second iteration, since there 
was no pruning at the first iteration (Fig. 6). 
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Fig. 6. The classification accuracy during the sampling iterations of progressive boosting and 
pruning progressive boosting 

Results from the experiments presented in Fig. 6 indicate that pruning progressive 
boosting outperformed the progressive boosting technique both in achieved accuracy 
and in the level of data reduction for synthetic spatial and Covertype data sets. The 
enhancements of pruning progressive boosting on Waveform and LED data sets was 
insignificant as compared to the progressive boosting technique, and therefore these 
results are not presented here. It is evident from Fig. 6 that for synthetic spatial and 
Covertype data set the same prediction accuracy may be achieved much faster when 
pruning classifiers than without pruning. For example, accuracy of 92% for synthetic 
spatial data set was achieved by progressive boosting without pruning with 65,664 
examples (iteration 11), while similar accuracy was achieved when pruning progres-
sive boosting with 8,208 example (iteration 8), thus resulting in an eight times smaller 
data set. The same results can be observed for Covertype data set, where pruning 
progressive boosting again caused eight times smaller data set for the comparable 
prediction accuracy. 

Finally, we performed the experiments for sampling spatial data using our proposed 
technique for spatial progressive boosting. Since the positions of data examples in-
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cluded in the form of x and y coordinates were only available for the synthetic spatial 
data set, but not for Covertype data set, the results are reported only for the synthetic 
spatial data (Fig. 7). The shown accuracy starts from the third sampling iteration due 
to similar performance of spatial and non-spatial sampling in the first two iterations. 
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Fig. 7. The classification accuracy during the sampling iterations of spatial progressive boost-
ing and standard progressive boosting on synthetic spatial data set 

Fig. 7 shows that the spatial progressive boosting method, starting from the fourth 
iteration outperformed the regular progressive boosting in achieved prediction accu-
racy. In addition, for achieving accuracy of 92%, spatial progressive boosting needed 
four times smaller data set than the regular progressive boosting. One of the reasons 
for such a successful reduction of this data set is possibly in its high spatial correlation 
among observed attributes and a relatively dense spatial grid (10 x 10 meters). 

6   Conclusions 

Several new sampling procedures based on the progressive sampling idea are pro-
posed. They are intended for an efficient reduction of very large and possibly spatial 
databases. Experimental results on several data sets indicate that the proposed sam-
pling techniques can effectively achieve similar or even better prediction accuracy 
while obtaining a better data reduction than the standard progressive sampling tech-
nique. Depending on the data set, accuracy comparable to relying on the whole data 
set was achieved using 1.4% to 6.1% of the original data. 

The question that naturally arises from this paper is a possible gain when compar-
ing the proposed sampling techniques with the procedure of first performing the pro-
gressive sampling and then applying some of the methods for combining classifiers 
(bagging, boosting). First, our sampling techniques are faster since they do not require 
additional algorithm of combining classifiers. Second, our algorithms provide a better 
diversity of combined classifiers, since during the sampling iterations some of the 
instances difficult for learning were naturally included in the reduced data set by our 
algorithms while these may not be included in a final data set when performing stan-
dard progressive sampling. Finally, when using our algorithms, only a small number 



Lecture Notes in Computer Science      12 

of data examples that are relatively easy for learning will be included in the reduced 
data set, unlike the progressive sampling where this number cannot be controlled. Our 
future work will address the significance of the difference between these two methods. 

One of the possible drawbacks of our proposed sampling techniques that will be 
also carefully investigated in our future work, is an increased time required for con-
trolled sampling as compared to random sampling. For reduction of heterogeneous 
data sets we are currently experimenting with radial basis functions, while for spatial 
data reduction different similarity information will be explored. In addition, we are 
also extending the proposed methods to regression-based problems. 
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