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Abstract 
Intrusion detection corresponds to a suite of techniques that 
are used to identify attacks against computers and network 
infrastructures. Anomaly detection is a key element of in-
trusion detection in which perturbations of normal behavior 
suggest the presence of intentionally or unintentionally in-
duced attacks, faults, defects, etc. This paper focuses on a 
detailed comparative study of several anomaly detection 
schemes for identifying different network intrusions. Sev-
eral existing supervised and unsupervised anomaly detec-
tion schemes and their variations are evaluated on the 
DARPA 1998 data set of network connections [9] as well as 
on real network data using existing standard evaluation 
techniques as well as using several specific metrics that are 
appropriate when detecting attacks that involve a large 
number of connections. Our experimental results indicate 
that some anomaly detection schemes appear very promis-
ing when detecting novel intrusions in both DARPA’98 
data and real network data.* 
 
1 Introduction 
As the cost of the information processing and Internet ac-
cessibility falls, more and more organizations are becoming 
vulnerable to a wide variety of cyber threats. According to a 
recent survey by CERT/CC [1], the rate of cyber attacks has 
been more than doubling every year in recent times. There-
fore, it has become increasingly important to make our in-
formation systems, especially those used for critical 
functions in the military and commercial sectors, resistant 
to and tolerant of such attacks. The most widely deployed 
methods for detecting cyber terrorist attacks and protecting 
against cyber terrorism employ signature-based detection 
techniques. Such methods can only detect previously 
known attacks that have a corresponding signature, since 
the signature database has to be manually revised for each 
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new type of attack that is discovered. These limitations 
have led to an increasing interest in intrusion detection 
techniques based on data mining [2, 3, 4, 5, 6]. 

Data mining based intrusion detection techniques gener-
ally fall into one of two categories; misuse detection and 
anomaly detection. In misuse detection, each instance in a 
data set is labeled as ‘normal’ or ‘intrusive’ and a learning 
algorithm is trained over the labeled data. These techniques 
are able to automatically retrain intrusion detection models 
on different input data that include new types of attacks, as 
long as they have been labeled appropriately. Research in 
misuse detection has focused mainly on classification of 
network intrusions using various standard data mining algo-
rithms [2, 4, 5, 6], rare class predictive models, association 
rules [2, 5] and cost sensitive modeling. Unlike signature-
based intrusion detection systems, models of misuse are 
created automatically, and can be more sophisticated and 
precise than manually created signatures. A key advantage 
of misuse detection techniques is their high degree of accu-
racy in detecting known attacks and their variations. Their 
obvious drawback is the inability to detect attacks whose 
instances have not yet been observed. 

Anomaly detection approaches, on the other hand, build 
models of normal data and detect deviations from the nor-
mal model in observed data. Anomaly detection applied to 
intrusion detection and computer security has been an ac-
tive area of research since it was originally proposed by 
Denning [7]. Anomaly detection algorithms have the advan-
tage that they can detect new types of intrusions as devia-
tions from normal usage [7, 8]. In this problem, given a set 
of normal data to train from, and given a new piece of test 
data, the goal of the intrusion detection algorithm is to de-
termine whether the test data belong to “normal” or to an 
anomalous behavior. However, anomaly detection schemes 
suffer from a high rate of false alarms. This occurs primar-
ily because previously unseen (yet legitimate) system be-
haviors are also recognized as anomalies, and hence flagged 
as potential intrusions. 

This paper focuses on a detailed comparative study of 
several anomaly detection schemes for identifying different 
network intrusions. Several existing supervised and unsu-
pervised anomaly detection schemes and their variations are 
evaluated on the DARPA 1998 data set of network connec-
tions [9] as well as on real network data using existing 
standard evaluation techniques as well as using several spe-
cific metrics that are appropriate when detecting attacks that 
involve a large number of connections. Our experimental 
results indicate that some anomaly detection schemes ap-



 

pear very promising when detecting novel intrusions in both 
DARPA’98 data and real network data. 

 
 

2 Evaluation of Intrusion Detection Systems 

As interest in intrusion detection has grown, the topic of 
evaluation of intrusion detection systems (IDS) has also 
received great attention [9, 10, 11, 12]. Evaluating intrusion 
detection systems is a difficult task due to several reasons. 
First, it is problematic to get high-quality data for perform-
ing the evaluation due to privacy and competitive issues, 
since many organizations are not willing to share their data 
with other institutions. Second, even if real life data were 
available, labeling network connections as normal or intru-
sive requires enormous amount of time for many human 
experts. Third, the constant change of the network traffic 
can not only introduces new types of intrusions but can also 
change the aspects of the “normal” behavior, thus making 
construction of useful benchmarks even more difficult. Fi-
nally, when measuring the performance of an IDS, there is a 
need to measure not only detection rate (i.e. how many at-
tacks we detected correctly), but also the false alarm rate 
(i.e. how many of normal connections we incorrectly de-
tected as attacks) as well as the cost of misclassification. 
The evaluation is further complicated by the fact that some 
of the attacks (e.g. denial of service (DoS), probing) may 
use hundreds of network packets or connections, while on 
the other hand attacks like U2R (user to root) and R2L (re-
mote to local) typically use only one or a few connections. 

Standard metrics that were developed for evaluating 
network intrusions usually correspond to detection rate as 
well as false alarm rate (Table 1). Detection rate is com-
puted as the ratio between the number of correctly detected 
attacks and the total number of attacks, while false alarm 
(false positive) rate is computed as the ratio between the 
number of normal connections that are incorrectly misclas-
sified as attacks (false alarms in Table 1) and the total num-
ber of normal connections. 

 
Table 1. Standard metrics for evaluations of single-
connection intrusions (attacks) 

Predicted connection label 
Standard metrics 

Normal Intrusions (At-
tacks) 

Normal True Negative False Alarm Actual 
connection 

label 
Intrusions 
(Attacks) 

False Nega-
tive 

Correctly de-
tected attacks 

 
There are generally two types of attacks in network in-

trusion detection: the attacks that involve single connec-
tions and the attacks that involve multiple connections 
(bursts of connections). The standard metrics treat all types 
of attacks similarly thus failing to provide sufficiently ge-
neric and systematic evaluation for the attacks that involve 

many network connections (bursty attacks). In particular, 
they do not capture information about the number of net-
work connections associated with an attack that have been 
correctly detected. Therefore, depending on the type of the 
attack, two types of analysis may be applied; multi-
connection attack analysis for bursty attacks and the single-
connection attack analysis for single connection attacks 
(Figure 1). However, the first step for both analysis types 
corresponds to computing the score value for each network 
connection. The score value represents the likelihood that 
particular network connection is associated with an intru-
sion (Figure 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Multi-step approach for evaluation intrusions in 
the network traffic 
 

Assume that for a given network traffic in some time in-
terval, each connection is assigned a score value, repre-
sented as a vertical line (Figure 2). The dashed line in 
Figure 2 represents the real attack curve that is zero for 
non-intrusive (normal) network connections and one for 
intrusive connections. The full line in Figure 2 corresponds 
to the predicted attack curve, and for each connection it is 
equal to its assigned score. These two curves allow us to 
compute the error for every connection as the difference 
between the real connection value (1 for connections asso-
ciated with attacks and 0 for normal connections) and the 
assigned score to the connection, and to further derive addi-
tional metrics. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Assigning scores in network intrusion detection  
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The multi-step approach shown in Figure 1 utilizes com-

puted errors for each connection in order to derive addi-
tional evaluation metrics. The first derived metric 
corresponds to the surface areas between the real attack 
curve and the predicted attack curve (surfaces denoted as \\\ 
in Figure 2). The smaller the surface between these two 
attack curves, the better the intrusion detection algorithm. 
However, the surface area itself is not sufficient to capture 
many relevant aspects of intrusion detection algorithms 
(e.g. how many connections are associated with the attack, 
how fast the intrusion detection algorithm is, etc.). There-
fore, additional metrics may be used in order to support the 
basic metric of surface area under the attack curve. Assume 
that the total number of network connections in considered 
data set is N. The number N is equal to the sum of the total 
number of normal network connections (Nn) and the total 
number of network connections that are associated with the 
intrusions (Ni). The number (nfa) corresponds to the number 
of the non-intrusive (normal) network connections (nfa) that 
have the score higher than prespecified threshold (dotted 
line in Figure 3) and therefore misclassified as intrusive 
ones. Now, the additional metrics may be defined as fol-
lows: 
 
1. Burst detection rate (bdr) is defined for each burst and 

it represents the ratio between the total number of in-
trusive network connections ndi that have the score 
higher than prespecified threshold within the bursty at-
tack (dotted line in Figure 3) and the total number of 
intrusive network connections within attack intervals 
(Nbi) (Figure 3). bdr = ndi / Nbi., where ∑

burstsall
biN

_
= Ni. 

Similar metric was used in DARPA 1998 evaluation 
[9]. 

 
 
 
 
 
 
 
 
 
 

Metric Definition 
bdr burst detection rate = ndi/Nbi 
ndi number of intrusive connections that have score 

value higher than threshold 
nbfa number of normal connections that follow at-

tack and that are misclassified as intrusive 
tresponse response time – time to reach the prespecified 

threshold 
Figure 3. The additional metrics relevant for IDS evaluation 

2. Response time represents the time elapsed from the 
beginning of the attack till the moment when the first 
network connection has the score value higher than 
prespecified threshold (tresponse in Figure 3). Similar 
metric was used in DARPA 1999 evaluation [11] 
where 60s time interval was allowed to detect the 
bursty attack. 

 
3. Anomaly Detection Techniques 
3.1. Related Work. Most research in supervised anomaly 
detection can be considered as performing generative mod-
eling. These approaches attempt to build some kind of a 
model over the normal data and then check to see how well 
new data fits into that model. An approach for modeling 
normal sequences using look ahead pairs and contiguous 
sequences is presented in [13]. A statistical method for 
ranking each sequence by comparing how often the se-
quence is known to occur in normal traces with how often it 
is expected to occur in intrusions is presented in [14]. One 
approach uses a prediction model obtained by training deci-
sion trees over normal data [2], while others use neural 
networks to obtain the model [15] or non-stationary models 
[16] to detect novel attacks. Lane and Brodley [17] per-
formed anomaly detection on unlabeled data by looking at 
user profiles and comparing the activity during an intrusion 
to the activity during normal use. Similar approach of creat-
ing user profiles using semi-incremental techniques was 
also used in [18]. Barbara used pseudo-Bayes estimators to 
enhance detection of novel attacks while reducing the false 
alarm rate as much as possible [5]. A technique developed 
at SRI in the EMERALD system [8] uses historical records 
as its normal training data. It then compares distributions of 
new data to the distributions obtained from those historical 
records and differences between the distributions indicate 
an intrusion. Recent works such as [19] and [20] estimate 
parameters of a probabilistic model over the normal data 
and compute how well new data fits into the model. 

In this paper our focus is on several outlier detection al-
gorithms as well as on unsupervised support vector machine 
algorithms for detecting network intrusions. 
 
3.2. Outlier Detection Schemes for Anomaly Detection. 
Most anomaly detection algorithms require a set of purely 
normal data to train the model, and they implicitly assume 
that anomalies can be treated as patterns not observed be-
fore. Since an outlier may be defined as a data point which 
is very different from the rest of the data, based on some 
measure, we employ several outlier detection schemes in 
order to see how efficiently these schemes may deal with 
the problem of anomaly detection.  

The statistics community has studied the concept of out-
liers quite extensively [21]. In these techniques, the data 
points are modeled using a stochastic distribution, and 
points are determined to be outliers depending upon their 
relationship with this model. However, with increasing di-
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mensionality, it becomes increasingly difficult and inaccu-
rate to estimate the multidimensional distributions of the 
data points [22]. However, recent outlier detection algo-
rithms that we utilize in this study are based on computing 
the full dimensional distances of the points from one an-
other [23, 24] as well as on computing the densities of local 
neighborhoods [25]. 

 
3.2.1. Mining Outliers Using Distance to the k-th Nearest 
Neighbor [24]. This approach is based on computing the 
Euclidean distance of the k-th nearest neighbor from the 
point O. For a given k and a point O, Dk(O) denotes the 
distance from the point O to its k-th nearest neighbor. 
Therefore, the distance Dk(O) may be considered as a 
measure of the outlierness of the example O.  For instance, 
points with larger values Dk(O) for have more sparse 
neighborhoods and they typically represent stronger outliers 
than points belonging to dense clusters that usually tend to 
have lower values for Dk(O). Since generally user is inter-
ested in top n outliers, this approach defines an outlier as 
follows: Given a k and n, a point O is an outlier if the dis-
tance to its k-th nearest neighbor is smaller than the corre-
sponding value for no more than (n-1) other points. In other 
words, the top n outliers with the maximum Dk(O) values 
are considered as outliers. 

 
3.2.2. Nearest Neighbor (NN) Approach. This method is a 
slight modification of the outlier detection scheme pre-
sented in previous section 3.2.1., when k = 1. We specify an 
“outlier threshold” that will serve to determine whether the 
point is an outlier or not. The threshold is based only on the 
training data and it is set to 2%. In order to compute the 
threshold, for all data points from training data (e.g. “nor-
mal behavior” data) distances to their nearest neighbors are 
computed and then sorted. All test data points that have 
distances to their nearest neighbors greater than the thresh-
old are detected as outliers. 

 
3.2.3. Mahalanobis-distance Based Outlier Detection. 
Since the training data corresponds to “normal behavior”, it 
is straightforward to compute the mean and the standard 
deviation of the “normal” data. The Mahalanobis distance 
[ref] between the particular point p and the mean µ of the 
normal data is computed as: 

dM = )p()p( T µµ −⋅Σ⋅− −1 , 
where the Σ is the covariance matrix of the “normal” data. 
Similarly to the previous approach, the threshold is com-
puted according to the most distant points from the mean of 
the “normal” data and it is set to be 2% of total number of 
points. All test data points that have distances to the mean 
of the training “normal” data greater than the threshold are 
detected as outliers. 
Computing distances using standard Euclidean distance 
metric is not always beneficial, especially when the data has 
a distribution similar to that presented in Figure 4. It is ob-

vious that examples p1 and p2 do not have the same distance 
to the mean of the distribution when the distances are com-
puted using standard Euclidean metric and Mahalanobis 
metric. When using standard Euclidean metric, the distance 
between p2 and its nearest neighbor is greater than the dis-
tance from p1 to its nearest neighbor. However, when using 
the Mahalanobis distance metric, these two distances are 
the same. It is apparent that in these scenarios, Mahalanobis 
based approach is beneficial compared to the Euclidean 
metric. 

Figure 4. Advantage of Mahalanobis-distance based ap-
proach when computing distances. 
 
3.2.4. Density Based Local Outliers (LOF approach). The 
main idea of this method [25] is to assign to each data ex-
ample a degree of being outlier. This degree is called the 
local outlier factor (LOF) of a data example. The algorithm 
for computing the LOFs for all data examples has several 
steps: 

1. For each data example O compute k-distance (the 
distance to the k-th nearest neighbor) and k-distance 
neighborhood (all points in a k-distance sphere). 
2. Compute reachability distance for each data exam-
ple O with respect to data example p as:  
reach-dist(O,p) = max{k-distance(p), d(O,p)}, where 
d(O,p) is distance from data example O to data  
example p. 
3. Compute local reachability density of data exam-
ple O as inverse of the average reachabaility distance 
based on the MinPts (minimum number of data exam-
ples) nearest neighbors of data example O. 
4. Compute LOF of data example O as average of the 
ratios of the local reachability density of data example O 
and local reachability density of O’s MinPts nearest 
neighbors. 

 
To illustrate advantages of the LOF approach, consider a 
simple two-dimensional data set given in Figure 5. It is ap-
parent that there is much larger number of examples in the 
cluster C1 than in the cluster C2, and that the density of the 
cluster C2 is significantly higher that the density of the clus-
ter C1. Due to the low density of the cluster C1 it is apparent 
that for every example q inside the cluster C1, the distance 
between the example q and its nearest neighbor is greater 
than the distance between the example p2 and the nearest 
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neighbor from the cluster C2, and the example p2 will not be 
considered as outlier. Therefore, the simple nearest 
neighbor approaches based on computing the distances fail 
in these scenarios. However, the example p1 may be de-
tected as outlier using only the distances to the nearest 
neighbor. On the other side, LOF is able to capture both 
outliers (p1 and p2) due to the fact that it considers the den-
sity around the points. 

Figure 5. Advantages of the LOF approach 
 

3.3. Unsupervised Support Vector Machines. Unlike 
standard supervised support vector machines (SVMs) that 
require labeled training data to create their classification 
rule, in [27], the SVM algorithm was adapted into unsuper-
vised learning algorithm. This unsupervised modification 
does not require training data to be labeled to determine a 
decision surface. Whereas the supervised SVM algorithm 
tries to maximally separate two classes of data in feature 
space by a hyperplane, the unsupervised algorithm attempts 
to separate the entire set of training data from the origin, i.e. 
to find a small region where most of the data lies and label 
data points in this region as one class. Points in other re-
gions are labeled as another class.  

By using different values for SVM parameters (variance 
parameter of radial basis functions (RBFs), expected outlier 
rate), the models with different complexity may be built. 
For RBF kernels with smaller variance, the number of sup-
port vectors is larger and the decision boundaries are more 
complex, thus resulting in very high detection rate but very 
high false alarm rate too. On the other hand, by considering 
RBF kernels with larger variance, the number of support 
vectors decreases while the boundary regions become more 
general, which results in lower detection rate but lower 
false alarm rate as well. 

 
4. Experiments 
We applied the proposed anomaly detection schemes to 
1998 DARPA Intrusion Detection Evaluation Data [9] as 
well as to the real network data from the University of 
Minnesota. 

The DARPA’98 data contains two types: training data 
and test data. The training data consists of 7 weeks of net-
work-based attacks inserted in the normal background data. 

Attacks in training data are labeled. The test data contained 
2 weeks of network-based attacks and normal background 
data. 7 weeks of data resulted in about 5 million connection 
records. The data contains four main categories of attacks:  

• DoS (Denial of Service), for example, ping-of-death, 
teardrop, smurf, SYN flood, etc., 

• R2L, unauthorized access from a remote machine, for 
example, guessing password, 

• U2R, unauthorized access to local superuser privileges 
by a local unprivileged user, for example, various 
buffer overflow attacks, 

• PROBING, surveillance and probing, for example, 
port-scan, ping-sweep, etc. 

Although DARPA’98 evaluation represents a significant 
advance in the field of intrusion detection, there are many 
unresolved issues associated with its design and execution. 
In his critique of DARPA evaluation, McHugh [28] ques-
tioned a number of their results, starting from usage of syn-
thetic simulated data for the background (normal data) and 
using attacks implemented via scripts and programs col-
lected from a variety of sources. In addition, it is known 
that the background data contains none of the background 
noise (packet storms, strange fragments, …) that character-
ize real data. However, in the lack of better benchmarks, 
vast amount of the research is based on the experiments 
performed on this data.  

The evaluation of any intrusion detection algorithm on 
real network data is extremely difficult mainly due to the 
high cost of obtaining proper labeling of network connec-
tions. However, in order to assess the performance of our 
anomaly detection algorithms in a real setting, we also pre-
sent the evaluation results of applying our techniques to real 
network data from the University of Minnesota. 
 
4.1. Feature construction. We used tcptrace utility soft-
ware [29] as the packet filtering tool in order to extract in-
formation about packets from TCP connections and to 
construct new features. The DARPA98 training data in-
cludes “list files” that identify the time stamps (start time 
and duration), service type, source IP address and source 
port, destination IP address and destination port, as well as 
the type of each attack. We used this information to map the 
connection records from “list files” to the connections ob-
tained using tcptrace utility software and to correctly label 
each connection record with “normal” or an attack type. 
The same technique was used to construct KDDCup’99 
data set [2], but this data set did not keep the time informa-
tion about the attacks. Therefore, we constructed our own 
features that were similar in nature. 
The main reason for this procedure is to associate new con-
structed features with the connection records from “list 
files” and to create more informative data set for learning. 
However, this procedure was applied only to TCP connec-
tion records, since tcptrace software utility was not able to 
handle ICMP and UDP packets. For these connection re-
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cords, in addition to the features provided by DARPA, we 
used the features that represented the number of packets 
that flowed from source to destination. The list of the fea-
tures extracted from “raw tcpdump” data using tcptrace 
software is shown in Table 2. 
 
Table 2. The extracted “content based” features from raw 
tcpdump data using tcptrace software 
Feature Name Feature description 

num_packets_src_dst The number of packets flowing 
from source to destination 

num_packets_dst_src The number of packets flowing 
from destination to source 

num_acks_src_dst 
The number of acknowledge-
ment packets flowing from 
source to destination 

num_acks_dst_src 
The number of acknowledge-
ment packets flowing from desti-
nation to source 

num_bytes_src_dst  The number of data bytes flow-
ing from source to destination 

num_bytes_dst_src The number of data bytes flow-
ing from destination to source 

num_retransmit_src_dst 
The number of retransmitted 
packets flowing from source to 
destination 

num_retransmit_dst_src 
The number of retransmitted 
packets flowing from destination 
to source 

num_pushed_src_dst 
The number of pushed packets 
flowing from source to destina-
tion 

num_pushed_dst_src 
The number of pushed packets 
flowing from destination to 
source 

num_SYNs_src_dst 
The number of SYN packets 
flowing from source to destina-
tion 

num_FINs_src_dst The number of FIN packets flow-
ing from source to destination 

num_SYNs_dst_src 
The number of SYN packets 
flowing from destination to 
source 

num_FINs_dst_src The number of FIN packets flow-
ing from destination to source 

connection_status  
(discrete) 

Status of the connection  
(0 – Completed; 1 - Not com-
pleted; 2 – Reset) 

 
Since majority of the DoS and probing attacks may use 

hundreds of packets or connections, we have constructed 
time-based features that attempt to capture previous recent 
connections with similar characteristics. The similar ap-
proach was used for constructing features in KDDCup’99 
data [2], but our own features examine only the connection 

records in the past 5 seconds. Table 3 summarizes these 
derived time-windows features. 

Table 3. The extracted “time-based” features 
Feature Name Feature description 
count_src Number of connections made by the same 

source as the current record in the last 5 
seconds  

count_dest Number of connections made to the same 
destination as the current record in the 
last 5 seconds  

count_serv_src Number of different services from the 
same source as the current record in the 
last 5 seconds 

count_serv_dest Number of different services to the same 
destination as the current record in the 
last 5 seconds 

 
There are, however, several “slow” probing attacks that 

scan the hosts (or ports) using a much larger interval than 5 
seconds (e.g. one scan per minute or even one scan per 
hour). As a consequence, these attacks cannot be detected 
using derived “time based” features. In order to capture 
these types of the attacks, we also derived “connection 
based” features that capture similar characteristics of the 
connection records in the last 100 connections from the 
same source. These features are described in Table 4. 

Although we have use all three groups of features for our 
experiments, it is well known that constructed features from 
the data content of the connections are more important 
when detecting R2L and U2R attack types, while “time-
based’ and “connection-based” features were more impor-
tant for detection DoS and probing attack types [2]. 
 

Table 4. The extracted “connection-based” features 
Feature Name Feature description 

count_src1 
Number of connections made by the same 
source as the current record in the last 100 
connections 

count_dest1 
Number of connections made to the same 
destination as the current record in the last 
100 connections 

count_serv_src1
Number of connections with the same ser-
vice made by the same source as the cur-
rent record in the last 100 connections 

count_serv_dst1
Number of connections with the same ser-
vice made to the same destination as the 
current record in the last 100 connections 

 
4.2. Experimental Results on DARPA’98 Data. Since the 
amount of available data is huge (e.g. some days have sev-
eral million connection records), we sampled sequences of 
normal connection records in order to create the normal 
data set that had the same distribution as the original data 
set of normal connections. We used this normal data set for 
training our anomaly detection schemes, and then examined 



 

how well the attacks may be detected using the proposed 
schemes. 

We used the TCP connections from 5 weeks of training 
data (499,467 connection records), where we sampled 5,000 
data records that correspond to the normal connections, and 
used them for the training phase. For testing purposes, we 
used the connections associated with all the attacks from 
the first 5 weeks of data in order to determine detection 
rate. Also we considered a random sample of 1,000 connec-
tion records that correspond to normal data in order to de-
termine the false alarm rate. It is important to note that this 
sample used for testing purposes had the same distribution 
as the original set of normal connections. 

First, features from Table 2 are extracted using the 
tcptrace software utility and then connection based and 
time based features are constructed. The next step involved 
standard normalization of obtained features and the final 
step was to identify bursts of attacks in the data. The per-
formance of anomaly detection schemes was tested sepa-
rately for the attack bursts, mixed bursty attacks and non-
bursty attacks.  

Experiments were performed using the nearest neighbor 
approach (section 3.2.2), the Mahalanobis-based approach 
(section 3.2.3) the local outlier factor (LOF) scheme (sec-
tion 3.2.4) as well as the unsupervised SVM approach (sec-
tion 3.2.5).  

In all the experiments, the percentage of the outliers in 
the training data (allowed false alarm rate) is changed from 

1% to 12%. It is interesting to note that the maximum speci-
fied false alarm (false positive) rate was also maintained 
when detecting normal connections from test data. 

 
4.2.1. Evaluation of Bursty Attacks. Our experiments were 
first performed on the attack bursts, and the obtained burst 
detection rates (bdr) for all four anomaly detection schemes 
are reported in Table 5. We consider a burst to be detected 
if the corresponding burst detection rate is greater than 
50%. Since we have a total of 19 bursty attacks, overall 
detection rate in Table 5 was computed using this rule. Ex-
perimental results from Table 5 show that the two most 
successful outlier detection schemes were nearest neighbor 
(NN) and LOF approaches, where the NN approach was 
able to detect 14 attack bursts and the LOF approach was 
able to detect 13 attack bursts. The unsupervised SVMs 
were only slightly worse than the previous two approaches, 
showing a great promise in detecting network intrusions. 
The Mahalanobis-based approach was consistently inferior 
to the NN approach and was able to detect only 11 multi-
ple-connection attacks. This poor performance of Maha-
lanobis-based scheme was probably due to the fact that the 
normal behavior may have several types and cannot be 
characterized with a single distribution, that we have used 
in our experiments. In order to alleviate this problem, there 
is a need to partition the normal behavior into several more 
similar distributions and identify the anomalies according to 
the Mahalanobis distances to each of the distributions. 

 
Table 5. Burst detection rates (bdr) for all the burst from 5 weeks of data are given in parentheses, while the number of 
connections from the attack burst that are successfully associated with the attacks are given outside the parentheses. 
Burst position burst length (# 

of connections) 
Attack type  
and category 

LOF ap-
proach NN approach Mahalanobis-

based approach 
Unsupervised 

SVM approach 
Week1, burst1 15 neptune (DOS) 15 (100%) 15 (100%) 4 (26.7%) 15 (100%) 
Week2, burst1 50 guest (U2R) 49 (98%) 49 (98%) 49 (98%) 48 (96%) 
Week2, burst2 102 portsweep (probe) 31 (30.3%) 63 (61.7%) 25 (24.5%) 48 (47.1%) 
Week2, burst3 898 ipsweep (probe) 158 (17.6%) 428 (47.7%) 369 (41.1%) 375 (41.8%) 
Week2, burst4 1000 back (DOS) 752 (75.2%) 62 (6.2%) 44 (4.4%) 825 (82.5%) 
Week3, burst1 15 satan (probe) 0 (0%) 0 (0%) 0 (0%) 1 (6.7%) 
Week3, burst2 137 portsweep (probe) 15 (10.9%) 118 (86.1%) 84 (61.3%) 115 (83.9%) 
Week3, burst3 105 nmap (probe) 61 (58.1%) 105 (100%) 105 (100%) 97 (92.4%) 
Week3, burst4 1874 nmap (probe) 1060 (57%) 1071 (57.1%) 993 (53%) 850 (45.4%) 
Week3, burst5 5 imap (r2l) 4 (80%) 5 (100%) 4 (80%) 5 (100%) 
Week3, burst6 17 warezmaster (u2r) 16 (94.1%) 15 (88.2%) 15 (88.2%) 16 (94.1%) 
Week4, burst1 86 warezclient (u2r) 33 (38.4%) 38 (44.2%) 38 (44.2%) 42 (48.8%) 
Week4, burst2 6104 satan (probe) 5426 (89%) 5558 (91.1%) 5388 (88.3%) 5645 (92.5%) 
Week4, burst3 1322 pod (DOS)  957 (72.4%) 969 (73.3%) 680 (51.4%) 645 (48.8%) 
Week4, burst4 297 portsweep (probe) 221 (74.4%)  259 (87.2%) 230 (77.4%) 271 (91.2%) 
Week4, burst5 2304 portsweep (probe) 1764 (76.6%) 1809 (79%) 1095 (47.5%) 1969 (85.5%) 
Week5, burst1 3067 satan     (probe) 2986 (97.4%) 3022 (99%) 2983 (97%) 2981 (97.2%) 
Week5, burst2 5 ffb       (r2l) 0 (0%)  0 (0%)  0 (0%)  0 (0%)  
Week5, burst3 1021 portsweep (probe) 937 (92%) 978 (98%) 938 (92%) 942 (92.3%) 
Total 18424 - 13/19 14/19 11/19 12/19  
Detection rate   68.4% 73.7% 57.9% 63.2%  



 

 
Table 6. The comparison of anomaly detection schemes when applied on all the attack bursts from 5 weeks of data (SA – 
Surface Area between the real attack curve and the predicted (score) attack curve, tresponse – response time in the number of 
connections) 

LOF approach NN approach Mahalanobis-based approach Unsupervised SVMBurst position  
(burst length) 

Attack type  
and category SA tresponse SA tresponse SA tresponse SA tresponse 

Week1, burst1 neptune (DOS) 0.03 1 0.22 1 0.25 1 0.02 1 
Week2, burst1 guest (u2r) 0.22 1 0.01 1 0.03 1 0.04 1 
Week2, burst2 portsweep (probe) 0.5 20 0.38 21 0.54 37 0.23 15 
Week2, burst3 ipsweep (probe) 0.61 2 0.5 1 0.55 2 0.41 1 
Week2, burst4 back (DOS) 0.3 3 0.74 3 0.82 5 0.37 2 
Week3, burst1 satan (probe) 0.89 - 0.94 - 0.95 - 0.69 9 
Week3, burst2 portsweep (probe) 0.8 30 0.2 1 0.32 4 0.28 2 
Week3, burst3 nmap (probe) 0.3 2 0 1 0.1 3 0.09 2 
Week3, burst4 nmap (probe) 0.33 13 0.34 1 0.52 5 0.27 3 
Week3, burst5 imap (r2l) 0.14 2 0.0004 1 0.2 2 0.03 1 
Week3, burst6 warezmaster (u2r) 0.08 1 0.12 1 0.15 1 0.07 1 
Week4, burst1 warezclient (u2r) 0.56 1 0.58 1 0.69 2 0.52 1 
Week4, burst2 satan (probe) 0.12 10 0.08 13 0.11 19 0.06 7 
Week4, burst3 pod (DOS)  0.34 1 0.34 1 0.59 28 0.32 1 
Week4, burst4 portsweep (probe) 0.48 17 0.13 21 0.39 37 0.12 16 
Week4, burst5 portsweep (probe) 0.2 1 0.41 1 0.54 4 0.19 1 
Week5, burst1 satan     (probe) 0.06 21 0.02 38 0.08 47 0.03 14 
Week5, burst2 ffb       (r2l) 0.86 - 0.89 - 0.93 - 0.73 - 
Week5, burst3 portsweep (probe) 0.49 8    0.04 8 0.06 12 0.05 9 
Total: 18424 Detection rate 14/19 (73.7%) 15/19 (78.9%) 10/19 (52.63%) 12/19 (84.2%)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. ROC curves showing the performance of anom-
aly detection algorithms on bursty attacks. 
 

For fair comparison of all outlier detection schemes, 
ROC curves are computed for all proposed algorithms and 
illustrated in Figure 6, which shows how the detection 
rate and false alarm rate vary when different thresholds 
are used. It is apparent form Figure 6 that the most consis-
tent anomaly detection scheme is the LOF approach, 
since it is only slightly worse than the NN approach for 
low false alarm rates (1% and 2%), but significantly better 

than all other techniques for higher false alarm rates 
(greater than 2%). 

Table 6 reports on additional metrics for evaluation of 
bursty attacks, namely surface area and response time. As 
defined in section 2.1, the smaller the surface area be-
tween the real and the predicted attack curve, the better 
the intrusion detection algorithm. It is important to note 
that surface area in Table 6 was normalized, such that the 
total surface area was divided by the total number of con-
nections from the corresponding attack burst. Since dif-
ferent bursty attacks involved different time intervals, we 
decided to measure response time as the number of con-
nections. Therefore, the response time represents the first 
connection for which the score value is larger than the 
prespecified threshold. When considering these additional 
evaluation metrics, we also attempted to measure detec-
tion rate. In Table 6, we consider an attack burst detected 
if the normalized surface area is less than 0.5. Again, the 
two most successful intrusion detection algorithms were 
NN and LOF approaches, with 15 and 14 detected bursts 
respectively. When using the proposed additional metrics, 
the Mahalobis-based approach was again inferior to the 
NN approach, while on the other side the unsupervised 
SVM approach achieved again slightly worse detection 
rate that LOF and NN approaches. 

It is interesting to note that the performance of both 
NN and LOF approaches was slightly better when using 
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these additional metrics than the standard metrics.  Since 
both schemes are based on computing the distances, they 
have similar performance on the bursty attacks because 
the major contribution in distance computation comes 
from the time-based and connection-based features.  
Namely, due to the nature of bursty attacks there is very 
large number of connections in a short amount of time 
and/or that are coming from the same source, and there-
fore the time-based and connection-based features end up 
with very high values that significantly influence the dis-
tance computation. 

However, there are also scenarios when these two 
schemes have different detecting behavior. For example, 
the burst shaded gray in Table 5 (burst 2, week 2) corre-
sponds to the attack that, when using the standard detec-
tion rate metric, was not detected with the LOF approach, 
but it was detected with the NN approach. Figure 7 illus-
trates the detecting of this burst using NN and LOF. It is 
apparent that the LOF approach has a smaller number of 
connections that are above the threshold than the NN ap-
proach (smaller burst detection rate), but it also has a 
slightly better response performance than the NN ap-
proach. It turns out that for specified threshold both 
schemes have similar response time. In addition, both 
schemes demonstrate some instability (low peaks) in the 
same regions of the attack bursts that are probably due to 
occasional “reset” value for the feature called “connection 
status”.  However, when detecting this bursty attack, the 
NN approach was superior to other two approaches. The 
dominance of the NN approach over the LOF approach 
probably lies in the fact that the connections of this type 
of attack (portsweep attack type, probe category) are lo-
cated in the sparse regions of the normal data, and the 
LOF approach is not able to detect them due to low den-
sity, while distances to their nearest neighbors are still 
rather high and therefore the NN approach was able to 
identify them as outliers. The dominance of the NN ap-
proach over the Mahalanobis-based approach can be 
again explained by the multi-modal normal behavior. Fi-
nally, Figure 7 evidently shows that in spite of the limita-
tions of the LOF approach mentioned above, it was still 

able to detect the attack burst, but with higher instability 
which is penalized by larger surface area. 

When detecting the bursty attacks, very often there are 
scenarios when the normal connections are mixed with 
the connections from the attack bursts which makes the 
task of detecting the attacks more complex. It turns out 
that in these situations, the LOF approach is more suit-
able for detecting these attacks than the NN approach 
simply due to the fact that the connections associated with 
the attack are very close to dense regions of the normal 
behavior and therefore the NN approach is not able to 
detect them only according to the distance. For example, 
the burst 4 from week 2 involves 1000 connections, but 
within the attack time interval there are also 171 normal 
connections (Figure 8). Table 5 shows that the LOF ap-
proach was able to detect 752 connections associated with 
this attack, while the NN approach detected only 62 of 
them. In such situations the presence of normal connec-
tions usually causes the low peaks in score values for 
connections from attack bursts, thus reducing the burst 
detection rate and increasing the surface area (Figure 8). 
In addition, a large number of normal connections are 
misclassified as connections associated with attacks, thus 
increasing the false alarm rate. 

 
Figure 7. The score values assigned to connections from 
burst 2, week 2 (Figure is best viewed in color) 
 

 
 
Table 7. The comparison of anomaly detection schemes applied on interleaved bursts of attacks. The first one was slow 
probing attack, the second one was DoS attack within the slow probing attack, and the third one was low traffic U2R attack. 

Burst position  
(burst length) 

Attack type  
and category LOF approach NN approach Mahalanobis based 

approach 
Unsupervised 

SVM approach 

burst1 (999) DOS 679 (68) 204 (20.4) 163 (16.3) 749 (74.9) 
burst2 (866) Probe 377 (43.5) 866 (100) 866 (100) 811 (93.7) 
Burst 3 (5) U2R 2 (40) 2 (40) 2(40) 2 (40) 

Detection rate  1 / 3 1 / 3 1 / 3 2 / 3  
 
 
 
 



 

Table 8. Number of attacks detected and detection rate for detecting single-connection attacks 
Number of at-

tacks 
Attack type  

and category LOF approach NN approach Mahalanobis based 
approach 

Unsupervised 
SVM approach 

13 U2R 6 (46.2%) 7 (53.8%) 5 (38.5%) 7 (76.9%) 
11 R2L 7 (63.7%) 1 (9.1%) 1 (9.1%) 3 (63.7 %) 
1 DOS 1 (100%) 1 (100%) 1 (100%) 1 (100 %) 

Detection rate  14 / 25 (56.0%) 9 / 25 (36.0%) 8/25 (28 %) 11 /25 (44 %)  
 

 
4.2.2. Evaluation of Single Connection Attacks. The per-
formance of anomaly detection schemes for detecting 
single-connection attacks was measured by computing the 
ROC curves for all the proposed algorithms. Figure 8 
shows how detection rate changes when specified false 
alarm rate ranges from 1% to 12%. Figure 8 shows that 
the LOF approach was again superior to all other tech-
niques and for all values of false alarm rate. All these 
results indicate that the LOF scheme may be more suit-
able than other schemes for anomaly detection of single 
connection attacks especially for R2L intrusions. 

Table 8 reports the detection rate for all individual sin-
gle-attack types when the false alarm was specified to 2%. 
It is obvious that the LOF, NN and unsupervised SVM 
approaches outperformed the Mahalanobis-based scheme 
for all attack types. In this case, however, the LOF ap-
proach is distinctly better than the unsupervised SVM and 
NN approaches especially for R2L attacks, where the LOF 
approach was able to detect 7 out of 11 attacks, where the 
unsupervised SVM and NN approaches were able to 
pickup only three and one attacks respectively. Such su-
perior performance of the LOF approach comparing to the 
NN approach may be explained by the fact that majority 
of single connection attacks are located close to the dense 
regions of the normal data and thus not visible as outliers 
by the NN approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. ROC curves showing the performance of anom-
aly detection algorithms on single-connection attacks. 

 

4.3. Results from Real Network Data. Due to various 
limitations of DARPA’98 intrusion detection evaluation 
data discussed above [28], we have repeated our experi-
ments   on live network traffic at the University of Minne-
sota. When reporting results on real network data, we 
were not able to report the detection rate, false alarm rate 
and other evaluation metrics reported for DARPA’98 in-
trusion data, mainly due to difficulty to obtain the proper 
labeling of network connections. 

Since a human analyst needs to manually evaluate 
outliers, it was not practical to investigate all of the outlier 
detection algorithms on the real network data. For this 
purpose we have selected the LOF approach, since it 
achieved the most successful results on publicly available 
DARPA’98 data set and it is more robust than other 
anomaly detection schemes that we used. The LOF tech-
nique also showed great promise in detecting novel intru-
sions on real network data. During the past few months it 
has been successful in automatically detecting several 
novel intrusions at the University of Minnesota that could 
not be detected using state-of-the-art intrusion detection 
systems such as SNORT [30]. Many of these attacks have 
been on the high-priority list of CERT/CC recently. Ex-
amples include: 
• On August 9th, 2002, CERT/CC issued an alert for 

“widespread scanning and possible denial of service 
activity targeted at the Microsoft-DS service on port 
445/TCP” as a novel Denial of Service (DoS) attack.  
In addition, CERT/CC also expressed “interest in re-
ceiving reports of this activity from sites with de-
tailed logs and evidence of an attack.” This type of 
attack was the top ranked outlier on August 13th, 
2002, by our anomaly detection module in its regular 
analysis of University of Minnesota traffic.  The port 
scan module of SNORT could not detect this attack, 
since the port scanning was slow. Figure 9 shows the 
number of incidents related to scanning of port 
445/TCP reported to Internet Storm Center [31] in 
the last month all around the World. 

• On June 13th, 2002, CERT/CC sent an alert for an 
attack that was “scanning for an Oracle server”.   Our 
anomaly detection module detected an instance of 
this attack on August 13th from the University of 
Minnesota network flow data by ranking connections 
associated with this attack as the second highest 
ranked block set of connections (the top ranked block 
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of connections belonged to the denial of service ac-
tivity targeted at the Microsoft-DS service on port 
445/TCP). This type of attack is difficult to detect us-
ing other techniques, since the Oracle scan was 
embedded within much larger Web scan, and the 
alerts generated by Web scan could potentially over-
whelm the human analysts. 

 

Figure 9. Number of scanning activities on Microsoft DS 
service on port 445/TCP reported in the World in the last 
month (Source www.incidents.org) 
 
• On August 8th and 10th, 2002, our anomaly detection 

techniques detected a machine running a Microsoft 
PPTP VPN server, and another one running a FTP 
server, which are policy violations, on non-standard 
ports.  Both policy violations were the top ranked 
outliers.  Our anomaly detector module flagged these 
servers as anomalous since they are not allowed, and 
therefore very rare.  Since SNORT is not designed to 
look for rogue and unauthorized servers, it was not 
able to detect these activities. In addition, for the 
PPTP VPN server, the collected GRE traffic is part 
of the normal traffic, and not analyzed by tools such 
as SNORT. 

 
5. Conclusions and Future Work 
Several anomaly detection schemes for detecting network 
intrusions are proposed in this paper. To support applica-
bility of anomaly detection schemes, a procedure for ex-
tracting useful statistical content based and temporal 
features is also implemented. Experimental results per-
formed on DARPA 98 data set indicate that the most suc-
cessful anomaly detection techniques were able to achieve 
the detection rate of 74% for attacks involving multiple 
connections and detection rate of 56% for more complex 
single connection attacks, while keeping the false alarm 
rate at 2%. When the false alarm rate is increased to 4%, 
the achieved detection rate reaches 89% for bursty attacks 
and perfect 100% for single-connection attacks. Com-
puted ROC curves indicate that the most promising tech-

nique for detecting intrusions in DARPA’98 data is the 
LOF approach. In addition, when performing experiments 
or real network data, the LOF approach was very success-
ful in picking several very interesting novel attacks. 

Considering the DARPA’98 data, performed experi-
ments also demonstrate that for different types of attacks, 
different anomaly detection schemes were more success-
ful than others. For example, the unsupervised SVMs 
were very promising in detecting new intrusions since 
they had very high detection rate but very high false alarm 
rate too. Therefore, future work is needed in order to keep 
high detection rate while lowering the false alarm rate. In 
addition, in the Mahalanobis based approach, we are cur-
rently investigating the idea of defining several types of 
“normal” behavior and measuring the distance to each of 
them in order to identify the anomalies. Since our experi-
mental results exhibited very low detection rate for single-
connection attacks that are very similar to normal connec-
tions, we will also scrutinize whether these attacks dem-
onstrate different densities than the normal connections. 

Our long-term goal is to develop an overall framework 
for defending against attacks and threats to computer sys-
tems. Although our developed techniques are promising 
in detecting various types of intrusions they are still pre-
liminary in nature. Data generated from network traffic 
monitoring tends to have very high volume, dimensional-
ity and heterogeneity, making the performance of serial 
data mining algorithms unacceptable for on-line analysis. 
Therefore, development of new anomaly detection algo-
rithms that can take advantage of high performance com-
puters is a key component of this project. According to 
our preliminary results on real network data, there is a 
significant non-overlap of our anomaly detection algo-
rithms with the SNORT intrusion detection system, which 
implies that they could be combined in order to increase 
coverage. 
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