
   
Abstract--Due to restrictive data access and a lack of 
appropriate data mining software, spatial information from 
physically dispersed sites is often not properly exploited in e-
commerce. In the proposed distributed spatial knowledge 
discovery system for e-commerce, a secure centralized server 
collects proprietary heterogeneous data from subscribed 
businesses as well as relevant data from public and 
commercial sources and then integrates knowledge to provide 
valuable management information to subscribers. Considered 
knowledge discovery methods include: (1) providing estimated 
values for unobserved, typically expensive attributes of 
interest to a particular business; or (2) delivering learned 
models for generalizing extracted knowledge. An evaluation 
on large, highly nonlinear simulated data suggests that both 
approaches can provide profitable, effective and useful 
management recommendations in spatial e-commerce 
applications. 

I. INTRODUCTION 
In various e-commerce domains involving spatial data 

(real estate, environmental planning, precision agriculture), 
participating businesses may increase their economic 
returns and improve environmental stewardship using 
knowledge extracted from spatial databases. However, in 
practice, spatial data is often inherently distributed at 
multiple sites. Due to security, competition and a lack of 
appropriate knowledge discovery algorithms, spatial 
information from such physically dispersed sites is often 
not properly exploited. 

Many large-scale spatial data analysis problems also 
involve an investigation of relationships among attributes in 
heterogeneous data sets. Instead of applying global 
recommendation models across entire spatial data sets, 
designing an ensemble of local models is preferable to 
better match site-specific needs thus improving financial 
benefits [1]. 

One of the applications that may prosper from novel 
techniques for analysis of spatial data is precision 
agriculture aimed at lowering production costs and 
protecting the environment by controlling the 
environmental characteristics at a sub-field level [2]. This 
can be achieved by collecting more and better information 
and by extracting useful knowledge from data, so the 
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farmers can make the more suitable decisions and thus 
successfully accomplish their multifaceted goals. This is 
possible by employing technological advances, such as 
global positioning systems, combine-mounted yield 
monitors, and computer controlled variable rate application 
equipment, that provide an opportunity for improving upon 
traditional approaches of treating agricultural fields 
uniformly. Profitability of precision agriculture, the risk of 
equipment incompatibility and its obsolescence are one of 
the largest concerns listed by farmers, who are generally 
interested in this new approach, especially if the costs are 
modest.  

A possible approach towards overcoming all these 
limitations is developing a distributed spatial knowledge 
discovery system for precision agriculture. In the proposed 
system a centralized server provides methods for 
conversion of protocols and data formats, such that 
customers have not to be concerned about data 
incompatibility due to obsolete and non-standardized 
equipment. The server collects proprietary site-specific 
spatial data from subscribed businesses as well as relevant 
data from public and commercial sources and integrates 
knowledge in order to provide valuable management 
information to subscribed customers. In general, there are 
two methods for providing useful recommendation actions. 
The first method assumes distributed spatial data sets with 
different sets of attributes. Here, the estimation for 
unobserved (typically expensive) attributes of interest to a 
particular business can be made according to similarity 
among the observed attributes with data from another 
source where the desired attribute is available. The second 
method includes constructing models for generalizing 
knowledge extracted from spatial data and delivering them 
to subscribed customers. However, sometimes the 
prediction problem in spatial data sets can be extremely 
complex since a large number of attributes may influence 
the target attribute and also significant amounts of noise can 
exist in data. 

Given a number of distributed, both heterogeneous and 
homogeneous spatial data sets, a profitability evaluation of 
the proposed methods is discussed in Section 2. Extensive 
experimental results, reported in Section 3, provide 
evidence that both methods can be computationally 
efficient and fairly helpful in developing useful 
management decisions in precision agriculture and other 
spatial e-commerce applications. 
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Fig. 1. The scheme of acquir
 

II. METHODOLOGY 
In the proposed distributed spatial knowledge disco

system farmers interested in improving their managem
are subscribed to the centralized server, and 
communicate to the server through a wir
communication channel. The system collects two group
relevant spatial attributes from subscribed businesses.
first group consisting of x and y coordinates and the ta
attribute is collected by integrating the combine-mou
yield monitors and GPS units. The second group of rele
attributes includes typically expensive soil characteri
which are not necessary available from all farmers. A
performing a local data reduction [3] all attributes
transferred through a wireless channel to the centra
server (Fig. 1). 

In addition to obtained information from subscr
customers, the server acquires relevant information 
other sources available on the World Wide Web (WW
Publicly available relevant information needed for gi
profitable advises include an average temperature,
humidity, precipitation etc., as well the forecasts for t
attributes. Commercial information of interest inc
topographic attributes e.g. slope, elevation, topogra
indices, etc. and they are collected through miscellan
business services, e.g. global positioning systems (G
satellite telemetry systems, remote sensing etc. (Fig. 1).
server uses commercial services for acquiring rele
information for all customers, and it shares the costs am
all subscribed businesses, hence allowing customers to 
interesting information for less money. In addi
customers are provided with many useful recommenda
resulting from integrating knowledge obtained from o
subscriber’s data. 

A. Telecommunication subsystem 
A telecommunication sub-system (Fig. 2) consists o
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mobile station collects crop yield information, requests 
communication and after the request is acknowledged, 
starts with transmission of a data packet from its 
transmitting buffer (� in Fig. 2). Each data packet contains 
collected data as well as information for control, error 
correction and mobile station identification. In the 
meantime, new-collected data are gathered into an 
acquisition buffer. The base station receives messages, 
identifies the sender, and performs error control. If an error 
in data transmission is detected and cannot be corrected, the 
base station requests retransmission of an information 
packet from the corresponding sender by broadcasting the 
request code along with the sender id (� in Fig 2.). When a 
wireless channel is not available, a mobile station retries 
data transmission after a fixed or a random time interval (� 
in Fig. 2). A telecommunication subsystem can utilize 
either of accepted wireless data-transmission multiplex 
techniques [4]: frequency (FDMA), time-division (TDMA) 
or code-division multiple access (CDMA). In this paper, we 
suggest an application of Carrier-Sense Multiple 
Access/Collision Detection (CSMA/CD) systems that 
belong to the class of TDMA [5]. 

 
In CSMA/CD systems, there is no centralized 

assignment of the channel to a particular user. Instead, 
transmitter perceives the channel and starts transmission if 
there is no signal detected.  Due to a propagation delay, 
another transmitter may broadcast at the same time, when a 
collision occurs. Once a collision is detected, transmitter 
retransmits according to one of adopted algorithms. In the 
simplest case, non-persistent CSMA/CD, which is to be 
discussed afterward, retransmission occurs after a random 
time interval. In this paper we will discuss following 
aspects of an applied telecommunication system: 
 

• the maximal number of mobile stations  
• an average number of retransmissions 
• the size of an acquisition buffer 

 
 
 
 



 
 

1) The maximal number of mobile stations 
Recall that a yield monitor with global positi

system (GPS) collects one record with the current lat
longitude and crop yield information each tc seconds. 
is the size of transmitting buffer, of which P’ byte
reserved for the transmission of collected records. 

 
The maximal number of mobile station Nmax c

estimated using the theory of maximal line utilizatio
as: 

      (
 
where ρmax is the maximal line utilization,  λ is cus
arrival rate, m is the customer average service time, d
average distance between a mobile and a base station
the system byte transmission rate, b is the number of
per data record and c is the light speed. 

The maximal number of mobile stations increases
the increase of fB, tc and P’ (assuming that the numb
control bytes P-P’ is constant) and decreases wit
increment of b and d. Typically, sampling rate tc depen
required yield sampling density and thus canno
arbitrarily varied. Also, the size P of transmission bu
limited due to economic reasons. Transmission ra
depends on the bandwidth of a wireless channel. O
other hand, the number of bytes per data record depen
the resolution of collected data, while the average dis
d depends on various factors, such as the carrier freq
of wireless channel and terrain configuration. For t
values of parameters: d = 20 km, P = 2Kbytes,
8KBytes/s, tc = 1s and b = 10 bytes, we obtain small v
of propagation delay 0.13ms, and a high maxima
utilization, ρmax = 0.996. If we choose utilization ρ = 0
prevent problems that can occur when working
maximal utilization) and assume P’/P>0.5 (which is 
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erage number of retransmissions 
umber J of retransmissions due to collisions 
ometric distribution [5] with the average number 
missions Javg=1/v, where v=Np(1-p)N-1 is the 
 that an attempted transmission occurs without a 
Parameter p is the probability that in a given 
particular station occupies the channel. Using an 
 for the average time for a successful 
on in the case of non-persistent CSMA/CD [5] 
ilities v and p can be shown to satisfy: 

    
                                                               (2) 

opted values of system parameters, after few 
of (2), one can obtain p=0.0025 and v=0.196. 
 average number of retransmission is Javg≈5. 

e of an acquisition buffer 
re-transmitting, a mobile station acquires new 
ccomplish the quality of service, the probability 
overflows an acquisition buffer must be held 
cified boundaries. Given a small probability α, 
 the size B of an acquisition buffer such that                           

                                                                          (3) 

 a geometric distribution of J, it can be shown 
e of an acquisition buffer must satisfy: 

                                    (4)
( ) '
1log

log2 P
vt

bB
c

+








−
≥ ατ

( )
























 ++=

−= −

vcP
df

t
mp

pNpv

B

P

N

2121

1 1

ατ −>







+≥ 1'2 PJ

t
bBobPr

c



Crop yield 

Therefore, the size of the acquisition buffer must be 
larger that the size of the transmission buffer. However, due 
to τ<<tc, the effect of this acquisition buffer “enlargement” 
is practically negligible. Even with very high quality 
requirements (α=0.01%), to satisfy (4) it is enough to set 
B=P’+1. Therefore, the acquisition buffer can practically be 
realized by an addition of one 1-byte shift register to the 
transmission buffer. 

4) Security aspects 
Businesses in general do not like to share their data due 

to competitive and other reasons, and therefore one of the 
most important issues is to verify customer’s identity and to 
provide a confidential and secure communication with the 
central server. 

Customer authentication in the proposed system can be 
implemented by computing a Message Authentication Code 
(MAC) [6] as a function of a secret key and the message. 
This MAC is then appended to the message. Both the 
customer (sender) and the server (receiver) share the same 
secret key, where the server uses this key to decide if the 
message is sent by the customer who claims to have sent it 
(the only other person with the same secret key). 

For communication between customers and the 
centralized server, subscribed businesses share the same 
wireless communication channel, and there is an exposure 
to eavesdropping data transfer on the channel. Therefore, 
there is also a need to achieve confidentiality of 
communication, i.e. to pass information between two 
parties (customer and server) without a third party being 
able to understand it. Confidentiality can be addressed by 
encrypting all data packages sent by customers and then 
decrypting by the server upon receiving the data. For that 
matter, the customers and the server may use the same keys 
(private key encryption – DES) or different keys (public 
key encryption – RSA) [6]. Furthermore, the server should 
be trustworthy to all customers, in order to be allowed to 
collect their proprietary relevant information. 

B. Data Processing Subsystem 
In the proposed system the server collects a large 

amount of spatial data from different sources. To maintain 
and analyze this data there is a need for a server with large 
secondary storage devices, huge memory capacity, and a 
high processing speed. When data from all sources is 

collected at the server site, they are organized into a 
database with spatial indexing (e.g. R-tree [7]). 

Spatial data mining software [8] interfaces this database 
to extract interesting and novel knowledge from data. 
Specific objectives include a better understanding of spatial 
data, discovering relationships between spatial and non-
spatial data, construction of spatial knowledge-bases, query 
optimization and data reorganization in spatial databases. 
Knowledge extracted from spatial data can consist of 
characteristic and discriminant rules, prominent structures 
or clusters, spatial associations and other forms. 

Challenges involved in spatial data mining include 
multiple layers of data, missing attributes and high noise 
due to a low sensibility of instruments and to spatial 
interpolation on sparsely collected attributes. To address 
some of these problems, data is cleaned by removing 
duplicates, removing outliers and by filtering through a 
median filter with a specified window size. 

C. Knowledge Discovery Methods 
The goal of precision agriculture management is to 

estimate and perform site-specific crop treatment in order to 
maximize profit and minimize environmental damage.  
Through a knowledge discovery (KDD) process, learning 
algorithms perform data modeling using data sets from 
different fields in possibly different regions and years. Each 
data set may contain attributes whose values are not 
manageable, (e.g. topographic data) as well as these  
attributes that are manageable (e.g. nutrient concentrations). 

Approaches to the modeling in agriculture KDD process 
supported by our proposed system include a direct and 
inverse attributes optimization (Fig. 3). 

In an inverse modeling, crop yield is modeled based on 
both unmanageable and manageable attributes. This yield 
prediction helps farmers to distinguish regions in a field 
with high and low yield potential and henceforth to adjust 
an agronomic practice appropriately. A sensitivity analysis 
of the obtained model, along with techniques of 
mathematical optimization are used to estimate the optimal 
concentration of manageable attributes resulting in site-
specific fertilizer concentration recommendations. 

In a direct modeling, the task of a learning algorithm is 
to predict one of more manageable attributes using other 
available attributes and the target attribute (crop yield). This 
approach provides a direct estimation of a manageable 
attribute concentration and therefore can help in 
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Fig. 3. Basic modeling approaches in agriculture KDD process 



determining the optimal treatment for an attribute. 
Furthermore, it is possible to attempt predicting an attribute 
whose values are not measured on a particular farm 
providing relatively cheap nutrient information instead of 
relaying entirely on an expensive data collection from soil 
sampling and a subsequent chemical analyses. 

The main requirements imposed to learning algorithms 
employed in precision agriculture are to: 

- provide predictions with a sufficiently high 
generalization, 

- allow an user-comprehensible explanation of an 
observed phenomena, 

-discover and exploit spatially similar regions, 
-handle noisy data, including sensor and interpolation 

error and an unexplained yield variance. 
The potentials and drawbacks of several knowledge 

discovery algorithms (ordinary least squares (OLS) linear 
regression, neural networks, clustering algorithms) are 
investigated in this paper. 

Ordinary least squares (OLS) linear regression is a 
common method to explain variability of a dependent 
variable as a linear combination of observed explanatory 
variables. Weighting coefficients for particular influences 
are obtained using minimization of a residual error on 
training data. Linear regression is computationally feasible 
for large data sets and it provides reasonably robust models 
of linearly-dependent data. However, when the process to 
be modeled is highly non-linear, predictions obtained using 
linear regression are less accurate and there is a need for 
more sophisticated methods. 

Unlike linear regression, neural networks are capable of 
modeling non-linear dependence in data. The most widely 
used neural networks are feed-forward multi-layered neural 
networks [9] (FF-NN). FF-NN consists of several (usually 
2) layers of neurons. Each neuron generates its output as a 
non-linear function of weighted sum of inputs. Inputs for 
the first layer consist of normalized values of explanatory 
variables. Outputs of neurons in each layer become inputs 
of neurons in the subsequent layer. Finally, the output of the 
last layer becomes a prediction of the response variable. 
(Fig. 4). On such a way, the output of a FF-NN is a 
composition of non-linear functions, hence capable of an 
accurate approximation of a wide class of continuous 
functions. In practice, neuron non-linearity is usually 
introduced by a logarithmic sigmoid (as we proceed in this 
paper) or tangent hyperbolic function. To provide a good 
generalization, neural networks have to be supplied with an 
amount of data typically larger than when linear models are 
learned. Otherwise, we can obtain models specialized to the 
training data and without capability to explain data 
variability on previously unseen datasets. Furthermore, a 
neural network represents a “black box” in which data 
relation and properties are hard-coded. Therefore, their 
comprehensibility is often questioned among practitioners. 
Finally, large amounts of noise and sensor error and the 
presence of data heterogeneity can dramatically decrease a 
neural network explanatory power making them to perform 
in some cases even worse than linear regression models. 
 

In order to improve prediction ability when dealing with 
heterogeneous spatial data, an approach employed in the 
proposed system is based on identifying spatial regions 
having similar characteristics using a clustering algorithm. 
A clustering algorithm is used for partitioning multivariate 
data into meaningful subgroups (clusters), so that patterns 
within a cluster are more similar to each other than are 
patterns belonging to different clusters. Local regression 
models are built on each of these spatial regions describing 
the relationship between the spatial data characteristics and 
the target attribute [10]. Therefore, local models are adapted 
to specific subsets of the wide range of environments that 
can exist in spatial data sets even in a small geographic 
area. 

III. EXPERIMENTAL RESULTS 
To illustrate the abilities of the proposed e-commerce 

system, we performed a series of experiments on simulated 
data sets. Using simulated data provides a possibility to 
vary data properties and to determine their impact on the 
knowledge-discovery process [11]. Experiments were 
performed on two different collections of simulated data 
sets. 

The first collection consisted of five simulated data sets 
(fields). For simplicity, each field was a rectangular of 
800*800m2 with driving attributes influencing the response 
and corresponding to the relevant soil and topographic 
attributes in two consecutive years. The soil attributes 
included levels of Nitrogen, Phosphorus and Potassium, 
while topographic attributes were Water content and Slope. 
Each attribute had approximately a normal distribution and 
statistics (mean value, variance, spatial variability) similar 
to that of real-life data. Moreover, temporal variability of 
soil attributes was introduced using AR(1) spatio-temporal 
model [12]. Piecewise linear models were used to model 
yield dependence on spatial attributes and AR(1) models to 
simulate the influence of parameters that vary in time (e.g. 
weather). Parameters of crop yield models were chosen 
according to expert knowledge and fertilization guidelines. 

Distribution heterogeneity was simulated through a 
second data collection containing 5 simulated fields with 
the same attributes that were generated to satisfy the same 
spatial and temporal properties as in the first collection. 
However, unlike the first data collection where attributes 
had approximately normal distributions, in the second 
collection topographic variables were simulated to be in 
five clusters, using the technique of feature agglomeration 

Fig. 4. The architecture of FF-NN model 



[12]. Furthermore, instead of using one model for response 
generation on the entire field, in the second data collection 
a different data generation process was applied per each 
cluster.  

Knowledge-discovery algorithms were evaluated 
through the repetitive process of training on a field from 
one year, and testing on the same data set from the 
successive simulated year. Prediction accuracy on test data 
is measured using the coefficient of determination R2 
value1. The reported prediction accuracy of considered 
methods was evaluated through 10 trainings of learning 
models starting from different random initializations of 
modeling parameters. 

A. Experiments on homogeneous data 
In experiments with homogenous data both linear (OLS) 

and non-linear (FF-NN) models were evaluated on the first 
data collection. We used inverse modeling for prediction of 
yield and manageable attributes (N,P,K). 

In the first experiment, in order to examine 
generalization capabilities of the proposed methods,  
models were trained on each of 5 fields and tested on the 
remaining ones. Depending on a training field, prediction 
accuracy of linear models expressed through R2 value was 
within (0.42, 0.54) range. Since yield was simulated using 
highly nonlinear models, an introduction of nonlinearity in 
learning algorithms by applying FF-NN resulted in a higher 
prediction accuracy (average R2 value was within 
(0.66,0.80) range with standard deviation 0.01-0.02).  

Although the simple strategy of building models using 
data from one field demonstrated promising results, in 
practice it is often necessary to perform yield prediction on 
an unseen field by building prediction models on a number 
of fields. Assuming that the total number of available fields 
is n, we investigating:  

- Training one prediction model on merged (n-1) 
fields and testing on the remaining one; 

- Training one model on each of (n-1) fields and 
computing prediction accuracy on the test field as an 
averaged prediction of all (n-1) local models 

When one model was trained on merged data, R2 value 
was in range (0.54,0.59) for OLS and (0.84,0.86) for FF-
NN. It is evident that accuracy typically was higher than 
when the model was trained on only one field, as in 
previous experiments. Averaging predictions led to a small, 
but significant increase of FF-NN accuracy (R2 value in 
range (0.85,0.88)), whereas the accuracy of OLS was the 
same as in previous case. Finally, we performed a weighted 
averaging of model predictions. For each point in the test 
data, weights of particular models were computed 
according to the similarity of the test point to the 
distributions of each training set, measured using 4-layer 
neural networks for learning data distributions on training 
fields [21]. Due to very similar distributions on all fields, 
                                                           
1 Coefficient of determination is equal to R2=1-average prediction 
error/variance(target variable). R2 is a measure of the explained 
variability of the target variable, where larger value is better with 
1 corresponding to a perfect prediction and 0 to a trivial mean 
prediction. 

this approach did not lead to an improvement of prediction 
accuracy. Therefore, for yield prediction on homogeneous 
fields a simple averaging of prediction models appears to be 
the most promising technique. This technique is also 
suitable for distributed databases, where the data sets are 
physically dispersed, since local models can be trained on 
the sites where the data are actually stored. 

 
Next, we performed the prediction of manageable 

attributes by averaging of local prediction models. 
Depending on used attributes and a testing field (attributes 

Fig. 5. Prediction of Nitrogen concentration on 
heterogeneous data using direct modeling. a) 
True concentration b) prediction using OLS and 
c) prediction using FF-NN. 
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on fields with smaller temporal variability tend to be more 
predictable using time-lagged data), average prediction 
accuracy varied in range (0.44,0.74) for FF-NN and 
(0.13,0.33) for OLS. 

As it can be seen from Fig. 5, using OLS results in 
smoother values of predicted attributes. On the other side, 
FF-NN result in better prediction (R2=0.71 vs. 0.33 with 
OLS). Since predicted values of FF-NN resemble high-
frequency noise on an image, there might be possible to 
increase FF-NN prediction accuracy using subsequent 2-D 
filtering of predicted spatial values. 

B. Experiments on heterogeneous data 
To investigate performance of the proposed knowledge 

discovery algorithms on heterogeneous data, we repeated 

previous experiments on all fields from the second data set. 
Due to data heterogeneity, yield prediction results obtained 
using global models were significantly worse than when the 
same models were applied on homogeneous data. Global 
FF-NN models trained on one and tested on the remaining 
fields achieved average R2 value in the range (0.22,0.39) 
with standard deviation of 0.03-0.04, which was 22-25% 
worse than for experiments on homogeneous data in the 
previous section.  Due to data heterogeneity, performance 
of linear models was close to those of non-linear ones: OLS 
achieved R2 in range (0.19,0.35).  

An analogue set of experiments to those for 
homogeneous data sets, suggests again that prediction 
achieved by simple averaging of models trained on distinct 
fields is better than the prediction achieved by applying one 
model trained on merged data. By averaging, we were able 
to increase R2 value to (0.17-0.40) range.  

In direct modeling of manageable attributes, FF-NN 
models consistently outperformed OLS. However, due to 
data heterogeneity, FF-NN was not able to correctly 
identify regions of low and high attribute values, predicting 
usually values around the mean of true value, Fig. 6. In 
contrast, OLS provided a good detection of low- and high-
value regions, which can be useful for fertilizer treatment. 

To determine benefits of inverse modeling in 
identifying the optimal concentration of fertilization, we 
performed a series of experiments on heterogeneous data. 
Since the outcome of these experiments depends on current 
market price and local regulations for treatment parameters 
(e.g. cost of unit of fertilizer, the unit price of crop, the 
maximal allowed fertilizer concentration) we were not able 
to provide a general assessment of an overall prediction 
quality. However, experiments suggested that using inverse 
modeling can help in successfully discovering regions 
where profit does not increase if fertilization is performed 
and in obtaining a fertilization recommendations similar or 
close to known optima elsewhere (see an example on Fig. 
7). 

In order to better generalize, the prediction models are 
constructed for each distribution separately. The total 
prediction accuracy of the yield was computed as a 
weighted average of prediction accuracies for learned 
distributions, where the weights were proportional to the 
number of instances in each distribution. First, we 
performed experiments on 5 data sets when all relevant 
attributes were available for modeling. Since the data sets 
were simulated through time for two consecutive years, we 
also tested generalization capabilities of built prediction 
models in time dimension. Global and local regression 
models were constructed on each data set from the first year 
and tested on the same data set from the second year. The 
experimental results for both model types on all 5 spatial 
data sets (fields) are shown in Table 1. 
 
 
 

TABLE I 
THE ACCURACY OF GLOBAL AND LOCAL REGRESSION 

MODELS THROUGH TIME 

Fig. 6. Prediction of Nitrogen
concentration on heterogeneous
data using direct modeling. a) True
concentration b) Prediction using
OLS c) Prediction using FF-NN 
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                  b)  

c)  



Field 1 Field 2 Field 3 Field 4 Field 5 Regression 
Method R2 ± std R2 ± std R2 ± std R2 ± std R2 ± std 
Global 0.73 ± 0.10 0.76 ± 0.15 0.78 ± 0.10 0.71 ± 0.13 0.79 ± 0.06 
Local 0.89 ± 0.04 0.91 ± 0.05 0.92 ± 0.03 0.87 ± 0.04 0.92 ± 0.03 

 
Although performance of the global models for 

heterogeneous spatial data sets declined substantially when 
comparing to using global models on homogeneous data, 
such an approach can still provide useful capabilities for 
prediction of the yield in the next year. However, the 
mixture of local regression models significantly 
outperformed the global model thus leading to very good 
generalization abilities. 

To simulate the scenario when customers (farmers) do 
not have access to all relevant soil attributes, and when only 
topographic attributes are available, we performed 
experiments on data with different sets of observed soil 
attributes. In these experiments, Field 1 had attributes 
corresponding to Nitrogen and Phosphorus, Field 2 had 
Nitrogen and Potassium, Field 3 had Nitrogen, Phosphorus 
and Potassium, Field 4 had Phosphorus and Potassium, and 
Field 5 had only Nitrogen. Generalization capabilities of 
yield prediction models through time for this scenario are 
summarized in Table 2.  
 

TABLE II  
THE ACCURACY OF GLOBAL AND LOCALPREDICTION MODELS 

THROUGH TIME WHEN SOME SOIL ATTRIBUTES ARE NOT 
AVAILABLE 

Field 1 Field 2 Field 3 Field 4 Field 5 Regression 
Method R2 ± std R2 ± std R2 ± std R2 ± std R2 ± std 
Global 0.48 ± 0.10 0.48 ± 0.05 0.75 ± 0.12 0.48 ± 0.07 0.54 ±0.03 
Local 0.63 ± 0.03 0.64 ± 0.05 0.91 ± 0.06 0.65 ± 0.04 0.75 ± 0.02 

 
Similar to a situation when all relevant attributes are 

available for modeling, the mixture of local regression 
models significantly outperformed the method of building 
global prediction models. However, it is also evident that 
generalization capabilities of both methods considerably 
dropped comparing to the previous experiment, where all 

attributes were available. Hence, it appears that the soil 
attributes provide a lot of information needed for fairly 
accurate generalization.  

In order to test generalization capabilities of prediction 
models built on fields with incomplete set of soil attributes, 
we tested models constructed on those fields on Field 3, 
where all soil and topographic attributes were available. To 
further improve achieved prediction accuracy of the yield, 
we also used simple averaging of models built on different 
fields. The experimental results for both scenarios, when all 
relevant attributes were available and when only some of 
them are obtained, are shown in Table 3. 
 

TABLE III 
THE PREDICTION ACCURACY ON FIELD 3 WHEN PREDICTING 

FROM THE REMAINING FIELDS WITH MISSING ATTRIBUTES 
Not all attributes available All attributes available Used fields in 

Predicting F3 Global Local Global  Local 
F1  0.63 ± 0.01 0.70± 0.01 0.75 ± 0.04 0.89 ± 0.01 
F2  0.70 ± 0.02 0.75 0.01 0.80 ± 0.03 0.90 ± 0.01 
F4  0.55 ± 0.03 0.64 ± 0.01 0.77 ± 0.01 0.90 ± 0.01 
F5  < 0 < 0 < 0 < 0 

F1, F2  0.76 ± 0.01 0.82 ± 0.01 0.84 ± 0.04 0.90 ± 0.01 
F1, F2, F4  0.77 ± 0.02 0.84 ± 0.02 0.85 ± 0.03 0.91 ± 0.01 

F1, F2, F4, F5 0.66 ± 0.11 0.72 ± 0.07 0.78 ± 0.04 0.81 ± 0.08 
 

Analyzing the results from Table 3, it is evident that 
averaging of models constructed on different fields 
outperformed generalization from single field models. In 
addition, the mixture of local regression models was able to 
improve the prediction accuracy over the global models. 

IV. CONCLUSIONS 
A new distributed spatial knowledge discovery system 

for e-commerce applications is proposed. In the proposed 
system, the centralized server is collecting proprietary site-
specific spatial data and then integrating knowledge in 
order to provide valuable management information to 
subscribed customers. An overview of the proposed 
methodology, with emphasize on telecommunication and 
security aspects, is provided along with a brief description 
of the proposed knowledge-discovery techniques. The new 
approach is successfully applied to several simulated 
homogeneous and heterogeneous spatial data sets. 

Methods for estimating values of unobserved attributes 
of interest to a particular business as well as the target (crop 
yield prediction and fertilizer recommendation in our case) 
were examined. It is shown that a negative influence of 
distribution heterogeneity on prediction accuracy can be 
substantially compensated using clustering-based learning 
algorithms. The extensive experimental results indicate that 
the proposed system can be computationally efficient and 
fairly helpful in providing useful recommendations for 
spatial e-comerce applications.  

Although the performed experiments provide evidence 
that the proposed approaches are suitable for distributed 
learning in spatial databases, further work is needed to 
optimize methods for combining models in larger 
distributed systems. 

Figure 7: Nitrogen fertilization on heterogeneous
data. a) the optimal treatment; b) a recommendation
obtained using inverse modeling 
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