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Introduction

Protein Interactions 
[genomebiology.com]

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

► Graphs are ubiquitious

Friendship Network 
[Moody ’01]
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Graph “Patterns”

� Given a large graph dataset, what do we 
focus on?

� PatternsÎ Aspects of graphs that show up 
frequently, in datasets from diverse domains.
� Degree distributions

Count vs Outdegree

Power Laws
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Graph “Patterns”

� Given a large graph dataset, what do we 
focus on?

� PatternsÎ Aspects of graphs that show up 
frequently, in datasets from diverse domains.
� Degree distributions
� Hop-plots
� “Scree” plots
� and others…

Hop-plot

Effective 
Diameter
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Graph “Patterns”

� Why do we like them?
� They capture interesting properties of graphs.
� They provide “condensed information” about the 

graph.
� They are needed to build/test realistic graph 

generators (Î useful for simulation studies).
� They help detect abnormalities and outliers.
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Our Work

The NetMine toolkit
Î contains all the patterns mentioned before, 

and adds:
� The “min-cut” plot
� a novel pattern which carries interesting 

information about the graph.
� A-plots
� a tool to quickly find suspicious 

subgraphs/nodes.
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Outline

� Problem definition
� “Min-cut” plots ( +experiments)
� A-plots ( +experiments)
� Conclusions
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“Min-cut” plot

� What is a min-cut? Minimizes the number 
of edges cut

Two partitions of 
almost equal size

Size of mincut = 2
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“Min-cut” plot

� Do min-cuts recursively.

log (mincut-size / #edges)

Mincut size 
= sqrt(N)

log (# edges)

N nodes
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“Min-cut” plot

� Do min-cuts recursively.
New min-cut

log (mincut-size / #edges)

log (# edges)

N nodes
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“Min-cut” plot

� Do min-cuts recursively.
New min-cut

log (mincut-size / #edges)

log (# edges)

Slope = -0.5

For a d-dimensional grid, the 
slope is -1/d

N nodes
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“Min-cut” plot

� Min-cut sizes have important effects on 
graph properties, such as
� efficiency of divide-and-conquer algorithms
� compact graph representation
� difference of the graph from well-known 

graph types
� for example, slope = 0 for a random graph
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Experiments

� Datasets:
� Google Web Graph: 916,428 nodes and 

5,105,039 edges
� Lucent Router Graph: Undirected graph of 

network routers from 
www.isi.edu/scan/mercator/maps.html; 112,969 
nodes and 181,639 edges

� User ÎWebsite Clickstream Graph: 222,704 
nodes and 952,580 edges

http://www.isi.edu/scan/mercator/maps.html
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Experiments

� Used the METIS algorithm [Karypis+, 1995]
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• Google Web graph

• Values along the y-
axis are averaged

• We observe a “lip” for 
large edges

• Slope of -0.4, 
corresponds to a 2.5-
dimensional grid!

Slope~ -0.4
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Experiments

� Same results for other graphs too…
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Lucent Router graph Clickstream graph

Slope~ -0.57 Slope~ -0.45
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Observations

� Linear slope for some range of values
� “Lip” for high #edges
� Far from random graphs (because slope ≠ 0)
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Outline

� Problem definition
� “Min-cut” plots ( +experiments)
� A-plots ( +experiments)
� Conclusions
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A-plots

� How can we find abnormal nodes or 
subgraphs?
� Visualization 
� but most graph visualization techniques do not 

scale to large graphs!
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A-plots

� However, humans are pretty good at 
“eyeballing” data ☺

� Our idea:
� Sort the adjacency matrix in novel ways
� and plot the matrix
� so that patterns become visible to the user

� We will demonstrate this on the Lucent 
Router graph (112,969 nodes and 181,639 
edges)
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A-plots

� Three types of such plots for undirected 
graphs…
� RV-RV (RankValue vs RankValue) Î Sort nodes 

based on their “network value”  (~first 
eigenvector)

� RD-RD (RankDegree vs RankDegree) Î Sort 
nodes based on their degree

� D-RV (Degree vs RankValue) Î Sort nodes 
according to “network value”, and show their 
corresponding degree
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RV-RV plot (RankValue vs RankValue)

� We can see a 
“teardrop” shape

� and also some 
blank “stripes”

� and a strong 
diagonal 

� (even though there 
are no self-loops)!
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RV-RV plot (RankValue vs RankValue)
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� The “teardrop” 
structure can be 
explained by 
degree-1 and 
degree-2 nodes

NV1 = 1/λ * NV2

1 2
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RV-RV plot (RankValue vs RankValue)
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� Strong diagonal
Î nodes are 
more likely to 
connect to 
“similar” nodes
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RD-RD (RankDegree vs RankDegree)
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due to 2-node 
isolated components
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D-RV (Degree vs RankValue)
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Explanation of “Spikes” and “Stripes”

� RV-RV plot had stripes; D-RV plot shows 
spikes. Why? 2−degree nodes

(forming Stripe)

External connections

Spike2Spike1

“Stripe” nodes 
Îdegree-2 nodes 
connecting only to the 
“Spike” nodes

“Spike” nodes Î high 
degree, but all edges 
to “Stripe” nodes
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A-plots

� They helped us detect a buried abnormal 
subgraph

� in a large real-world dataset
� which can then be taken to the domain 

experts.
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Outline

� Problem definition
� “Min-cut” plots ( +experiments)
� A-plots ( +experiments)
� Conclusions
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Conclusions

� We presented
� “Min-cut” plot

� A novel graph pattern
� with relevance for many algorithms and applications

� A-plots
� which help us find interesting abnormalities

� All the methods are scalable
� Their usage was demonstrated on large real-world 

graph datasets
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RV-RV plot (RankValue vs RankValue)

� We can see a 
“teardrop” shape

� and also some 
blank “stripes”

� and a strong 
diagonal.

Stripes
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RD-RD (RankDegree vs RankDegree)
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due to 2-node 
isolated components
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