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Graph “Patterns™

Given a large graph dataset, what do we
focus on?

Patterns =» Aspects of graphs that show up
frequently, in datasets from diverse domains.

o Degree distributions e CEE T
Power Laws
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Graph “Patterns™

Given a large graph dataset, what do we
focus on?

Patterns =» Aspects of graphs that show up
frequently, in datasets from diverse domains.

o Degree distributions =

1 Hop-plots e | Effective |
0 “Scree” plots i o Diameter |
o and others... oy
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Graph “Patterns™

Why do we like them?

o They capture interesting properties of graphs.

o They provide “condensed information™ about the
graph.

o They are needed to build/test realistic graph
generators (=» useful for simulation studies).

o They help detect abnormalities and outliers.



Our Work

The NetMine toolkit

=» contains all the patterns mentioned before,
and adds:
The “min-cut” plot

2 a novel pattern which carries interesting
information about the graph.

A-plots

o a tool to quickly find suspicious
subgraphs/nodes.



‘ Outline

= Problem definition

= “Min-cut” plots ( +experiments)
= A-plots ( +experiments)

= Conclusions




“Min-cut” plot

= What is a min-cut? Minimizes the number
of edges cut

\ / Size of mincut = 2

Two partitions of
almost equal size




“Min-cut” plot

Do min-cuts recursively.
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“Min-cut” plot

= Do min-cuts recursively.

New min-cut
l log (mincut-size / #edges)
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“Min-cut” plot

Do min-cuts recursively.

New min-cut
l log (mincut-size / #edges)
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“Min-cut” plot

Min-cut sizes have important effects on
graph properties, such as

0 efficiency of divide-and-conquer algorithms
0 compact graph representation

o difference of the graph from well-known
graph types

for example, slope = 0 for a random graph
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‘ Experiments

» Datasets:

0 Google Web Graph: 916,428 nodes and
5,105,039 edges

o Lucent Router Graph: Undirected graph of
network routers from
www.isi.edu/scan/mercator/maps.html; 112,969
nodes and 181,639 edges

o User = Website Clickstream Graph: 222,704
nodes and 952,580 edges
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http://www.isi.edu/scan/mercator/maps.html

Experiments

Used the METIS algorithm [Karypis+, 1995]
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Experiments

Same results for other graphs too...
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Observations

Linear slope for some range of values
“Lip” for high #edges
Far from random graphs (because slope # 0)
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‘ Outline

= Problem definition

= "Min-cut” plots ( +experiments)
= A-plots ( +experiments)

= Conclusions
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‘ A-plots

= How can we find abnormal nodes or
subgraphs?
2 Visualization

= but most graph visualization techniques do not
scale to large graphs!
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A-plots

However, humans are pretty good at
“eyeballing” data ©

Our idea:

o Sort the adjacency matrix in novel ways

0 and plot the matrix

0 so that patterns become visible to the user

We will demonstrate this on the Lucent
Router graph (112,969 nodes and 181,639

edges)
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A-plots

Three types of such plots for undirected
graphs...

o RV-RV (RankValue vs RankValue) = Sort nodes
based on their “network value” (~first
eigenvector)

o RD-RD (RankDegree vs RankDegree) = Sort
nodes based on their degree

o D-RV (Degree vs RankValue) = Sort nodes
according to “network value”, and show their
corresponding degree
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RV-RV plot (RankValue vs RankValue)
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RV-RV plot (RankValue vs RankValue)

The “teardrop”
structure can be
explained by
degree-1 and
degree-2 nodes
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RV-RV plot (RankValue vs RankValue)

Strong diagonal
=» nodes are
more likely to
connect to
“similar” nodes
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RD-RD (RankDegree vs RankDegree)
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D-RV (Degree vs RankValue)
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Explanation of “Spikes” and “Stripes”

RV-RYV plot had stripes; D-RV plot shows
spikes. Why?

“Stripe” nodes
=>degree-2 nodes
connecting only to the
“‘Spike” nodes

“Spike” nodes = high :
degree, but all edges
to “Stripe” nodes
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A-plots

They helped us detect a buried abnormal
subgraph

In a large real-world dataset

which can then be taken to the domain
experts.
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‘ Outline

= Problem definition

= "Min-cut” plots ( +experiments)
= A-plots ( +experiments)

= Conclusions
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Conclusions

We presented
o “Min-cut” plot
A novel graph pattern
with relevance for many algorithms and applications

o A-plots

which help us find interesting abnormalities
o All the methods are scalable

o Their usage was demonstrated on large real-world
graph datasets
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RV-RV plot (RankValue vs RankValue)

We can see a
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-RD (RankDegree vs RankDegree)
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