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1. Alternative Formulation: Hashing with
points

An alternative formulation. The probabilities p1 and p2

are two important parameters. The algorithm performs bet-
ter if the gap between them is large. In this section, we
propose a modified hashing family for which we can write
an analytic expression for p1 and p2.

Definition 1.1. For each point x ∈ RD and η ∈ R+, we
associate a function hx,η on G(D, d):

hx,η : G(D, d) −→ {0, 1}

such that for any L ∈ G(D, d)

hx,η(L) = 0, if distG(x, L) > η;

hx,η(L) = 1, if distG(x, L) ≤ η,
(1)

where dist(x, L) is the Euclidean distance between x and
L.

Let H be this family of functions. Let µ be the normal
distribution on RD with mean 0 and variance 1 in each
direction. Its density function is e−||x||

2
2/2/(2π)D/2. By

identifyingH with RD, we get a measure µ on this hashing
family. Following similar arguments, it is easy to see that
(H, µ) is locality sensitive hashing family on G(D, d).

The maximal value of µ(x ∈ RD|hx(L1) =
hx(L2), distG(L1, L2) = R) as a function of
L1, L2 ∈ G(D, d) is achieved when θ1(L1, L2) = R and
θi(L1, L2) = 0 for i = 2, ..., d. The minimal value of
µ(x ∈ RD|hx(L1) = hx(L2), distG(L1, L2) = R) is
achieved when θi(L1, L2) = R/

√
d for i = 1, ..., d.

Therefore,

p1 = min
distG(L1,L2)≤R

µ(x ∈ RD|hx(L1) = hx(L2))

= 1− 2µ(x ∈ RD|hx(L1) = 1, θi(L1, L2) = R/
√
d,

∀1 ≤ i ≤ d) + 2µ(x ∈ RD|hx(L1) = hx(L2) = 1,

θi(L1, L2) = R/
√
d,∀1 ≤ i ≤ d)

(2)
To compute the probability in the RHS of (3), we note

that for the underlying Gaussian measure dist2(x, L) has
chi-squared distribution X 2

D−d with D − d degree of free-
dom. Therefore, the first probability in the RHS of (3)

is F (η2;D − d), that is the cdf function at η2 of the
X 2
D−d. To compute the second probability, we distinguish

between the projection of X onto the orthogonal comple-
ment of L1 ⊕ L2, whose distance from L1 and L2 dis-
tributes like X 2

D−2d (we denote the pdf of this distribu-
tion by f(t;D − 2d)) and the projection onto L1 ⊕ L2.
For elements in the latter projection, we assign coordi-
nates (x1, y1, ..., xd, yd) so that the projection onto L1 is
(x1, 0, x2, 0, ...) and its distance from L2 (obtained by dot
product with the normals {(sin θi,− cos θi)}di=1 of L2 in
L1 ⊕ L2) is (

∑d
i=1(xi sin θi − yi cos θi)

2)1/2. Using this
observation, we obtain that

p1 = 1− 2F (η2;D − d)

+ 2

∫ η2

0

f(t;D − 2d)dt

∫
∑d
i=1 y

2
i≤η2−t

Πd
i=1

1√
2π
e−

y2
i
2 dyi

×
∫
∑d
i=1(xi sin R√

d
−yi cos R√

d
)2≤η2−t

Πd
i=1

1√
2π
e−

x2
i
2 dxi

(3)
Similarly,

p2 = max
distG(L1,L2)≥cR

µ(x ∈ RD|hx(L1) = hx(L2))

= 1− 2F (η2;D − d) +
1

π

∫ η2

0

f(t;D − d− 1)dt×∫
y2≤η2−t

e−
y2

2 dy

∫
(x sin(cR)−y cos(cR))2≤η2−t

e−
x2

2 dx

(4)

2. Numerical Investigation of parameters
The sublinearity exponent ρ of GLH algorithm (with Nρ

sublinear time) depends on the probability p1 and p2. It is
desirable to know the dependence of p1 and p2 (or alterna-
tively ρ) on the underlying parameters c, R, θ0, D and d
(also η if using alternative formulation). While it is hard
to determine this in theory for the general case, we apply
Monte-Carlo integration to estimate p1 and p2 in various in-
stances and thus try to infer their dependence on the under-
lying parameters in these cases. In two paragraphs below,
we consider the original formulation and the alternative for-
mulation of GLH respectively.
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Figure 1. Comparing different sizes of neighborhoods

Original GLH: Hashing with lines In this paragraph,
the goal is to show how p1 and p2 (and ρ) depends on
various parameters. By definition of p1 and p2, they are
volumns of particular areas on the sphere with uniform mea-
sure. Monte-Carlo integration is chosen to estimate these
volumns. In the following experiments, we pick 100,000
random points uniformly from the sphere and check the per-
centages of points which are in the areas corresponding to
p1 and p2. These percentages are taken as an estimation of
p1 and p2.

Here, both the query points and the database are from
G(10, 1). We demonstrate the dependence of ρ on R for
some fixed values of c and θ0, In Figure 1, ρ is plotted
against R when θ0 = π/10, π/7, π/4 respectively, where
Figure 1(a) c = 1.1 and Figure 1(b) c = 1.5. In this case,
different values of θ0 result in similar exponents.

Next, we demonstrate the dependence of ρ on D by ob-
serving both D = 5 and D = 10 and maintaining d = 1.
We also fix θ0 = π/4. The results are shown in Figure 2 (in
Figure 2(a) c = 1.5 and in Figure 2(b) c = 1.1). The red

(a)

(b)

Figure 2. Comparing different dimensions of ambient spaces

plot is for D = 5 and the blue plot for D = 10. The sublin-
earity exponent ρ is fairly stable as the ambient dimension
increases from 5 to 10.

Alternative GLH: Hashing with points We shall use the
alternative formulation of GLH defined in 1.1. The formu-
lae to calculate p1 and p2 are given by 3 and 4. Denote
PminR = min

distG(L1,L2)=R
µ(x ∈ RD|hx(L1) = hx(L2))

and PmaxR = max
distG(L1,L2)=R

µ(x ∈ RD|hx(L1) =

hx(L2)).
In this paragraph, we demonstrate that the condition

c >
√
d in main theorems is necessary to establish LSH

property. The observation is that there exists a probabil-
ity spread (a gap between Pmax and Pmin for a given R)
when subspaces are of dimension d larger than one. In other
words, PminR 6= PmaxR. Because of this spread, to en-
sure PmaxR > p1 = PminR > p2 = PmaxcR means
c can’t be close to 1. The theoretical analysis leads to the
condition c >

√
d. Numerical results below also support
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(c)

Figure 3. The probability depends on principal angles

this. Since µ(hl,θ0 ∈ H|hl,θ0(L1) = hl,θ0(L2)) has a linear
relation with µ(L∩), we compute µ(L∩) instead (In figure
3, L∩ is shown as X1).

In figure 3, we work with the space G(4, 2). For each
subfigure in 3, we fix R =

√
θ2

1 + θ2
2 (the distance) and

Figure 4. The constant c and the dimension d

η. Then, µ(X1) (or µ(L∩) for consistency) is computed
for different pairs of principal angles (θ1, θ2) and plotted
against θ2

1 . In figure 3(a), R2 = 0.01 and η = 0.01; In
figure 3(b), R2 = 0.01 and η = 0.1; In figure 3(c), R2 =
0.001 and η = 1.

From figure 3, it is easy to see that the probability is
minimized when both of principal angles are equal given
distance R is fixed. This verifies the general theory that
states the probability reaches its maximum PmaxR if there
is only one nonzero principal angle and reaches its mini-
mum PminR if all angles are equal.

Now we show how the parameter c is related to the di-
mension of subspaces. Particularly, we are interested in the
minimal value of c that ensures p1 > p2 for a given R. In
figure 4, the minimal value of c for eachR is plotted against
R in the case of G(20, 10). The figures show that the lower
bound of constant c is approximately

√
d where d = 10 is

the dimension of subspaces.

3. Proof of Main Theorems

Since each hash function in Hθ0(d1, d2, D) corresponds
to a line in RD, we can identifyHθ0(d1, d2, D) with the unit
sphere SD−1 and assign to it a probability measure which is
induced by the uniform probability measure on SD−1. We
denote throughout this section the measure by µ, that is,
P := µ.

Proof of Theorem 3.2. We fix 0 < θ0 < π/6.
For L1 ∈ G(D, d) and L2 ∈ G(D, 1), µ(hl,θ0 ∈
Hθ0(1, d,D)|hl,θ0(L1) = hl,θ0(L2)) depends only on the
principal angle, which is the elevation angle θ(L1, L2) of
the line L2 with respect to the d-dimensional subspace L1.
We denote this probability by g(θ(L1, L2)). To prove the
theorem, we need only to show that g(θ) is a decreasing
function of θ. Indeed, then p1 = g(θ) > g(cθ) = p2.
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Let

BG(D,1)(L, θ0) = {l ∈ G(D, 1)|distG(l, L) < θ0},
L∩(L1, L2) = {l ∈ G(D, 1)|hl,θ0(L1) = hl,θ0(L2) = 1},
and
L∪c(L1, L2) = {l ∈ G(D, 1)|hl,θ0(L1) = hl,θ0(L2) = 0}.

(5)
We note that,

L∩(L1, L2) = BG(D,1)(L1, θ0) ∩BG(D,1)(L2, θ0),

L∪c(L1, L2) = (BG(D,1)(L1, θ0) ∪BG(D,1)(L2, θ0))c,
(6)

and

g(θ(L1, L2)) =1− µ(BG(D,1)(L1, θ0))

− µ(BG(D,1)(L2, θ0)) + 2µ(L∩(L1, L2)).
(7)

Since µ(BG(D,1)(L1, θ0)) and µ(BG(D,1)(L2, θ0)) in (7)
are independent of θ(L1, L2), it is enough to show that
µ(L∩(L1, L2)) decrease as θ(L1, L2) increases.

LetL1 be a d-dimensional subspace in RD andL2, L3 be
two lines in RD such that θ(L1, L2) = α and θ(L1, L3) =
α+ β (0 < β,α and α+ β < π/6 and α+ θ0 < π/4). Let
{ei}Di=1 be a basis of RD such that

L1 = span{e1, ..., ed},
L2 = span{cosαe1 + sinαed+1},

We may rotate L3 in a direction orthogonal to L1 and main-
tain the elevation angle θ(L1, L3) so that L3 is modified as
follows

L3 = span{cos(α+ β)e1 + sin(α+ β)ed+1}.

Throughout the rest of the proof we express coordinates and
operators w.r.t. the basis {ei}Di=1.

Let A be the rotation of RD which rotates L2 to L3

within the subspace span{e1, ed+1}. We denote the im-
age of a line l under the rotation A by A(l) and note that
A(L2) = L3.

Let l be the line passing through the point (a1, ..., aD) ∈
SD−1 and such that l ∈ (BG(D,1)(L1, θ0))c ∩
BG(D,1)(L2, θ0). Since l ∈ (BG(D,1)(L1, θ0))c and α +
θ0 < π/4

D∑
i=d+1

a2
i > sin θ0 and a1 > ad+1. (8)

The image A(l) is the line passing through (a1 cosβ −
ad+1 sinβ, a2, ..., ad, a1 sinβ+ad+1 cosβ, ..., aD). The el-
evation angle θ(L1, A(l)) of A(l) with respect to L1 is

sin−1(
√

(a1 sinβ + ad+1 cosβ)2 + a2
d+2...+ a2

D)

> sin−1(
√
a2
d+1 + ...+ a2

D) > θ0.

. Therefore, A(l) ∈ (BG(D,1)(L1, θ0))c∩BG(D,1)(L3, θ0).
That is, A((BG(D,1)(L1, θ0))c ∩ BG(D,1)(L2, θ0)) ⊂
(BG(D,1)(L1, θ0))c ∩BG(D,1)(L3, θ0). Consequently,

µ((BG(D,1)(L1, θ0))c ∩BG(D,1)(L2, θ0))

= µ(A((BG(D,1)(L1, θ0))c ∩BG(D,1)(L2, θ0)))

≤ µ((BG(D,1)(L1, θ0))c ∩BG(D,1)(L3, θ0)).

(9)

In view of (6), we can rewrite (9) as

µ(BG(D,1)(L2, θ0)/L∩(L1, L2))

≤ µ(BG(D,1)(L3, θ0)/L∩(L1, L3))
(10)

. Since µ(BG(D,1)(L2, θ0)) = µ(BG(D,1)(L3, θ0)), (10)
implies that

µ(L∩(L1, L2)) ≥ µ(L∩(L1, L3))

. That is, µ(L∩(L1, l)) is a decreasing function of
θ(L1, l) for any l satisfying θ(L1, l) < min{π/6, π/4 −
θ0}. Combining this observation with 7 we conclude that
g(θ(L1, L2)) is a decreasing function of θ(L1, L2) and thus
conclude the proof.

Proof of Theorem 3.3. We use similar notations as in the
proof of Theorem 3.2. We fix 0 < θ0 < π/6. For L1, L2 ∈
G(D, d), the probability

µ(hl,θ0 ∈ Hθ0(d,D)|hl,θ0(L1) = hl,θ0(L2))

depends only on the principal angles between L1 and L2.
Indeed, this probability equals the RHS of (7) (here, L1,
L2 ∈ G(D, d)) and µ(L∩(L1, L2)) depends only on the
relative position between the two subspaces. We denote this
probability by g(θ1, ..., θd) where {θi}di=1 are the principal
angles.

It is obvious that if L1 = L2, then the corresponding
probability is g(0, ..., 0) = 1 and it obtains the maximal
value among all principal angles (θ1, ..., θd). We will show
that the directional derivatives of g(θ1, ..., θd) w.r.t. any di-
rection at the origin is strictly negative. We use our esti-
mates to obtain a lower bound on g in a ball of radius R
around the origin when R is sufficiently small and an upper
bound on g in the ball of radius cR and use these bounds to
conclude that p1 > p2.

For convenience, we drop the requirements that
θ1 ≥ ... ≥ θd, but only assume that 0 ≤ θ1, ..., θd ≤ π/2.
More precisely, for any θ1, ..., θd ∈ [0, π/2]d we can
parametrize L1 (in the right coordinate system) as
L1 = {(x1, ..., xd, 0, ..., 0)|xi ∈ R} and then L2 =
{(x1 cos θ1, ..., xd cos θd, x1 sin θ1, ..., xd sin θd, 0, ..., 0)|xi ∈
R}. This θ1, ..., θd parametrize the relative position between
L1 and L2 even though they don’t satisfy θ1 ≥ ... ≥ θd.
We note that with this convention, g(θ1, ..., θd) is invariant
to permutations of its arguments.
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We will verify the following two lemmas. Lemma 3.1
asserts that the probability g(θ1, ..., θd) indeed decreases
around the origin in the coordinate directions. Lemma 3.2
reestablishes the connection between directional derivatives
and coordinate derivatives (to use the chain rule we verify
continuity of the partial derivatives). Moreover, it shows
that the ratio of change in the fastest descent direction (the
direction where θi change at the same rate) and in the slow-
est descent direction (the coordinate direction) is bounded
by a factor of

√
d.

Lemma 3.1. For each i, the coordinate directional deriva-
tive ∂g

∂θi
|(θ1,...,θd)=(0,...,0) is negative.

Lemma 3.2. For s = s1
∂
∂θ1

+ ... + sd
∂
∂θd

,
√
d|| ∂g∂θ1 ||2 ≤

||∂g∂s ||2 ≤ ||
∂g
∂θ1
||2.

The proofs of these two lemmas are given in the Ap-
pendix. Now, we give the proof of Theorem 3.3.

Let ∂g
∂θi

= −a (a > 0) and S(R) =

{(θ1, ..., θd)|
∑d
i=1 θ

2
i = R2}. Applying Taylor expansion

to g(θ1, ..., θd) at the origin and Lemmas 3.1 and 3.2, we
obtain that

max
S(cR)

g(θ1, ..., θd) ≤ g(0, ..., 0)− acR+O(c2R2),

and min
S(R)

g(θ1, ..., θd) ≥ g(0, ..., 0)−
√
daR+O(R2).

(11)
Therefore, if c >

√
d and R is sufficiently small, then,

min
S(R)

g(θ1, ..., θd) > max
S(cR)

g(θ1, ..., θd).

If we choose p1 = min
S(R)

g(θ1, ..., θd) and p2 =

max
S(cR)

g(θ1, ..., θd), then Hθ0(d,D) is an (R, c, p1, p2)-

sensitive hashing family by the definition of g and the LSH
family.

Proof of Theorem 3.4. Fixing 0 < θ0 < π/6, the neigh-
borhood BG(D,1)(L, θ0) = {l ∈ G(D, 1)|distG(l, L) <
θ0} of a line L is a hyperspherical cap (on the unit sphere).

Let L1, L2 and L′2 be three lines in RD with
dist(L1, L2) = θ and dist(L1, L

′
2) = cθ for some c, θ > 0.

Moreover, let

X1 = BG(D,1)(L1, θ0)\BG(D,1)(L2, θ0),

X2 = BG(D,1)(L1, θ0) ∩BG(D,1)(L2, θ0),

and X3 = X2\BG(D,1)(L
′
2, θ0).

(12)

Using this notation, we formulate the following lemma,
which we later prove in the appendix.

Lemma 3.3. Assume that R = α/
√
D for a fixed α > 0

and that cR = O(1). The measures x1 := µ(X1) and
x3 := µ(X3) satisfy the following properties: when D →
∞, x1, x3 → 0 and lim

D→∞
x3/x1 > eα

2/2.

We conclude Theorem 3.4 as follows. We denote p1 =
µ(hl,θ0 |hl,θ0(L1) = hl,θ0(L2)) = 1 − 2x1 and p2 =
µ(hl,θ0 |hl,θ0(L1) = hl,θ0(L′2)) = 1− 2(x1 + x3).

lim
D→∞

ρ = lim
D→∞

ln(p1)/ ln(p2)

= lim
D→∞

ln(1− 2x1)/ ln(1− 2x1 − 2x3)

= lim
D→∞

x1/(x1 + x3) (since x1, x3 → 0)

= lim
D→∞

1/(1 + x3/x1)

< 1/(1 + eα
2/2). (by Lemma 3.3)

(13)

Proof of Theorem 3.5. The GLH algorithm returns a
point that is within cR distance of the query if there is a
point in the dataset that is within R distance of the query.
When the query is in the dataset, it is guaranteed to have a
point within R distance of the query for any R > 0. There-
fore, we can pickR arbitrarily small, and we note that p1 ap-
proaches 1 as R approaches zero (ln(p1) approaches zero).
Moreover, we can pick c such that cR = O(1). This can
keep p2 to be a fixed constant less than 1. That is, if the
query is in the dataset, we are able to adjust c and R such
that ρ = ln(p1)/ ln(p2) = ε for any ε > 0.

A. Appendix
A.1. Local Behavior of g(θ1, ..., θd)

Throughout this section, we use the following coordinate
representation.

RD : (x1, ..., xd, y1, ..., yd, z2d+1, ..., zD),

L1 : {(x1, x2, ..., xd, 0, ..., 0)|xi ∈ R},
and
L2 : {(x1 cos θ1, ..., xd cos θd, x1 sin θ1, ...,

xd sin θd, 0, ..., 0)|xi ∈ R, θi > 0}.

(14)

Proof of Lemma 3.1 First, we study the derivative along
the coordinate direction ∂

∂θ1
at the origin. This is the case

where θ1 = ε and θi = 0 for i 6= 1. Suppose L1 is given
in (14) and Lε2 is given by

{(x1 cos ε, x2, ..., xd, x1 sin ε, 0, ..., 0)|xi ∈ R, ε > 0}.

Denote g(ε, 0..., 0) = g(ε) for short.
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Let (a1, ..., a2d−2) ∈ R2d−2. We define the following
quantities:

A(a1, ..., a2d−2) is subset of SD−1 with coordinates:
(x2, ..., xd, y2, ..., yd) = (a1, ..., a2d−2),

h(ε, a1, ..., a2d−2) = µ(hl,θ0 ∈ Hθ0(d,D)

|l ∈ A(a1, ..., a2d−2), hl,θ0(L1) 6= hl,θ0(Lε2)),

and
Vold(r) is volume of (d− 1)-dim. sphere of radius r.

Then, we can write g(ε) as an integral of
h(ε, a1, ..., a2d−2) as follows:

g(ε) = 1−
∫

(a1,..,a2d−2)∈D2d−2

h(ε, a1, .., a2d−2)dν. (15)

We observe that ∂h(ε,0,...,0)
∂ε where ai = 0,∀i. Using

polar coordinates (r, θ) on (x1, y1)-plane. h(ε, 0, ..., 0) can
be written in this way:

2

VolD(1)

∫ θ0

−ε/2
dθ

∫ cos θ0
cos(θ+ε)

cos θ0
cos θ

VolD−2d(
√

1− r2)rdr.

Therefore, the derivative ∂h(ε,0,...,0)
∂ε |ε=0 is equal to

2

VolD(1)

∫ θ0

0

VolD−2d(

√
1− cos2 θ0

cos2 θ
)
cos2 θ0 sin θ

cos3 θ
dθ.

This is bigger than zero. Since ∂h
∂ε |ε=0 is continuous and

non-negative on (a1, ..., a2d), and when (a1, ..., a2d) = 0,
∂h
∂ε |ε=0 is strictly positive. We conclude,

∂g(θ1, .., θd)

∂θ1
|(θ1,...,θd)=0 =

∂g(ε)

∂θ1
|ε=0

= −
∫

(a1,..,a2d)∈D2d−2

∂h(ε, a1, .., a2d)

∂ε
|ε=0dν < 0.

By symmetry,

∂g

∂θi
=

∂g

∂θ1
= −a < 0

for some fixed a and all i.

Proof of Lemma 3.2 By symmetry of the function
g(θ1, ..., θd), we need show the usual chain rule ∂g

∂s =

s1
∂g
∂θ1

+...+sd
∂g
∂θd

holds for the region {θi ≥ 0,∀i}. Firstly,
we show that the partial derivatives of g(θ1, ..., θd) are con-
tinuous up to the origin in the region {θi ≥ 0,∀i}. Then,
the chain rule follows from this fact.

Notice that g(θ1, ..., θd) = 1 − 2µ(BG(D,1)(L, θ0)) +
2µ(L∩(L1, L2)) . Since the first two terms are constants, it

is enough to show that the derivatives of µ(L∩(L1, L2)) is
continuous up to the origin in the region si ≥ 0. We shall
prove this for a general class of functions.

Firstly, we introduce a class of rotations.

Definition A.1. Given angles {θi}di=1 (d > 0), a rotation
A(θ1, ..., θd) on RD is defined as follows.

For a point x = (x1, ..., xD) ∈ RD, the i-th coordinate
of the image A(θ1, ..., θd)(x) is equal to

xi cos θi,+xd+i sin θi, 1 ≤ i ≤ d,
−xi−d sin θi−d + xi cos θi−d, d+ 1 ≤ i ≤ 2d,

xi, i ≥ 2d.

In other words,A(θ1, ..., θd) rotates the first 2d coordinates.
For a set X ⊂ RD, we denote its image under this rotation
by A(θ1, ..., θd)(X).

Then, we define two set of functions.

Definition A.2. Let µSD−1 be the uniform measure on the
unit sphere SD−1 and µRD be the Borel measure on RD.
Given two smooth-boundary regions U and V on SD−1, a
function of (θ1, ..., θd) is defined by

GUV (θ1, ..., θd) = µSD−1(U ∩A(θ1, ..., θd)(V ))

Moreover, denote byC[U ] andC[V ] the cones generated by
connecting U and V with the origin respectively. We define

CGUV (θ1, ..., θd) = µRD (C[U ] ∩A(θ1, ..., θd)(C[V ]))

In the following, a convex polytope cone is a convex
cone with vertex at the origin such that sides are hyper-
planes and the base is enclosed by the unit sphere. Denote
Θ = (θ1, ..., θd) and ei and vi be the i-th coordinate direc-
tion of Θ and RD respectively. Let X be a convex polytope
cone with sides {Fi}Si=1. Let XΘ be the cone with sides
A(Θ)(F1) and {Fi}Si=2.

Lemma A.3. µRD (XΘ) is contiuously differentiable w.r.t.
{ ∂
∂θi
}di=1 in [0, α1]× ...× [0, αd] for some positive numbers

α1, ..., αd > 0.

Let nΘ be the unit normal direction of A(Θ)(F1) and
αΘ be the elevation angle between nΘ and the subspace
spanned by {v1,vd+1}. Let ΩΘ be the region onA(Θ)(F1)
enclosed by the other sides {Fi}Si=2 and the base SD−1.
Specifically, Ω0 = X when Θ is the origin 0.

We show that ∂µRD (XΘ)

∂θ1
is continuous.

Let ∆Θ = εe1. The angle Ang(Θ,∆Θ) between
nΘ and nΘ+∆Θ is cos−1[cos2 αΘ cos ε + sin2 αΘ]. Let
ProjNorm(x,Θ,∆Θ) be the norm of the projection of a
point x ∈ A(Θ)(F1) to the plane spanned by nΘ and
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nΘ+∆Θ. By direct computation, ProjNorm(x,Θ,∆Θ) is
equal to

(cos ε− 1)[nΘ
1 x1 + nΘ

d+1xd+1] + sin ε[nΘ
d+1x1 − nΘ

1 xd+1]

(sin2 αΘ cos2 αΘ(1− cos ε)2 + cos2 αΘ sin2 ε)1/2

Then, we can express the partial derivative as follows.

∂µRD (XΘ)

∂θ1
= lim
ε→0

∫ 1

r=0

r2dr

∫
x∈ΩΘ

ProjNorm(x,Θ,∆Θ)

×Ang(Θ,∆Θ)dx
/
ε.

By applying Tyler’s expansion, we have

∂µRD (XΘ)

∂θ1
=

∫
x∈ΩΘ

2(nΘ
d+1x1 − nΘ

1 xd+1)

3 cosαΘ(sin2 αΘ cos2 αΘ + 2 cos2 αΘ)
dx

Since nΘ and αΘ are continous as Θ approaches the origin.
Moreover, the domain ΩΘ will approach Ω0. Therefore,

lim
Θ→0

∂µRD (XΘ)

∂θ1
=
∂µRD (XΘ)

∂θ1

∣∣
Θ=0

.

This means µRD (XΘ) is continuously differentiable.

Lemma A.4. if C[U ] and C[V ] are two convex polytope
cones, then there exists some positive numbers α1, ..., αd >
0 such that CGUV (θ1, ..., θd) has continuous partial
derivatives in [0, α1]× ...× [0, αd].

The intersection C[U ] ∩ A(θ1, ..., θd)(C[V ]) is also a
convex polytope cone. Its sides from U are fixed and
sides from A(θ1, ..., θd)(C[V ]) are moving as (θ1, ..., θd)
change. We can decompose the rotation of its moving sides
into individual rotations of each moving side. Following
Lemma A.3, The intersection has continuous partial deriva-
tives if one side is moving. After combining individual ro-
tations, we have partial derivatives of CGUV (θ1, ..., θd) are
continuous in [0, α1]× ...× [0, αd].

For general smooth-boundary region U on SD−1, we ap-
proximate C[U ] by unions of polytope cones. Let {Pi =
{Xij}Nij=1}∞i=1 be a sequence of partitions of SD−1 satisfy-
ing:

• ∀i, ∪Nij=1Xij = SD−1

• ∀i, j, C[Xij ] is a polytope cone.

• if i < k, each piece Xij of Pi is a union of pieces in
Pk. That is, Pk is a refinement of Pi.

• max
1≤j≤Ni

diam(Xij) ≤ 1/n for i = n, ∀n (diam(Xij)

is the diameter of Xij)

For each n, let Un =
⋃

Xnj⊂U ;Xnj∈Pn

Xnj . Then we have

an increasing sequence U1 ⊂ ... ⊂ Un ⊂ ... ⊂ U and

∞⋃
n=1

Un = U . Notice that C[Un] can be expressed as a

finite collection of polyhedra cones.
From now on, we fix the sequence of partitions {Pi}∞i=1

and denote GUnV n and CGUnV n by GnUV and CGnUV re-
spectively.

Lemma A.5. Given U , V and 1 ≤ i ≤ d, ∂CGUV∂θi
is con-

tinuous at the origin.

By Lemma A.4, ∂CG
n
UV

∂θi
is continuous on [0, αn1 ]× ...×

[0, αnd ] for 1 ≤ n ≤ ∞ where αji is positive ∀i, j.

∂CGUV (Θ)

∂θi
= lim
ε→0

CGUV (Θ + εei)− CGUV (Θ)

ε

= lim
ε→0

CGnUV (Θ + εei)− CGnUV (Θ)− cε/nD−2

ε

=
∂CGnUV (Θ)

∂θi
− c/nD−2

(16)
In the second equality, c is a bounded constant. If ∂CGUV

∂θi
is not continuous at the origin, then there exists ε > 0 such
that ∀δ > 0, there exist points |a− b| < δ s.t. |∂CGUV (b)

∂θi
−

∂CGUV (a)
∂θi

| > ε.
On the other hand, we can pick N > 0 so that

c/ND−2 ≤ ε/2. Moreover, we can pick δ > 0 so that
if |a − b| < δ, then |∂CG

N
UV (b)
∂θi

− ∂CGNUV (a)
∂θi

| ≤ ε/2

since ∂CGNUV
∂θi

is continuous. By 16, we have |∂CGUV (b)
∂θi

−
∂CGUV (a)

∂θi
| < ε for |a − b| < δ. This contradiction asserts

that ∂CGUV∂θi
is continuous at the origin.

Lemma A.6. if CGUV has continuous partial derivatives,
then GUV also has continuous partial derivatives.

We have the following relation:

CGUV (θ1, ..., θd) =

∫ 1

r=0

rD−1GUV (θ1, ..., θd)dr.

It is easy to see the lemma holds.
By above lemmas, it is easy to see thatGUV has continu-

ous partial derivatives. And g(θ1, ..., θd) = GUU (θ1, ..., θd)
with U and V = A(θ1, ..., θd)(U) be neighborhoods
of L1 and L2 = A(θ1, ..., θd)(L1) respectively. Thus,
g(θ1, ..., θd) has continuous partial derivatives and the chain
rule holds for it.

Using the above result, we can now prove Lemma 3.2.
By chain rule, ∂g∂s = |s1| ∂g∂θ1 + ...+ |sd| ∂g∂θd . Since ∂g

∂θi
=

∂g
∂θj

, ∂g∂s = (|s1| + ... + |sd|) ∂g∂θ1 . Note s2
1 + ... + s2

d = 1.

By Cauchy-Schwarz inequality, 1 ≤ |s1|+ ...+ |sd| ≤
√
d.

Thus, the inequality for directional derivatives follows.
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A.2. Hyperspherical Area AsDApproaches Infinity

In this section, we use probability measure on SD−1 such
that µ(SD−1) = 1.

Lemma A.7. For any fixed 0 < θ1 < θ0 <
π/6, both µ(BG(D,1)(L, θ0)) and the ratio of
µ(BG(D,1)(L, θ1))/µ(BG(D,1)(L, θ0)) approaches zero,
as the dimension D approaches infinity.

The usual volumn of hyperspherical cap is
π(D−2)/2/Γ(D/2)

∫ θ
0

sinD−1(t)dt. So,

µ(BG(D,1)(L, θ0))

= Vol(BG(D,1)(L, θ0))/Vol(SD−1)

=

∫ θ1

0

sinD−1(t)dt

/
(2π)

→ 0, as D approaches infinity.

(17)

µ(BG(D,1)(L, θ1))/µ(BG(D,1)(L, θ0))

= Vol(BG(D,1)(L, θ1))/Vol(BG(D,1)(L, θ0))

=

∫ θ1

0

sinD−1(t)dt

/∫ θ0

0

sinD−1(t)dt

<

∫ θ1

0

sinD−1(t)dt

/
(sinD−1(

θ0 + θ1

2
) ∗ θ0 − θ1

2
)

<
2

θ0 − θ1

∫ θ1

0

[sin(t)/ sin(
θ0 + θ1

2
)]D−1dt

→ 0, as D approaches infinity.
(18)

Integrals in (17),(18) approach zero because θ0, θ1 are fixed
and the integrant approaches zero as D approaches infinity.

Proof of Lemma 3.3. We use the same notation as
in Proof of Theorem 3.4. In addition, we denote
BG(D,1)(L1, θ0) ∩ BG(D,1)(L

′
2, θ0) by X4 and µ(X4)

by x4 and µ(BG(D,1)(L1, θ0)) by x. It is easy to see
BG(D,1)(L1, θ0) = X1 ∪X2 and X2 = X3 ∪X4.

Since X1 and X3 are subsets of the hyperspher-
ical cap µ(BG(D,1)(L, θ0)). By Lemma A.7 above,
µ(BG(D,1)(L, θ0)) approaches zero. So, x1 and x3 also ap-
proach zero as D approaches infinity.

Now, we show lim
D→∞

x3/x1 > eα
2/2.

Let L3 be the line passing through the middle point of
the great circle connecting L1 and L2. Then, X2 contains
the hyperspherical cap BG(D,1)(L3, θ0 − θ

2 ). this implies
x3 + x4 > µ(BG(D,1)(L3, θ0 − θ

2 )).
Moreover, since X4 is contained in a hyperspherical cap

with smaller angle than θ0, lim
D→∞

x4/x = 0 by Lemma A.7.

First, we compute

lim
D→∞

∫ θ0

0

sinD−1(t)dt

/∫ θ0− θ2

0

sinD−1(t)dt

= 1 + lim
D→∞

∫ θ0

θ0− θ2
sinD−1(t)dt

/∫ θ0− θ2

0

sinD−1(t)dt

< 1 + lim
D→∞

(sinD(θ0) ∗ θ
2

)/(sinD(θ0 − θ) ∗
θ

2
)

= 1 + lim
D→∞

(sin(θ0)/ sin(θ0 − θ))D

= 1 + lim
D→∞

cosD(θ)

= 1 + lim
D→∞

(1− θ2/2 +O(θ4))D

= 1 + lim
D→∞

(1− (α2/2)/D +O(D2))D

= 1 + e−α
2/2.

(19)
Then,

lim
D→∞

x3/x1 > lim
D→∞

x3/(x− x3)

= lim
D→∞

(x/x3 − 1)−1

= lim
D→∞

(x/(x3 + x4)− 1)−1

≥ lim
D→∞

(
x

/
µ(BG(D,1)(L3, θ0 −

θ

2
))− 1

)−1

= lim
D→∞

(∫ θ0

0

sinD−1(t)dt

/∫ θ0− θ2

0

sinD−1(t)dt− 1

)−1

> eα
2/2. (by (19))
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