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Structured Signal Recovery
Robust PCA (?) and beyond...
Assumption: matrix-valued signal D € R™*™ can be

modeledas D = L + .S with L low-rank, S sparse.

Good model for many natural signals:
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Structured Signal Recovery
Robust PCA (?) and beyond...

Convex optimization recovers (LO, SO) , under conditions’:

(Lo, So) = arg min ||L|. + A[|S]]1
st. L+S=D.

*Lg rank-r, p-incoherent, Supp(So) ~ Ber(p), P < Po,

and r < —%—.
wlog<m

Above result: [Candes, Li, Ma, Wright, JACM’11]
Recovery program: [Chandrasekaran, Sanghavi, Parillo, Willsky, SIOPT’11]




Structured Signal Recovery
Robust PCA (?) and beyond...

Convex optimization recovers (L, Sg), under conditions™:

(Lo, So) = arg min ||L|. + A[|S]]1
st. L+S=D.

Lg rank-7, p-incoherent: Lo =UXV™, ), p < po,

Ull2,00 < \/ur/m
with Vi2.0o < \/ur/n

UV™ |00 < \/ur/mn

i—m_rfrP_H_Wecovery program. [Chandrasekaran, sanghavi, Pario, Willsky, SIOPT’11]




Structured Signal Recovery
Robust PCA (?) and beyond...

This talk:

What if we only observe a few measurements

Po|D]? (Q CR™*"linear, low-dim)

Can we still recover (L, S) ?

"L rank-r, p-incoherent, supp(So) ~ Ber(p),

. Cn i b
and r < > . =l
plog= m :

i

Above result: [Candes, Li, Ma, Wright, JACM’11] P
Recovery program: [Chandrasekaran, Sanghavi, Parillo, WV Q/




Motivating Applications: compressed Sensing

Compressive Imaging of Videos and Hyperspectral Images:
SpaRCS [Waters, Sankarayanan, and Baraniuk, NIPS’'11]

Problem: GivenY = Pg(Lo + Sy), recover Ly and S.

(TR

Y ¢ RY Lo+ S, L....q



Motivating Applications: bomain Transformations

Applications to Transformation Invariant Low-rank Textures:
TILT [Zhang, Xiao, Ganesh, and Ma, IJCV 2011]

D - corrupted & distorted L - aligned low-rank S - sparse errors
observation signals
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Problem: Given Do+ = Ly + Sy, recover r, L, and Sy .

/

Parametric domain deformations
(rigid, affine, projective, radial distortion, 3D shapes...)



Motivating Applications: structured Texture Inpainting

Automatic Low-rank and Sparse Texture Repairing:
[Xiao, Ren, Zhang, and Ma, ECCV 2012]
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Problem: GivenY o7 = Pq(Ly + Sy),recover Ly and Sy.

Corrupted and Incomplete Low-rank Sparse
Samples Y Texture L Errors S




Motivating Applications: bomain Transformations

Robust Alignment of Multiple Images via Sparse and Low-rank Decomposition:
RASL [Peng, Ganesh, Wright, and Ma, CVPR 2010]

D — corrupted & misaligned L —aligned low-rank S — sparse errors
observation signals

(— e
Problem: Given Do+ = Ly + Sy, recover 7, L, and Sy .

Linearized subproblem: Do+ JAT =L+ S

PolD o1yl = Po[L+S] @ = range(J)"



Motivating Applications: Vvideo Panorama

Automatic Low-rank Panorama from Street View Videos:
[Zhou, Min, and Ma, submitted to NIPS 2012]

Problem: Given Y o7 = Pqo(Ly + Sy), recover Ly and Sj.

Corrupted and Incomplete Low-rank Sparse
Samples Y Texture L Errors S
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Problem Formulation
Compressive Principal Component Pursuit

We observe: Py |D| = Pg|L + S|

Natural heuristic:

min || L|. + A||S]||1 s.t. PQ[L—I—S}:pQ[D]

Analytical assumption:

() is a random subspace (Haar measure).



Main Result
Correct Recovery from Near-Minimal Observations

Theorem 1 (Wright, Ganesh, Min, Ma) Let L,S € R™*", m > n,
L p-incoherent, sign(S) iid Bernoulli(p) — Rademacher, p < py,
cn

r = rank(L) < ——5—.
i log® m

Then if |
dim(Q) > C (pmn + mr)log® m,

with high probability convex programming exactly recovers (L. S).

Interpretation:
Success when #obs. > #dof(L,S) x O(log”m)!



Proof Strategy

Find a Lagrange multiplier A that certifies optimality of (L, S)

KKT Conditions, Compressive Principal Component Pursuit:

min |L|. + M|S|li st. PolL + 8] = Po[D]

A €0 -[(L)
(L, S) optimal iff A suchthat ¢ A € A\J| - ||1(5)
Ae)




Proof Strategy

Find a Lagrange multiplier A that certifies optimality of (L, S)

KKT Conditions, Cempressive Principal Component Pursuit:

min ||L||. + A||S]1 st. L+S=D

A €0 -[(L)
(L, S) optimal iff A suchthat ¢ A € A\J| - ||1(5)

A6




Proof Strategy

Find a Lagrange multiplier A that certifies optimality of (L, S)

KKT Conditions, Cempressive Principal Component Pursuit:

min ||L||. + A||S]1 st. L+S=D

A €0 -[(L)
(L, S) optimal iff A suchthat ¢ A € A\J| - ||1(5)
A6

Good approximate constructions in the literature.
[CLMW’11, HKZ, etc.].



Proof Strategy

Upgrade a certificate to a compressive certificate. More generally:

Multiple structure decomposition:

mlnzz )\'L”X’LH% S.t. Zz Xz =D

Compressive multiple structure decomposition:

min ) ; Aif| Xillo, st Po[d_; Xi] = PolD]

Examples: PCP [CLMW’11], outlier pursuit [Xu+Caramanis+Sanghavi],
morphological component analysis [Bobin et. al.], many more ...



Decomposable Norms

Say anorm || - || is decomposable at X if there is a
subspace 7" and S € T' s.t.:

O - [(X) ={A | PrA =S, |Pro Al < 1}

Examples:

I-lli :+ T =supp(X), § = sign(X)
|-+ X =UZV", T={UP+QV"}, S=UV"

Sum-of-column norms, many structured regularizers [Bach’11].

Decomposability: [Candes+Recht’11], see also [Negahban et. al. "10].



Relax!

Consider the multiple-term decomposition problem

min Zz)\lHXZ|<>z S.T. ZzX”& =D

KKT demands Pr. A = S, ||[PriAll,, < \;.

Call A an (o, 3) inexact certificate if

IPr,A - S||r <a, [PriA]

o; S DA

For the compressive variant, additional constraint: A € ().



Golfing Construction

Let A be a certificate for the fully observed problem > . X, = D.

For compressive observations Pg|)> . X ;| = Pg|D|,

A

want A~ A, A ().

Write Q = R[A1|+ -+ R[A,].

Independent self-adjoint operators [£.4; — %I

Set A, = A,_1+ %AZ[A — Ai—l]-

Error at iteration i




General Upgrade Theorem

Theorem 2 Let A an («, B) inezact certificate for the
fully observed problem. Then if

dim(Q) > C-dim(7Ty +--- + Tx) - logm,
whp, there is an (o', B") certificate A for the compressive problem, with
o < a+m73A|r

A 1/2
v; +logm [ ||Al|rlogm
i dim(Q)

B < ﬁ-l—Cm?x

Apply together with [CLMW’11] to obtain Theorem 1.



Main Result
Correct Recovery from Near-Minimal Observations

Theorem 1 (Wright, Ganesh, Min, Ma) Let L,S € R"*", m > n,
L p-incoherent, sign(S) iid Bernoulli(p) — Rademacher, p < py.
cn

r = rank(L) < ——5—.
plog®m

Then if |
dim(Q) > C (pmn + mr)log” m,

with high probability convex programming exactly recovers (L, S).

Interpretation:
Success when #obs. > #dof(L, S) x O(log®m) !



Numerical Examples

For random matrices of size 100x100:

0.3 0.3
0.25 0.25
0.2 0.2
=0.15 =0.15
0.1 0.1
0.05 0.05
0 0
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(a) p=0 (b) p =500

0 5 10 15 20 25 30 0 5 10 15 20 25 an
Rank r Rank r

(e) p=2,000 (d) p= 5,000



Extension |

Theorem 3 (Random Reduction). Let Q+ be a p-dimensional random sub-
spac of R"™*™, Lo € R™*™ m > n have rank r, and Sy have a Bernoulli support
with error probability p. Then if

m

r < Py

- ., o p<Cyn, p<p”
12 log®(n) ! : P

then with very high probability

1
(Lo, Sp) = argmin || L||. + EHSH] subj Pg|L + S| ="PgLy+ Sol,

for some numerical constant p,, Cp, and p*, and the minimizer is unique.

PCP with Reduced Linear Measurements, Ganesh, Min, Wright, Ma, ISIT 2012.



Extension Il

A subspace S C R™*™ is v-coherent if there exists an orthonormal basis {G;}
for S satisfying max; ||G;||* < v/ min{m,n}.

Theorem 4 (Deterministic Reduction). Let Q+ be a fized p-dimensional

subspac of R™*™, which is v-coherent. Suppose Ly € R™*"™, m > n have rank
r, and Sy have a Bernoulli support with error probability p. Then if

1/3
_ m m
r < Pr ( ) 3 p<p
Qv up

then with very high probability

1
(Lo, Sp) = argmin || L. + ﬁHS”l subj Pq|L + S| =Pg|Lo + Sol,

for some numerical constant p, and p*, and the minimizer is unique.

PCP with Reduced Linear Measurements, Ganesh, Min, Wright, Ma, ISIT 2012.



A Brief Discussion

Main results:

Provable recovery of superpositions of structured terms
(e.g., low-rank + sparse) from random measurements.

“Upgrade” theorem for compressive variants of general
convex decomposition problems.

Open issues:

Other distributions or deterministic conditions on Q?
Fourier-type measurements [Liu “11]? From image Jacobians?

Noisy recovery (additive or noise folding)?

General theory for convex decomposition problems?
[McCoy + Tropp ‘12] for steps in this direction.
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