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Assumption: matrix-valued signal                           can be 
 

modeled as                              with       low-rank,       sparse.  
 
 
 
 
 
 

Good model for many natural signals: 

Structured Signal Recovery 
Robust PCA (?) and beyond… 



 
 Convex optimization recovers                   , under conditions*: 
 
 
 
 
 
    *        rank-   ,     -incoherent,                                          ,                ,                    
            

             and                           .       
 
 
Above result: [Candès, Li, Ma, Wright, JACM’11]  
Recovery program: [Chandrasekaran, Sanghavi, Parillo, Willsky, SIOPT’11]  
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Structured Signal Recovery 
Robust PCA (?) and beyond… 

This talk:    
  

   What if we only observe a few measurements                   
 

                             ?    (                   linear,  low-dim) 

 
   Can we still recover              ?    



Motivating Applications: Compressed Sensing 

Compressive Imaging of Videos and Hyperspectral Images:  
 

SpaRCS [Waters, Sankarayanan, and Baraniuk, NIPS’11] 

, 
= +

Problem: Given                                   recover       and      . 

… 



Motivating Applications: 

   – corrupted & distorted 
observation 

   – aligned low-rank 
signals  

   – sparse errors 

Problem: Given                                 recover   ,       and      . 

o 

Applications to Transformation Invariant Low-rank Textures: 

TILT [Zhang, Xiao, Ganesh, and Ma, IJCV 2011] 

Domain Transformations 

Parametric domain deformations  
(rigid, affine, projective, radial distortion, 3D shapes…) 



Motivating Applications: Structured Texture Inpainting 

Automatic Low-rank and Sparse Texture Repairing:  

[Xiao, Ren, Zhang, and Ma, ECCV 2012] 

Corrupted and Incomplete 

Samples 

Low-rank 

Texture 

Sparse 

Errors 

Problem: Given                                        recover       and      . 

o 



Motivating Applications: Domain Transformations 

Problem: Given                                 recover   ,       and      . 

   – corrupted & misaligned  
observation 

   – aligned low-rank 
signals  

   – sparse errors 

o 

Robust Alignment of Multiple Images via Sparse and Low-rank Decomposition:  

RASL [Peng, Ganesh, Wright, and Ma, CVPR 2010] 

Linearized subproblem:   



Motivating Applications: Video Panorama 

Automatic Low-rank Panorama from Street View Videos:  

[Zhou, Min, and Ma, submitted to NIPS 2012] 

Corrupted and Incomplete 

Samples 

Low-rank 

Texture 

Sparse 

Errors 

Problem: Given                                         recover       and      . 

o 



Problem Formulation 
Compressive Principal Component Pursuit 

Natural heuristic: 

We observe: 

Analytical assumption: 
 

               is a random subspace  (Haar measure).  



Main Result 
Correct Recovery from Near-Minimal Observations 

Interpretation: 
  

   Success when                                                               ! 



Proof Strategy 

Find a Lagrange multiplier       that certifies optimality of   
 

KKT Conditions, Compressive Principal Component Pursuit: 
 

optimal iff            such that  
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Proof Strategy 

Find a Lagrange multiplier       that certifies optimality of   
 

KKT Conditions, Compressive Principal Component Pursuit: 
 

optimal iff            such that  

Good approximate constructions in the literature.  
   [CLMW’11, HKZ, etc.].  



Proof Strategy 

Upgrade a certificate to a compressive certificate. More generally: 
 

Multiple structure decomposition: 

Compressive multiple structure decomposition: 

Examples: PCP [CLMW’11], outlier pursuit [Xu+Caramanis+Sanghavi],  
   morphological component analysis [Bobin et. al.], many more … 



Decomposable Norms  

Say a norm           is decomposable at         if there is a  
 

  subspace        and                  s.t.: 

Examples: 
 
 
 
 

Sum-of-column norms, many structured regularizers [Bach’11]. 
 
 

Decomposability: [Candès+Recht’11], see also [Negahban et. al. ’10]. 



Relax! 

Consider the multiple-term decomposition problem 
 
 
 
 
KKT demands 
 
 
           Call       an                inexact certificate if  
 
 
 
 
 

For the compressive variant, additional constraint: 



Golfing Construction 

Let       be a certificate for the fully observed problem                       . 
 
    
 
 
 

           For compressive observations                                      ,    
 

                     want                                  . 
  
 
Write                                                          .  
 
 
 
Set 
 
 

Independent self-adjoint operators 

Error at iteration i  



General Upgrade Theorem 

Apply together with [CLMW’11] to obtain Theorem 1. 



Main Result 
Correct Recovery from Near-Minimal Observations 

Interpretation: 
  

   Success when                                                             ! 



Numerical Examples 
For random matrices of size 100x100: 



Extension I 

PCP with Reduced Linear Measurements, Ganesh, Min, Wright, Ma, ISIT 2012. 



Extension II 

PCP with Reduced Linear Measurements, Ganesh, Min, Wright, Ma, ISIT 2012. 



A Brief Discussion 
Main results:    
 

• Provable recovery of superpositions of structured terms 
(e.g., low-rank + sparse) from random measurements.  
 

• “Upgrade” theorem for compressive variants of general 
convex decomposition problems.  

 
Open issues:  
 

• Other distributions or deterministic conditions on Q?  
      Fourier-type measurements [Liu ’11]? From image Jacobians?  

 

• Noisy recovery (additive or noise folding)? 
 

• General theory for convex decomposition problems?  
      [McCoy + Tropp ‘12] for steps in this direction.  
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