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Observed image y Underlying scene f Noise &
y=Ff+eg e uncorrelated, mean=0, var=0?

Estimate f; as a weighted average of the noisy pixels:

fi=2 wijy
J

How should we choose the weights?
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Kernel-based denoising: f = > Wiy

Usual kernel method ¢

wij = Kn(xi, Xj)

@ w has no dependency on y

@ K: kernel and h: bandwidth (smoothing parameter)

: lx—sx |12 /2K2
@ Gaussian kernel example : Kj(x;, x;) = e lIxi=xjl2/2h

aNadaraya '64, Watson '64

Image Search Spatial
Zone
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Kernel-based denoising: f = > Wi

Yaroslavsky /Bilateral Filter @

w;j = Kn(xi, %) Ln, (yi> ¥j)

@ Use spatial and photometric proximity

e K, L: kernels; h, h,: bandwidths (smoothing parameters)

aYaroslavsky '85, Lee '83, Tomasi and Manduchi '98

Image Search Spatial Yaroslavsky /
Zone Bilateral



Kernel-based denoising: f; = Y w y;
Non-local Means @
w;ij = Kh(Xi,Xj)Lhy(YP,-vYPJ-)

@ Use spatial and photometric proximity
e K, L: kernels; h, h,: bandwidths (smoothing parameters)

@ P; is a small patch of pixels centered around pixel 7

aBuadcs‘ Coll & Morel '05

Image Search Spatial Yaroslavsky /  Non-local means
Zone Bilateral



Problem formulation

We will bound the risk

: 5 _ o EIf—fI2

Rn(f, F) := sup MSE¢(f) = sup
feF feF

nd
How do errors scale with
e n (number of pixels),

e d (dimension), and

e 02 (noise variance)?
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Related theoretical investigations

@ Information-theoretic interpretation: Weissman et al. '05

@ Consistency: Buades et al. '05

@ Graph diffusion interpretation: Singer et al. '09, Taylor &
Meyer '11

@ Rare patch effect: Duval et al. '11

@ SURE estimate of parameters: Van De Ville & Kocher '09,'11,
Duval et al. '11, Deledalle et al. '11

@ Cramer-Rao bounds: Levin & Nadler '11, Chatterjee &
Milanfar '11

@ Minimax rates for piecewise constant images: Maleki, Narayan
& Baraniuk '11
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Cartoon images

f € JFeartoon is 3 “cartoon image” if it is a piecewise smooth

(Holder-«, o > 1) image with discontinuities along smooth

hypersurfaces.®.

f(x) = Liceqy fa(x) + Lixeqe) fac(x),

bi-Lipschitz Q°
image of
unit ball
Holder-a
smooth
minimum surfaces
jump height
u

1Koroste|ev and Tsybakov '93
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Linear filtering bounds

@ If the kernel intersects the boundary, boundary is blurred
E((F-H?) =1

O(n9h) pixels have kernels which intersect the boundary

o If the kernel doesn't intersect the boundary,

E (%~ £)2) =< 0% + o*(nh) ™

RLF - (O_Z/nd)l/(d-i-l)

This bound is independent of surface smoothness «!
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Linear filtering results

Noisy, MSE = Noisy, MSE = Noisy, MSE = Noisy, MSE =
2.50e+01 3.99e+02 2.50e+03 9.98e+03

LFO, MSE = 3.52e+01 LFO, MSE = 7.78e+01 LFO, MSE = 1.51e+02 LFO, MSE = 2.43e+-02
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Membership oracle (the gold standard)

Kernel smoothing Membership oracle

We use local polynomial regression? of order r > || over the
kernel domain.

2Fan & Gijbels '96, Hastie, Tibshirani & Friedman '09
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Membership oracle bounds

The analysis is very similar to linear filters — only now the kernel
never intersects the boundary. This gives

RMO — (UZ/nd)ZC\c/(d+2a)

Compare with linear filter, which had
MSE =< (¢2/n?)1/(d+1)

for all .

10/26



Membership oracle results

Noisy, MSE = Noisy, MSE = Noisy, MSE = Noisy, MSE =
2.50e+01 3.99e+02 2.50e+03 9.98e+-03

MO2, MSE = 9.57e-01 MO2, MSE = MO2, MSE = MO2, MSE =
2.37e+00 6.09e+00 1.96e+01

11/26



Yaroslavsky’s filter bounds

Basic idea: if noise is small, then Yaroslavsky approximates the
Membership Oracle.

@ f varies smoothly within €2, so if x; € €,
we have an upper bound on f; — f; and
concentration bounds on y; — y;.
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Yaroslavsky’s filter bounds
Basic idea: if noise is small, then Yaroslavsky approximates the
Membership Oracle.

@ f varies smoothly within €2, so if x; € €,
we have an upper bound on f; — f; and
concentration bounds on y; — y;.

@ We have a jump of height at least p
between 2 and Q°¢, so if x; € 2¢, we have
a lower bound on f; — f; and
concentration bounds on y; — y;.
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Yaroslavsky’s filter bounds
Basic idea: if noise is small, then Yaroslavsky approximates the
Membership Oracle.

@ f varies smoothly within €2, so if x; € €,
we have an upper bound on f; — f; and
concentration bounds on y; — y;.

@ We have a jump of height at least p
between 2 and Q°¢, so if x; € 2¢, we have
a lower bound on f; — f; and
concentration bounds on y; — y;.

Thus if we choose h, between these two bounds, we ensure that
the y; we select are in Q with very high probability (for sufficiently
small o).

RYF < (14 0(1))RMO  for o= 0(1/+/logn)
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Yaroslavsky’s filter results

As predicted by theory, performance is very strong for low noise.

Noisy, MSE = Noisy, MSE = Noisy, MSE = Noisy, MSE =
2.50e+01 3.99e+02 2.50e+03 9.98e+03

YF2, MSE = 9.37e-01 YF2, MSE = YF2, MSE = YF2, MSE =
1.90e+01 1.46e+02 2.98e+02

13/26



NLM bounds

Basic idea: patch distance approximates pixel distance, so NLM
approximates membership oracle

@ If x; is near the boundary, then the error
can be O(1), and there are O(hpn?) such

QC
pixels, where hp is the patch sidelength.
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NLM bounds

Basic idea: patch distance approximates pixel distance, so NLM
approximates membership oracle

@ If x; is near the boundary, then the error
can be O(1), and there are O(hpn?) such Qc
pixels, where hp is the patch sidelength.
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NLM bounds

Basic idea: patch distance approximates pixel distance, so NLM
approximates membership oracle

@ If x; is near the boundary, then the error
can be O(1), and there are O(hpn?) such
pixels, where hp is the patch sidelength.

@ f varies smoothly within €, so if
Pi,P; C €, we have an upper bound on
fi — f; and concentration bounds on
lyp, — ¥p,ll2-

@ We have a jump of height at least p
between Q and Q°¢, so if x; € Q°, we have
a lower bound on f; — f; and
concentration bounds on |[yp, — yp,||2.
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NLM bounds

With high probability, NLM

@ behaves like the membership oracle away from the boundary
and

@ behaves like the linear filter for a very small volume near the
boundary.

(0% log n)t/d

n

RNLM < 1o (

: (0_2/nd)2a/(d+2a)>
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NLM results

Because NLM uses entire patch to measure similarity between
pixels, kernel weights are more robust to noise.

2t

Noisy, MSE = Noisy, MSE = Noisy, MSE = Noisy, MSE =
2.50e+01 3.99e+02 2.50e+03 9.98e+03

.

NLM2, MSE = NLM2, MSE = NLM2, MSE = NLM2, MSE =
1.30e+00 4.92e+00 3.74e+01 1.37e+02
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Examples, 0 =5
With low noise, all methods perform well.

T T2

Noisy, MSE = 2.50e+01 LF2, MSE = 7.21e+01 YF2, MSE = 9.37e-01

4

NLM2, MSE = 1.30e+00 MO2, MSE = 9.57e-01

4
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Examples, 0 =5

17 /26



Examples, 0 = 20

As noise increases, we first see the linear filter start to break down.

Noisy, MSE = 3.99e+02 LF2, MSE = 1.40e+02 YF2, MSE = 1.90e+01

NLM2, MSE = 4.92e+00 MO2, MSE = 2.37e+400
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Examples, 0 = 50
With even more noise, Yaroslavsky's filter starts to perform poorly.

it

Noisy, MSE = 2.50e+-03 LF2, MSE = 2.11e402 YF2, MSE = 1.46e+02

NLM2, MSE = 3.74e+01 MO2, MSE = 6.09e+00
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Examples, 0 = 100

We also see how performance varies with the size of the “jump”.

%

Noisy, MSE = 9.98e+-03 LF2, MSE = 2.29e+02 YF2, MSE = 2.98e+02

%

NLM2, MSE = 1.37e+02 MO2, MSE = 1.96e+01
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Repeating patterns
As before,

f(x) = Liceqy fa(x) + Lixeqe) fac(x),

but now
Q=01'n |J E+v)
veazd
where a is the pattern period and a — 0 as n — oo. This function
class is like the cartoon class, but the underlying scene (especially
the frequency of repetition) scales with n.

n small n medium — n large
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Performance bounds for patterns

Consider f € FpPattern  Assyme the volumes of Q and Q€ are
comparable.
@ MO with h = hMO achieves an MSE of order RMO
e YF with AMO, h, =<1 achieves an MSE of order RMO if the
noise is low
o NLM with bandwidths h = "M© h, = hY'M and patch size
ASEM achieves an MSE of order (na)? RMO if the pattern is
sufficiently “strong” (foreground-centered patches must be
distinct from background-centered patches).
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Examples, 0 = 100

YF2, MSE = 8.87e+03

LF2, MSE = 1.71e+04

= 9.98e+-03

Noisy, MSE

MO2, MSE = 2.28e+01

NLM2, MSE = 2.33e+02
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Examples, 0 = 20

Noisy, MSE = 3.99e+-02 LF2, MSE = 9.01e+02

= ]

NLM2, MSE = 1.31e+02 MO2, MSE = 4.65e+01
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Conclusions

@ Novel membership oracle gives new insight into key
limitations of adaptive filtering methods.

@ The classical Yaroslavsky's method behaves optimally at low
noise levels.

@ NLM mimics Yaroslavsky's filter, but uses patches to robustly
determine pixel similarity.

@ Novel image class describes repeating patterns and
redundancy not present in classical image models and not
well-suited to methods like wavelet thresholding — we show
how NLM performs well in this setting.
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Thank you.

http://arxiv.org/abs/1112.4434
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