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Observed image y Underlying scene f Noise ε

y = f + ε; ε uncorrelated, mean=0, var=σ2

Estimate fi as a weighted average of the noisy pixels:

f̂i =
∑
j

wi ,jyj

How should we choose the weights?
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Kernel-based denoising: f̂i =
∑

j wi ,jyj

Usual kernel method a

wi ,j = Kh(xi , xj)

w has no dependency on y

K : kernel and h: bandwidth (smoothing parameter)

Gaussian kernel example : Kh(xi , xj) = e−‖xi−xj‖
2
2/2h2

a
Nadaraya ’64, Watson ’64

Image Search
Zone

Spatial

Yaroslavsky /
Bilateral

Non-local means
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Kernel-based denoising: f̂i =
∑

j wi ,jyj

Yaroslavsky/Bilateral Filter a

wi ,j = Kh(xi , xj)Lhy (yi , yj)

Use spatial and photometric proximity

K , L: kernels; h, hy : bandwidths (smoothing parameters)

a
Yaroslavsky ’85, Lee ’83, Tomasi and Manduchi ’98
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Kernel-based denoising: f̂i =
∑

j wi ,jyj

Non-local Means a

wi ,j = Kh(xi , xj)Lhy (yPi
, yPj

)

Use spatial and photometric proximity

K , L: kernels; h, hy : bandwidths (smoothing parameters)

Pi is a small patch of pixels centered around pixel i

a
Buades, Coll & Morel ’05

Image Search
Zone

Spatial Yaroslavsky /
Bilateral

Non-local means
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Problem formulation

We will bound the risk

Rn(̂f,F) := sup
f∈F

MSEf (̂f) = sup
f∈F

E‖f̂ − f‖2
2

nd
.

How do errors scale with

• n (number of pixels),

• d (dimension), and

• σ2 (noise variance)?
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Related theoretical investigations

Information-theoretic interpretation: Weissman et al. ’05

Consistency: Buades et al. ’05

Graph diffusion interpretation: Singer et al. ’09, Taylor &
Meyer ’11

Rare patch effect: Duval et al. ’11

SURE estimate of parameters: Van De Ville & Kocher ’09,’11,
Duval et al. ’11, Deledalle et al. ’11

Cramer-Rao bounds: Levin & Nadler ’11, Chatterjee &
Milanfar ’11

Minimax rates for piecewise constant images: Maleki, Narayan
& Baraniuk ’11
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Cartoon images
f ∈ Fcartoon is a “cartoon image” if it is a piecewise smooth
(Hölder-α, α ≥ 1) image with discontinuities along smooth
hypersurfaces.1.

f (x) = 1{x∈Ω} fΩ(x) + 1{x∈Ωc} fΩc (x),

Holder-α
smooth
surfaces

bi-Lipschitz
image of
unit ball

minimum
jump height

μ

Ω

Ωc

1
Korostelev and Tsybakov ’93
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Linear filtering bounds

If the kernel intersects the boundary, boundary is blurred

E
(

(f̂i − fi )
2
)
� 1.

O(ndh) pixels have kernels which intersect the boundary

If the kernel doesn’t intersect the boundary,

E
(

(f̂i − fi )
2
)
� h2α + σ2(nh)−d

RLF � (σ2/nd)1/(d+1)

This bound is independent of surface smoothness α!
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Linear filtering results

Noisy, MSE =
2.50e+01

Noisy, MSE =
3.99e+02

Noisy, MSE =
2.50e+03

Noisy, MSE =
9.98e+03

LF0, MSE = 3.52e+01 LF0, MSE = 7.78e+01 LF0, MSE = 1.51e+02 LF0, MSE = 2.43e+02
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Membership oracle (the gold standard)

Kernel smoothing Membership oracle

We use local polynomial regression2 of order r ≥ bαc over the
kernel domain.

2
Fan & Gijbels ’96, Hastie, Tibshirani & Friedman ’09
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Membership oracle bounds

The analysis is very similar to linear filters – only now the kernel
never intersects the boundary. This gives

RMO � (σ2/nd)2α/(d+2α)

Compare with linear filter, which had

MSE � (σ2/nd)1/(d+1)

for all α.
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Membership oracle results

Noisy, MSE =
2.50e+01

Noisy, MSE =
3.99e+02

Noisy, MSE =
2.50e+03

Noisy, MSE =
9.98e+03

MO2, MSE = 9.57e-01 MO2, MSE =
2.37e+00

MO2, MSE =
6.09e+00

MO2, MSE =
1.96e+01
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Yaroslavsky’s filter bounds
Basic idea: if noise is small, then Yaroslavsky approximates the
Membership Oracle.

f varies smoothly within Ω, so if xj ∈ Ω,
we have an upper bound on fi − fj and
concentration bounds on yi − yj .

We have a jump of height at least µ
between Ω and Ωc , so if xj ∈ Ωc , we have
a lower bound on fi − fj and
concentration bounds on yi − yj .

Ω

Ωc

xixj

Thus if we choose hy between these two bounds, we ensure that
the yj we select are in Ω with very high probability (for sufficiently
small σ).

RYF ≤ (1 + o(1))RMO for σ = O(1/
√

log n)
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Yaroslavsky’s filter results

As predicted by theory, performance is very strong for low noise.

Noisy, MSE =
2.50e+01

Noisy, MSE =
3.99e+02

Noisy, MSE =
2.50e+03

Noisy, MSE =
9.98e+03

YF2, MSE = 9.37e-01 YF2, MSE =
1.90e+01

YF2, MSE =
1.46e+02

YF2, MSE =
2.98e+02
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NLM bounds

Basic idea: patch distance approximates pixel distance, so NLM
approximates membership oracle

If xi is near the boundary, then the error
can be O(1), and there are O(hPn

d) such
pixels, where hP is the patch sidelength.

f varies smoothly within Ω, so if
Pi ,Pj ⊆ Ω, we have an upper bound on
fi − fj and concentration bounds on
‖yPi

− yPj
‖2.

We have a jump of height at least µ
between Ω and Ωc , so if xj ∈ Ωc , we have
a lower bound on fi − fj and
concentration bounds on ‖yPi

− yPj
‖2.

Ω

Ωc
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NLM bounds

With high probability, NLM

behaves like the membership oracle away from the boundary
and

behaves like the linear filter for a very small volume near the
boundary.

RNLM �max

(
(σ4 log n)1/d

n
, (σ2/nd)2α/(d+2α)

)
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NLM results
Because NLM uses entire patch to measure similarity between
pixels, kernel weights are more robust to noise.

Noisy, MSE =
2.50e+01

Noisy, MSE =
3.99e+02

Noisy, MSE =
2.50e+03

Noisy, MSE =
9.98e+03

NLM2, MSE =
1.30e+00

NLM2, MSE =
4.92e+00

NLM2, MSE =
3.74e+01

NLM2, MSE =
1.37e+02
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Examples, σ = 5
With low noise, all methods perform well.

Noisy, MSE = 2.50e+01 LF2, MSE = 7.21e+01 YF2, MSE = 9.37e-01

NLM2, MSE = 1.30e+00 MO2, MSE = 9.57e-01
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Examples, σ = 20
As noise increases, we first see the linear filter start to break down.

Noisy, MSE = 3.99e+02 LF2, MSE = 1.40e+02 YF2, MSE = 1.90e+01

NLM2, MSE = 4.92e+00 MO2, MSE = 2.37e+00

18 / 26



Examples, σ = 50
With even more noise, Yaroslavsky’s filter starts to perform poorly.

Noisy, MSE = 2.50e+03 LF2, MSE = 2.11e+02 YF2, MSE = 1.46e+02

NLM2, MSE = 3.74e+01 MO2, MSE = 6.09e+00
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Examples, σ = 100
We also see how performance varies with the size of the “jump”.

Noisy, MSE = 9.98e+03 LF2, MSE = 2.29e+02 YF2, MSE = 2.98e+02

NLM2, MSE = 1.37e+02 MO2, MSE = 1.96e+01
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Repeating patterns
As before,

f (x) = 1{x∈Ω} fΩ(x) + 1{x∈Ωc} fΩc (x),

but now
Ω = (0, 1)d ∩

⋃
v∈aZd

(Ξ + v)

where a is the pattern period and a→ 0 as n→∞. This function
class is like the cartoon class, but the underlying scene (especially
the frequency of repetition) scales with n.

n small −→ n medium −→ n large
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Performance bounds for patterns

Consider f ∈ Fpattern. Assume the volumes of Ω and Ωc are
comparable.

MO with h = hMO achieves an MSE of order RMO

YF with hMO, hy � 1 achieves an MSE of order RMO if the
noise is low

NLM with bandwidths h = hMO, hy = hNLM
y and patch size

hNLM
P achieves an MSE of order (na)d RMO if the pattern is

sufficiently “strong” (foreground-centered patches must be
distinct from background-centered patches).
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Examples, σ = 100

Noisy, MSE = 9.98e+03 LF2, MSE = 1.71e+04 YF2, MSE = 8.87e+03

NLM2, MSE = 2.33e+02 MO2, MSE = 2.28e+01
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Examples, σ = 20

Noisy, MSE = 3.99e+02 LF2, MSE = 9.01e+02 YF2, MSE = 2.44e+02

NLM2, MSE = 1.31e+02 MO2, MSE = 4.65e+01
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Conclusions

Novel membership oracle gives new insight into key
limitations of adaptive filtering methods.

The classical Yaroslavsky’s method behaves optimally at low
noise levels.

NLM mimics Yaroslavsky’s filter, but uses patches to robustly
determine pixel similarity.

Novel image class describes repeating patterns and
redundancy not present in classical image models and not
well-suited to methods like wavelet thresholding – we show
how NLM performs well in this setting.
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Thank you.

http://arxiv.org/abs/1112.4434
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