Oracle inequalities and minimax rates for non-local means

Rebecca Willett, Duke

Ery Arias-Castro, UCSD

Joseph Salmon, Duke

 $\mathbf{y} = \mathbf{f} + \boldsymbol{\varepsilon};$ $\boldsymbol{\varepsilon}$ uncorrelated, mean=0, var= σ^2 Estimate f_i as a weighted average of the noisy pixels:

$$\widehat{f}_i = \sum_j w_{i,j} y_j$$

How should we choose the weights?

Kernel-based denoising: $\hat{f}_i = \sum_j w_{i,j} y_j$

Usual kernel method ^a

$$w_{i,j} = K_h(x_i, x_j)$$

- w has no dependency on y
- K: kernel and h: bandwidth (smoothing parameter)
- Gaussian kernel example : $K_h(x_i, x_j) = e^{-||x_i x_j||_2^2/2h^2}$

^aNadaraya '64, Watson '64

Image Search Spatial Zone

Kernel-based denoising: $\hat{f}_i = \sum_j w_{i,j} y_j$

Yaroslavsky/Bilateral Filter ^a

$$w_{i,j} = K_h(x_i, x_j) L_{h_y}(y_i, y_j)$$

- Use spatial and photometric proximity
- K, L: kernels; h, h_y : bandwidths (smoothing parameters)

^aYaroslavsky '85, Lee '83, Tomasi and Manduchi '98

Image Search Zone

Yaroslavsky / Bilateral

Kernel-based denoising: $\hat{f}_i = \sum_j w_{i,j} y_j$

Non-local Means ^a

$$w_{i,j} = K_h(x_i, x_j) L_{h_y}(\mathbf{y}_{\mathsf{P}_i}, \mathbf{y}_{\mathsf{P}_j})$$

- Use spatial and photometric proximity
- K, L: kernels; h, h_y : bandwidths (smoothing parameters)
- P_i is a small patch of pixels centered around pixel i

^aBuades, Coll & Morel '05

Problem formulation

We will bound the risk

$$\mathcal{R}_n(\widehat{\mathbf{f}},\mathcal{F}) := \sup_{\mathbf{f}\in\mathcal{F}} \mathsf{MSE}_{\mathbf{f}}(\widehat{\mathbf{f}}) = \sup_{\mathbf{f}\in\mathcal{F}} \frac{\mathbb{E}\|\widehat{\mathbf{f}}-\mathbf{f}\|_2^2}{n^d}.$$

How do errors scale with

- *n* (number of pixels),
- d (dimension), and
- σ^2 (noise variance)?

Related theoretical investigations

- Information-theoretic interpretation: Weissman et al. '05
- Consistency: Buades et al. '05
- Graph diffusion interpretation: Singer *et al.* '09, Taylor & Meyer '11
- Rare patch effect: Duval et al. '11
- SURE estimate of parameters: Van De Ville & Kocher '09,'11, Duval *et al.* '11, Deledalle *et al.* '11
- Cramer-Rao bounds: Levin & Nadler '11, Chatterjee & Milanfar '11
- Minimax rates for piecewise constant images: Maleki, Narayan & Baraniuk '11

Cartoon images

 $f \in \mathcal{F}^{cartoon}$ is a "cartoon image" if it is a piecewise smooth (Hölder- α , $\alpha \geq 1$) image with discontinuities along smooth hypersurfaces.¹.

$$f(x) = \mathbb{1}_{\{x \in \Omega\}} f_{\Omega}(x) + \mathbb{1}_{\{x \in \Omega^c\}} f_{\Omega^c}(x),$$

Linear filtering bounds

• If the kernel intersects the boundary, boundary is blurred

$$\mathbb{E}\left((\widehat{f}_i-f_i)^2\right) \asymp 1.$$

O(n^d h) pixels have kernels which intersect the boundary
If the kernel doesn't intersect the boundary,

$$\mathbb{E}\left((\widehat{f}_i-f_i)^2\right) \asymp h^{2\alpha}+\sigma^2(nh)^{-d}$$

 $\mathcal{R}^{\mathrm{LF}} \asymp (\sigma^2/n^d)^{1/(d+1)}$

This bound is independent of surface smoothness $\alpha!$

Linear filtering results

Membership oracle (the gold standard)

Kernel smoothing Membership oracle

We use local polynomial regression² of order $r \ge \lfloor \alpha \rfloor$ over the kernel domain.

²Fan & Gijbels '96, Hastie, Tibshirani & Friedman '09

Membership oracle bounds

The analysis is very similar to linear filters – only now the kernel never intersects the boundary. This gives

 $\mathcal{R}^{\mathrm{MO}} \asymp (\sigma^2/n^d)^{2\alpha/(d+2\alpha)}$

Compare with linear filter, which had

$$\mathsf{MSE} \asymp (\sigma^2/n^d)^{1/(d+1)}$$

for all α .

Membership oracle results

Yaroslavsky's filter bounds

Basic idea: if noise is small, then Yaroslavsky approximates the Membership Oracle.

 f varies smoothly within Ω, so if x_j ∈ Ω, we have an upper bound on f_i − f_j and concentration bounds on y_i − y_j.

Yaroslavsky's filter bounds

Basic idea: if noise is small, then Yaroslavsky approximates the Membership Oracle.

- *f* varies smoothly within Ω, so if x_j ∈ Ω, we have an upper bound on f_i − f_j and concentration bounds on y_i − y_j.
- We have a jump of height at least μ between Ω and Ω^c, so if x_j ∈ Ω^c, we have a lower bound on f_i - f_j and concentration bounds on y_i - y_j.

Yaroslavsky's filter bounds

Basic idea: if noise is small, then Yaroslavsky approximates the Membership Oracle.

- *f* varies smoothly within Ω, so if x_j ∈ Ω, we have an upper bound on f_i − f_j and concentration bounds on y_i − y_i.
- We have a jump of height at least μ between Ω and Ω^c, so if x_j ∈ Ω^c, we have a lower bound on f_i - f_j and concentration bounds on y_i - y_j.

Thus if we choose h_y between these two bounds, we ensure that the y_j we select are in Ω with very high probability (for sufficiently small σ).

 $\mathcal{R}^{ ext{YF}} \leq (1+o(1))\mathcal{R}^{ ext{MO}} \quad ext{ for } \quad \sigma = O(1/\sqrt{\log n})$

Yaroslavsky's filter results

As predicted by theory, performance is very strong for low noise.

Basic idea: patch distance approximates pixel distance, so NLM approximates membership oracle

 If x_i is near the boundary, then the error can be O(1), and there are O(h_Pn^d) such pixels, where h_P is the patch sidelength.

Basic idea: patch distance approximates pixel distance, so NLM approximates membership oracle

- If x_i is near the boundary, then the error can be O(1), and there are O(h_Pn^d) such pixels, where h_P is the patch sidelength.
- f varies smoothly within Ω , so if $P_i, P_j \subseteq \Omega$, we have an upper bound on $f_i - f_j$ and concentration bounds on $\|\mathbf{y}_{P_i} - \mathbf{y}_{P_j}\|_2$.

Basic idea: patch distance approximates pixel distance, so NLM approximates membership oracle

- If x_i is near the boundary, then the error can be O(1), and there are $O(h_P n^d)$ such pixels, where h_P is the patch sidelength.
- f varies smoothly within Ω , so if $P_i, P_j \subseteq \Omega$, we have an upper bound on $f_i - f_j$ and concentration bounds on $\|\mathbf{y}_{P_i} - \mathbf{y}_{P_j}\|_2$.
- We have a jump of height at least μ between Ω and Ω^c, so if x_j ∈ Ω^c, we have a lower bound on f_i - f_j and concentration bounds on ||**y**_{Pi} - **y**_{Pi}||₂.

With high probability, NLM

- behaves like the membership oracle away from the boundary and
- behaves like the linear filter for a very small volume near the boundary.

$$\mathcal{R}^{\mathrm{NLM}} \preceq \max\left(rac{(\sigma^4 \log n)^{1/d}}{n}, (\sigma^2/n^d)^{2lpha/(d+2lpha)}
ight)$$

NLM results

Because NLM uses entire patch to measure similarity between pixels, kernel weights are more robust to noise.

Noisy, MSE = 2.50e+01

Noisy, MSE = 3.99e+02

Noisy, MSE = 2.50e + 03

Noisy, MSE = 9.98e+03

 $\begin{array}{l} \text{NLM2, MSE} = \\ 1.30\text{e}{+00} \end{array}$

 $\begin{array}{l} \text{NLM2, MSE} = \\ \text{4.92e} + 00 \end{array}$

 $\begin{array}{l} \text{NLM2, MSE} = \\ 3.74\text{e}{+01} \end{array}$

 $\begin{array}{l} \text{NLM2, MSE} = \\ 1.37\text{e}{+02} \end{array}$

With low noise, all methods perform well.

Noisy, MSE = 2.50e+01

LF2, MSE = 7.21e+01

YF2, MSE = 9.37e-01

NLM2, MSE = 1.30e + 00

MO2, MSE = 9.57e-01

As noise increases, we first see the linear filter start to break down.

Noisy, MSE = 3.99e+02

LF2, MSE = 1.40e+02

YF2, MSE = 1.90e+01

NLM2, MSE = 4.92e+00

MO2, MSE = 2.37e+00

With even more noise, Yaroslavsky's filter starts to perform poorly.

Noisy, MSE = 2.50e + 03

LF2, MSE = 2.11e+02

YF2, MSE = 1.46e+02

NLM2, MSE = 3.74e+01

MO2, MSE = 6.09e+00

We also see how performance varies with the size of the "jump".

Noisy, MSE = 9.98e + 03

LF2, MSE = 2.29e+02

YF2, MSE = 2.98e+02

NLM2, MSE = 1.37e + 02

MO2, MSE = 1.96e+01

Repeating patterns

As before,

$$f(x) = \mathbb{1}_{\{x \in \Omega\}} f_{\Omega}(x) + \mathbb{1}_{\{x \in \Omega^c\}} f_{\Omega^c}(x),$$

but now

$$\Omega = (0,1)^d \cap igcup_{v\in a\mathbb{Z}^d} (\Xi+v)$$

where *a* is the pattern period and $a \rightarrow 0$ as $n \rightarrow \infty$. This function class is like the cartoon class, but the underlying scene (especially the frequency of repetition) scales with *n*.

Performance bounds for patterns

Consider $f \in \mathcal{F}^{pattern}$. Assume the volumes of Ω and Ω^c are comparable.

- MO with $h = h^{MO}$ achieves an MSE of order \mathcal{R}^{MO}
- YF with $h^{
 m MO}, h_y symp 1$ achieves an MSE of order $\mathcal{R}^{
 m MO}$ if the noise is low
- NLM with bandwidths $h = h^{MO}$, $h_y = h_y^{NLM}$ and patch size h_P^{NLM} achieves an MSE of order $(na)^d \mathcal{R}^{MO}$ if the pattern is sufficiently "strong" (foreground-centered patches must be distinct from background-centered patches).

NLM2, MSE = 2.33e+02

23/26

Noisy, MSE = 3.99e+02

NLM2, MSE = 1.31e+02

LF2, MSE = 9.01e+02

YF2, MSE = 2.44e+02

MO2, MSE = 4.65e+01

Conclusions

- Novel membership oracle gives new insight into key limitations of adaptive filtering methods.
- The classical Yaroslavsky's method behaves optimally at low noise levels.
- NLM mimics Yaroslavsky's filter, but uses patches to robustly determine pixel similarity.
- Novel image class describes repeating patterns and redundancy not present in classical image models and not well-suited to methods like wavelet thresholding – we show how NLM performs well in this setting.

Thank you.

http://arxiv.org/abs/1112.4434

