
Background Tyler’s M-estimator Theory for exact recovery

Robust subspace recovery by geodesically convex
optimization

Teng Zhang

University of Minnesota, Institute of Mathematics and its Applications
2012 SIAM Annual Meeting (AN12)

Jul 11, 2012

1 / 18



Background Tyler’s M-estimator Theory for exact recovery

Outline

I Background: Robust Principal Components Analysis (PCA)

I Tyler’s M-estimator and its properties

I Theory for exact recovery of the subspace

I Experiments
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Problem Formulation

I Given: a linear subspace L∗ and a data set
X = {xi}Ni=1 ⊂ RD , which contains some points sampled from
L∗ (we call them inliers) and outliers sampled from RD \ L∗.

I Goal: recover L∗ using X .

I Fact: PCA is sensitive to outliers:

L
∗
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History

I Covariance estimators in robust statistics community:
M-estimator, S-estimator, MVD (minimum volume ellipsoid)
estimator, MCD (minimum covariance determinant) estimator,
Stahel-Donoho estimator. See review by Maronna et al. (06)

I Projection Pursuit: Li & Chen (85), Ammann (93), McCoy &
Tropp (10)

I Outlier detection and removal: Torre & Black(01), Xu et al.
(10)
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Background Tyler’s M-estimator Theory for exact recovery

History

Some recent algorithms provide conditions for the exact recovery
of the subspace L∗:

I Convex optimization based on nuclear norm: Xu et al. (10),
McCoy & Tropp (11)

I Convex optimization based on l1 distance: Zhang & Lerman
(11), Lerman et al. (12).

I SSC algorithm based on sparse representation: Soltanolkotabi
& Candès (11).
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Motivation of Tyler’s M-estimator for covariance
I Goal: robust covariance.
I Empirical covariance is also the MLE estimator when data

points are drawn from Gaussian distribution:

Σ̂ = argmin
Σ

1

N

∑
x∈X

(xTΣ−1x) +
1

2
log det(Σ).

I For more general distribution

C (ρ)e−ρ(xTΣ−1x)/
√

det(Σ), (1)

the MLE estimator is

Σ̂ = argmin
Σ

1

N

∑
x∈X

ρ(xTΣ−1x) +
1

2
log det(Σ). (2)

I Tyler’s M-estimator is defined for ρ(x) = D
2 log(x), which

corresponds to the MLE estimator for multivariate student
distribution when ν → 0, or for angular Gaussian distribution
(Gaussian distribution normalized to unit sphere).
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Formulation

I (Tyler, 1987) Tyler’s M-estimator for covariance is defined by

Σ∗ = argmin
tr(Σ)=1,Σ=ΣT ,Σ∈S++(D)

F (Σ), where (3)

F (Σ) =
1

N

∑
x∈X

log(xTΣ−1x) +
1

D
log det(Σ),

I Fix tr(Σ) = 1 because of scale-invariance: F (Σ) = F (cΣ).

I (Tyler, 1987) Use the limit of the iterative procedure to find
Σ∗:

Σ(k+1) =
∑
x∈X

xxT

xTΣ(k)−1x
/ tr(

∑
x∈X

xxT

xTΣ(k)−1x
). (4)
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Property of formulation

I (Wiesel, 2012; Zhang, 2012) F (Σ) is geodesically convex:

F (Σ1) + F (Σ2) ≥ 2F (Σ
1
2
1 (Σ

− 1
2

1 Σ2Σ
− 1

2
1 )

1
2Σ

1
2
1 ). (5)

I (Zhang 2012) When Sp{x1, x2, · · · , xN} = RD , the equality in
(5) holds if and only if Σ1 = cΣ2.

I Since tr(Σ) is fixed, we have strict convexity and uniqueness
of the solution.

8 / 18



Background Tyler’s M-estimator Theory for exact recovery

Geometry of positive definite matrices

I We call this property ”geodesically convex” since

Σ
1
2
1 (Σ

− 1
2

1 Σ2Σ
− 1

2
1 )

1
2Σ

1
2
1 is the mean of the geodesic line

connecting Σ1 and Σ2.

I In this geometry, dist(Σ1,Σ2) = ∥ log(Σ−1
1 Σ2)∥F , and

Σ
1
2
1 (Σ

− 1
2

1 Σ2Σ
− 1

2
1 )tΣ

1
2
1 (0 ≤ t ≤ 1) parametrizes the geodesic

line connecting Σ1 and Σ2.

I This geometry can be obtained by differential geometry for
the manifold of positive definite matrices, or by information
geometry (Fisher’s metric) for all multivariate Gaussian
distributions with mean 0.
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Property of iterative algorithm

I Recall the algorithm:

Σ(k+1) =
∑
x∈X

xxT

xTΣ(k)−1x
/ tr(

∑
x∈X

xxT

xTΣ(k)−1x
). (6)

I (Wiesel, 2012; Zhang, 2012) This algorithm is monotone:

F (Σ(k+1)) ≤ F (Σ(k))

I (Zhang 2012) If for any linear subspace L we have

|X ∩ L|
N

<
dim(L)

D
, (7)

then Σ∗ exists and is unique, and limk→∞Σ(k) = Σ∗.

I Empirically it converges linearly.
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Theoretical justification for exact subspace recovery

(Zhang 2012) If
(a)there exists a d-dimensional subspace L∗ such that

|X ∩ L∗|
|X |

>
d

D
, (8)

(b) the points in the set Y1 = {PL∗x : x ∈ X ∩ L∗} ⊂ Rd and
Y0 = {PL⊥∗

x : x ∈ X \ L∗} ⊂ RD−d lie in general positions
respectively (i.e., any k points in Y1 span a k-dimensional
subspace for all k ≤ d and any k points in Y0 span a
k-dimensional subspace for all k ≤ D − d).
Then the sequence Σ(k) converges to some Σ̂ such that
Im(Σ̂) = L∗.
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Theoretical justification for exact subspace recovery

Properties of this theory:

I Condition (b) is weak: the theorem almost only depends on
the ratio of the number of inliers/outliers.

I No probabilistic estimation involved.

I No incoherence condition of the data set involved.

I However, this theory tolerates less outliers than SCC
algorithm when d/D is small, and inliers/outliers are drawn
from gaussian distribution (with high probability).
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Phase transition

If inliers/outliers lie in general position, then

I when
|X ∩ L∗|

|X |
>

d

D
, (9)

we have im(Σ∗) = L∗.

I when
|X ∩ L∗|

|X |
<

d

D
, (10)

we have im(Σ∗) = RD .
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Other properties

I This method only depends on the directions of the data
points: if we replace any x ∈ X by x′ = cx, then
log(xTΣ−1x) and log(x′TΣ−1x′) only differ by a constant of
2 log c , and the minimizer of F (Σ) is unchanged.

I The algorithm is also independent of the magnitude of the
data points.
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Verification of exact recovery and phase transition
I In this example we let D = 10, d = 5, 100 outliers, and apply

this algorithm for the case of different number of inliers.
I It turns out that we have exact recovery when the number of

inliers is larger than 100.
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Figure: The dependence on the number of inliers and recovery error:
x-axis is the number of inlier and y-axis is the corresponding
recovery error.
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Experiment

I 64 images of a single face under different illuminations from
the Extended Yale Face database (used as inliers)

I 400 additional random images from the
BACKGROUND/Google folder of the Caltech101 database
(used as outliers)

I resolution downsampled to 20× 20

I The face images lie on a nine-dimensional subspace (Basri &
Jacobs, 03)

I Learn the subspace from a data set that contain 32 face
images and 400 other random images.

I We recover the 9-dimensional subspace by the span of top 9
eigenvectors of Σ∗.
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Experiment

We compare Tyler’s M-estimator with PCA, Reaper and S-reaper
algorithms:
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Figure: The projection of images to the fitted subspace.
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Conclusions

I We analyze the properties of Tyler’s M-estimator (geodesic
convexity) and the convergence of the iterative algorithm.

I We provide a theory for robust subspace recovery, which
almost only depends on the percentage of outliers.

I We verify its performance on real data set.
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