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Sparse Approximation

Model: .
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with xo € R™ sparse - most of the zo(z) are zero.

Good model for many types of imagery data, especially if we
can learn the dictionary A =1a; |--- | a,] € R™*" :




Motivating Applications (biased sample)

Single image superresolution:
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— Downsample | ™

y = Dy,
reconstruct the original high-resolution image Yg:
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x € argmin |[z|; s.t. y = DAz Yy ~ AT

Yang, W., Huang and Ma, TIP “10



Motivating Applications (biased sample)

High-resolution hyperspectral imaging for cultural heritage:

1.6=ig5pixels
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Ultra high-res RGB camera

Moshe Ben-Ezra Buddhist Frescos
Microsoft Research Dunhuang, China

Can dictionary learning help overcome hardware limitations?

Kawakami, W., Tai, Ikiuchi, Matsushita, Ben-Ezra, CVPR ‘11


http://upload.wikimedia.org/wikipedia/commons/3/36/Anonymous-Describing_the_Doctrine_Under_a_Tree.jpg

When do dictionary
learning algorithms succeed?
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The model problem

Given Y ~ AX with x; sparse,
(A, X) unknown, recover A and X.

Ambiguities: (A, X) or (AITIA, A7'IT*X)?

Peculiar geometry: rj

L~

k column subspaces of A




When is dictionary learning well-posed?
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Solution is unique:

Theorem 1 (ess. Aharon et. al. ’05) (sketch) There exists k column sparse
X = [x1...xp), of sizep = (k+1)(}) such that if we observe Y = AX, (A, X)
15 essentially the only k-column sparse factorization of Y .



When does a learned dictionary generalize?

-

Theorem 2 (Vainsencher, Mannor and Bruckstein ’11) (sketch) Ify ~jiq
won S p>po, N> N, then with prob. 1 —et inY,

Ey minjq), <) ||y — Az|

: log(Ap)+t
< L Ny — Ay 4o

See also [Maurer and Pontil '10].



How can we learn a good dictionary?

‘ Y ~ AX, X sparse.
-

Alternating directions to minimize sparsity surrogate
[Engan et. al., ‘99, Aharon et. al. ‘05, Yaghoobi “10]

min §[[Y — AX |3+ J(X)

Recently: Supervised variants [Mairal et. al. ‘08], structured dictionaries
[Rubenstein et. al. “10], highly scalable variants [Mairal et. al. ‘10] ... and
many, many more...



Is the desired solution a local minimum?

‘! Y = AX, X sparse.

|~

min || X'|; st. Y=A'X" A'c A

For square A, under probabilistic assumptions on X
(A, X)is a local minimum whp:

Theorem 3 (Gribonval 4+ Schnass ’10) (sketch) Let X;; = Q;;V,;, with
Q ~ Ber(0), V ~N(0,1). For square, incoherent A, (A, X) is a local minimum
of || - |l1 with high probability, provided p = Q(nlogn/0).



Is the desired solution a local minimum?
min || X'|; st. Y=A'X" A'c A

For general A, under probabilistic assumptions on X,
(A, X)is alocal minimum whp:

Theorem 4 (Geng, W., '11). Let A € R™*", k < C/u(A), and X € R"*P
with random k-sparse support, independent Gaussian nonzeros. Then (A, X) is
a local minimum of the ¢*-norm wp > 1 — O(n3/2k1/2p_1/2).



Is this obvious?
Maybe ... but surprisingly resistant to analysis ...

min || X'||; st. Y=A'X" A'e A

Feasible (A, X)
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Is this obvious?
Maybe ... but surprisingly resistant to analysis ...

min || X'||; st. Y=A'X" A'e A

Have to analyze an ¢! problem
over an affine space.

RIP ect., fail here
ess. sign-permutation ambiguity

Feasible (A. X Use ideas from low-rank recovery
(4, X) [Gross ‘09], [Candes, Li, Ma, W. *12].



Uniqueness — square dictionaries

Rows of X are sparse
vectors in a known subspace.

If p > cnlogn , then whp. rows of X are the
sparsest vectors in row (Y ) :



Uniqueness — square dictionaries

Square:

Theorem [Spielman, Wang, W. “11]:
Decomposition essentially unique from
(2(nlogn) random observations.

Overcomplete:

es X Theorem [Aharon, Elad, Bruckstein ‘05]:
Decomposition is essentially unique from
(k+1) (2) strategically located observations.

row(Y)

e1 X m<n



Algorithms — square dictionaries

Rows of X are sparsest
vectors in row (Y").

minimize |[w*Y|p subject to w # 0.



Algorithms — square dictionaries

Rows of X are sparsest
vectors in row (Y").

minimize |[w*Y|p subject to w # 0.

minimize |[w*Y ||y subject to r*w =1.




Algorithms — square dictionaries

minimize |w*Y||; subject to r*w =1.

What choice of 7 will make w'Y =efX ?

Change variables ¢ = A™w :

minimize ||¢g*X]|; subject to (A7 'r)*q=1.

If »r = Ae;, we're golden ...

Don’t have this; use y; = > ic1 XijAe; .

el



Algorithms — square dictionaries

ER-SpUD(SC): Exact Recovery of Sparsely-Used Dictionaries using single
columns of Y as constraint vectors.

Forj=1...p

Solve min,,, ||w’Y | subject to (Ye;)7w =1, and set s; = w’Y.

Greedy: A Greedy Algorithm to Reconstruct X and A4.
1. REQUIRE: § = {s;,...,s7} C R~
2. Fori=1...n

REPEAT

[ +— arg ming,es ||s1|lo, breaking ties arbitrarily
iy = 5]
S =5S\{s1}

UNTIL rank([xy, ..., 2] )=

3. Set X =[z,....z,) ,and A =YYT(XYT)" L.




Algorithms — square dictionaries

ER-SpUD(DC): Exact Recovery of Sparsely-Used Dictionaries using the sum of
two columns of Y} as constraint vectors.

1. Randomly pair columns of Y into p/2 groups gi = {Y ei1, Y ein}.
2. Forj=1...p/2

Let r; =Ye;; +Yej, where Ye;,Ye;n € g;.

Solve min,, ||[w?Y|; subject to 1‘}11.-; =1, and set s; = w!Y.

Greedy: A Greedy Algorithm to Reconstruct X and A.
1. REQUIRE: § = {sy,...,87} C EP.
2. Fori=1...n

REPEAT

[ + arg minges ||s1]|o, breaking ties arbitrarily
Ti = 5
S =S\{s1}

UNTIL rank( [xq,..., xil)=1i

3. Set X = [x,...,z,)0,and A =YY T(XYT)" L,




Recovery guarantee — square dictionaries

If the expected nonzeros per column is smaller than /n
the algorithm succeeds whp:

Theorem 5 (Spielman, Wang, W. ’12) (sketch) Let X Bernoulli(#)—Rademacher
or Bernoulli(f) — Gaussian. If n > ng, p > ¢,n? log? n, and the nonzero proba-
bility satisfies

C
<0< —

1
- (1)
with high probability ER-SpUD (DC) recovers all n rows of X.

S o

Sample requirement p > cn?log®n.



Does it really work?
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Good news / bad news ...

If the expected nonzeros per column exceeds v/n logn
the algorithm fails whp:

Theorem 6 (Spielman, Wang, W. ’12) (sketch) If n large, p > cn, and the
nonzero probability 0 satisfies

g > logn7 (1)

n

then the probability (in X ) that the algorithm correctly recovers one of the rows
is at most n=°.

Theory is almost tight in the sparsity level.

For denser X , think about different constraints.



Summary and open questions

Two main mathematical results:

Local recovery Iin the rectangular case

Exact (global) recovery in the square case

Many open guestions:

Past the v/n barrier?
Noise tolerance, multiple vectors?

Other coefficient structures?



Dictionary Learning by ¢! Minimization
Thanks to ...
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Huan Wang (vae) Quan Geng uiuc) Dan Spielman (vale)

Local correctness of fl-minimization for dictionary learning, Geng, W., Arxiv
Exact recovery of sparse dictionaries, Spielman, Wang, W., COLT '12.



