Dictionary Learning by ℓ^1 -Minimization

John Wright Electrical Engineering Columbia University

Sparse Approximation

with $x_0 \in \mathbb{R}^n$ sparse - most of the $x_0(i)$ are zero.

Good model for many types of imagery data, especially if we can learn the dictionary $A = [a_1 | \cdots | a_n] \in \mathbb{R}^{m \times n}$:

Motivating Applications (biased sample)

Single image superresolution:

= Downsample

$$y = Dy_0$$

reconstruct the original high-resolution image y_0 :

 $\hat{x} \in rgmin \|x\|_1 ext{ s.t. } y = DAx \quad y_0 pprox A\hat{x}$

Yang, W., Huang and Ma, TIP '10

Motivating Applications (biased sample)

High-resolution hyperspectral imaging for cultural heritage:

Ultra high-res RGB camera Moshe Ben-Ezra Microsoft Research

Buddhist Frescos Dunhuang, China

Can dictionary learning help overcome hardware limitations?

Kawakami, W., Tai, Ikiuchi, Matsushita, Ben-Ezra, CVPR '11

When do dictionary learning algorithms succeed?

Huan Wang (Yale)

Quan Geng (UIUC)

Dan Spielman (Yale)

The model problem

Given $\boldsymbol{Y} \approx \boldsymbol{A} \boldsymbol{X}$ with \boldsymbol{x}_j sparse, $(\boldsymbol{A}, \boldsymbol{X})$ unknown, recover \boldsymbol{A} and \boldsymbol{X} .

Ambiguities: $(\boldsymbol{A}, \boldsymbol{X})$ or $(\boldsymbol{A} \boldsymbol{\Pi} \boldsymbol{\Lambda}, \boldsymbol{\Lambda}^{-1} \boldsymbol{\Pi}^* \boldsymbol{X})$?

Peculiar geometry:

k column subspaces of $\,A\,$

When is dictionary learning well-posed?

Solution is unique:

Theorem 1 (ess. Aharon et. al. '05) (sketch) There exists k column sparse $X = [x_1 \dots x_p]$, of size $p = (k+1) \binom{n}{k}$ such that if we observe Y = AX, (A, X) is essentially the only k-column sparse factorization of Y.

When does a learned dictionary generalize?

Theorem 2 (Vainsencher, Mannor and Bruckstein '11) (sketch) If $\boldsymbol{y} \sim_{iid} \mu$ on \mathbb{S}^{m-1} , $p > p_0$, $\lambda > \lambda_0$, then with prob. $1 - e^{-t}$ in \boldsymbol{Y} ,

$$\mathbb{E}_{\boldsymbol{y}} \min_{\|\boldsymbol{x}\|_{1} \leq \lambda} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|$$
$$\leq \frac{1.1}{p} \sum_{i} \|\boldsymbol{y}_{i} - \boldsymbol{A}\boldsymbol{x}_{i}\| + 9 \frac{mn \log(\lambda p) + t}{p}$$

See also [Maurer and Pontil '10].

How can we learn a good dictionary?

$$Y \approx AX, X$$
 sparse.

Alternating directions to minimize sparsity surrogate [Engan et. al., '99, Aharon et. al. '05, Yaghoobi '10]

$$\min \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{A} \boldsymbol{X} \|_F^2 + J(\boldsymbol{X})$$

Recently: Supervised variants [Mairal et. al. '08], structured dictionaries [Rubenstein et. al. '10], highly scalable variants [Mairal et. al. '10] ... and many, many more...

Is the desired solution a local minimum?

$$Y = AX, X \text{ sparse.}$$

min $\|X'\|_1$ s.t. $Y = A'X', A' \in A$

For square A, under probabilistic assumptions on $X_{,}$ (A, X) is a local minimum whp:

Theorem 3 (Gribonval + Schnass '10) (sketch) Let $X_{ij} = \Omega_{ij}V_{ij}$, with $\Omega \sim \text{Ber}(\theta), V \sim \mathcal{N}(0, 1)$. For square, incoherent A, (A, X) is a local minimum of $\|\cdot\|_1$ with high probability, provided $p = \Omega(n \log n/\theta)$.

Is the desired solution a local minimum?

min
$$\|\mathbf{X}'\|_1$$
 s.t. $\mathbf{Y} = \mathbf{A}'\mathbf{X}', \ \mathbf{A}' \in \mathcal{A}$

For general A, under probabilistic assumptions on X, (A, X) is a **local minimum whp**:

Theorem 4 (Geng, W., '11). Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $k < C/\mu(\mathbf{A})$, and $\mathbf{X} \in \mathbb{R}^{n \times p}$ with random k-sparse support, independent Gaussian nonzeros. Then (\mathbf{A}, \mathbf{X}) is a local minimum of the ℓ^1 -norm $wp \geq 1 - \tilde{O}(n^{3/2}k^{1/2}p^{-1/2})$.

Is this obvious?

Maybe ... but surprisingly resistant to analysis ...

min $\|\mathbf{X}'\|_1$ s.t. $\mathbf{Y} = \mathbf{A}'\mathbf{X}', \ \mathbf{A}' \in \mathcal{A}$

Is this obvious?

Maybe ... but surprisingly resistant to analysis ...

min $\|\mathbf{X}'\|_1$ s.t. $\mathbf{Y} = \mathbf{A}'\mathbf{X}', \ \mathbf{A}' \in \mathcal{A}$

Is this obvious?

Maybe ... but surprisingly resistant to analysis ...

min $\|\mathbf{X}'\|_1$ s.t. $\mathbf{Y} = \mathbf{A}'\mathbf{X}', \ \mathbf{A}' \in \mathcal{A}$

Have to analyze an ℓ^1 problem over an affine space.

RIP ect., fail here ess. sign-permutation ambiguity

Use ideas from **low-rank recovery** [Gross '09], [Candes, Li, Ma, W. '12].

Uniqueness – square dictionaries

Rows of X are sparse vectors in a known subspace.

If $p > cn \log n$, then whp. rows of X are the sparsest vectors in row(Y):

Uniqueness – square dictionaries

Square:

Theorem [Spielman, Wang, W. '11]: Decomposition essentially unique from $\Omega(n \log n)$ random observations.

Overcomplete:

Theorem [Aharon, Elad, Bruckstein '05]:

Decomposition is essentially unique from $(k+1)\binom{n}{k}$ strategically located observations.

Rows of $oldsymbol{X}$ are sparsest vectors in $\mathrm{row}(oldsymbol{Y})$.

minimize $\|\boldsymbol{w}^*\boldsymbol{Y}\|_0$ subject to $\boldsymbol{w} \neq 0$.

Rows of $oldsymbol{X}$ are sparsest vectors in $\mathrm{row}(oldsymbol{Y})$.

minimize $\|\boldsymbol{w}^*\boldsymbol{Y}\|_0$ subject to $\boldsymbol{w} \neq 0$.

minimize $\|\boldsymbol{w}^*\boldsymbol{Y}\|_1$ subject to $\boldsymbol{r}^*\boldsymbol{w}=1$.

minimize
$$\|\boldsymbol{w}^*\boldsymbol{Y}\|_1$$
 subject to $\boldsymbol{r}^*\boldsymbol{w}=1$.

What choice of r will make $\hat{w}^*Y = e_i^*X$?

Change variables $q = A^* w$: minimize $\|q^* X\|_1$ subject to $(A^{-1}r)^* q = 1$.

If $r = Ae_i$, we're golden ...

Don't have this; use $oldsymbol{y}_j = \sum_{i \in I} X_{ij} oldsymbol{A} oldsymbol{e}_i$.

ER-SpUD(SC): Exact Recovery of Sparsely-Used Dictionaries using single columns of Y as constraint vectors.

```
For j = 1 \dots p
```

Solve $\min_{w} \|w^T Y\|_1$ subject to $(Y e_j)^T w = 1$, and set $s_j = w^T Y$.

```
Greedy: A Greedy Algorithm to Reconstruct X and A.

1. REQUIRE: S = \{s_1, \dots, s_T\} \subset \mathbb{R}^p.

2. For i = 1 \dots n

REPEAT

l \leftarrow \arg\min_{s_l \in S} ||s_l||_0, breaking ties arbitrarily

x_i = s_l

S = S \setminus \{s_l\}

UNTIL rank([x_1, \dots, x_i]) = i

3. Set X = [x_1, \dots, x_n]^T, and A = YY^T (XY^T)^{-1}.
```

ER-SpUD(DC): Exact Recovery of Sparsely-Used Dictionaries using the sum of two columns of Y as constraint vectors.

- 1. Randomly pair columns of Y into p/2 groups $g_i = \{Ye_{i1}, Ye_{i2}\}$.
- 2. For $j = 1 \dots p/2$

Let $r_j = Y e_{j1} + Y e_{j2}$, where $Y e_{j1}, Y e_{j2} \in g_j$. Solve $\min_w ||w^T Y||_1$ subject to $r_j^T w = 1$, and set $s_j = w^T Y$.

```
Greedy: A Greedy Algorithm to Reconstruct X and A.

1. REQUIRE: S = \{s_1, \dots, s_T\} \subset \mathbb{R}^p.

2. For i = 1 \dots n

REPEAT

l \leftarrow \arg\min_{s_l \in S} ||s_l||_0, breaking ties arbitrarily

x_i = s_l

S = S \setminus \{s_l\}

UNTIL rank([x_1, \dots, x_i]) = i

3. Set X = [x_1, \dots, x_n]^T, and A = YY^T(XY^T)^{-1}.
```

Recovery guarantee – square dictionaries

If the expected nonzeros per column is smaller than \sqrt{n} the algorithm **succeeds whp**:

Theorem 5 (Spielman, Wang, W. '12) (sketch) Let X Bernoulli(θ)-Rademacher or Bernoulli(θ) – Gaussian. If $n > n_0$, $p > c_p n^2 \log^2 n$, and the nonzero probability satisfies

$$\frac{2}{n} \le \theta \le \frac{c}{\sqrt{n}},\tag{1}$$

with high probability **ER-SpUD** (**DC**) recovers all n rows of X.

Sample requirement $p > cn^2 \log^2 n$.

Does it really work?

Caveat: exact sparse, noiseless setting.

Good news / bad news ...

If the expected nonzeros per column exceeds $\sqrt{n \log n}$ the algorithm fails whp:

Theorem 6 (Spielman, Wang, W. '12) (sketch) If n large, $p \ge cn$, and the nonzero probability θ satisfies

$$\theta \ge \sqrt{\frac{\log n}{n}},\tag{1}$$

then the probability (in \mathbf{X}) that the algorithm correctly recovers one of the rows is at most n^{-C} .

Theory is almost tight in the sparsity level.

For denser X, think about different constraints.

Summary and open questions

Two main mathematical results:

Local recovery in the rectangular case Exact (global) recovery in the square case

Many open questions:

Past the \sqrt{n} barrier?

Noise tolerance, multiple vectors?

Other coefficient structures?

Dictionary Learning by ℓ^1 Minimization Thanks to ...

Local correctness of ℓ^1 -minimization for dictionary learning, Geng, W., Arxiv Exact recovery of sparse dictionaries, Spielman, Wang, W., COLT '12.