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Sparse Approximation 

Model:   

 

 

 

 

with                  sparse  - most of the           are zero. 
 

 

Good model for many types of imagery data, especially if we  

    can learn the dictionary                                         :  
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Motivating Applications (biased sample) 

Yang, W., Huang and Ma, TIP ‘10 

Single image superresolution: 

 

 

 
 

 

 

                     reconstruct the original high-resolution image      : 
 

      

      ownsample 



High-resolution hyperspectral imaging for cultural heritage:  

 

 

 

 

 

 

 

 

 
 

Can dictionary learning help overcome hardware limitations? 

Motivating Applications (biased sample) 

Kawakami, W., Tai, Ikiuchi, Matsushita, Ben-Ezra, CVPR ‘11 

Ultra high-res RGB camera 

   Moshe Ben-Ezra 

   Microsoft Research 
Buddhist Frescos 

  Dunhuang, China 

http://upload.wikimedia.org/wikipedia/commons/3/36/Anonymous-Describing_the_Doctrine_Under_a_Tree.jpg


When do dictionary  
   learning algorithms succeed? 

Huan Wang (Yale) Quan Geng (UIUC) Dan Spielman (Yale) 



The model problem 

D = L+ S

k column subspaces of  

Ambiguities:                       or                                            ? 

Peculiar geometry: 



When is dictionary learning well-posed? 

      k column  

subspaces of  
      k+1 points 

per subspace 

Solution is unique: 



When does a learned dictionary generalize? 

See also [Maurer and Pontil ’10]. 



How can we learn a good dictionary? 

Recently: Supervised variants [Mairal et. al. ‘08], structured dictionaries 

[Rubenstein et. al. ‘10], highly scalable variants [Mairal et. al. ‘10]  … and 

many, many more… 

 

      Alternating directions to minimize sparsity surrogate 

           [Engan et. al., ‘99,  Aharon et. al. ’05,  Yaghoobi ‘10] 

 



Is the desired solution a local minimum? 

For square     , under probabilistic assumptions on     ,      

               is a local minimum whp: 



Is the desired solution a local minimum? 

For general     , under probabilistic assumptions on     ,      

               is a local minimum whp: 



Is this obvious? 
Maybe … but surprisingly resistant to analysis … 



Is this obvious? 
Maybe … but surprisingly resistant to analysis … 



Is this obvious? 
Maybe … but surprisingly resistant to analysis … 

Have to analyze an        problem  

    over an affine space. 

 

 

RIP ect., fail here  

    ess. sign-permutation ambiguity 

 

 

Use ideas from low-rank recovery 

  [Gross ‘09], [Candes, Li, Ma, W. ’12]. 



Uniqueness – square dictionaries 

 Rows of       are sparse  

     vectors in a known subspace. 

If                       , then whp. rows of       are the  

    sparsest vectors in                 : 



Uniqueness – square dictionaries 

Theorem [Spielman, Wang, W. ‘11]:  

  Decomposition essentially unique from  

                     random observations.  

Theorem [Aharon, Elad, Bruckstein ‘05]:     

  Decomposition is essentially unique from 

                     strategically located observations.  
  

Overcomplete: 

Square: 



Algorithms – square dictionaries 

 Rows of       are sparsest  

     vectors in                 . 



Algorithms – square dictionaries 

 Rows of       are sparsest  

     vectors in                 . 



Algorithms – square dictionaries 

What choice of       will make                          ? 
 

 

 

Change variables                   : 

 

 

 

 

If                 , we’re golden …  

 

       Don’t have this; use                                   . 



Algorithms – square dictionaries 



Algorithms – square dictionaries 



If the expected nonzeros per column is smaller than 

   the algorithm succeeds whp: 

 

 

 

 

 

 

 

 

 

Sample requirement                          .  

Recovery guarantee – square dictionaries 



Does it really work? 

Caveat: exact sparse, noiseless setting. 



Good news / bad news … 

If the expected nonzeros per column exceeds                                 

   the algorithm fails whp: 

Theory is almost tight in the sparsity level.  

 

For denser      , think about different constraints.  



Summary and open questions 

Many open questions:  

 

      Past the        barrier? 
 

      Noise tolerance, multiple vectors? 
 

      Other coefficient structures? 

Two main mathematical results:  

 

Local recovery in the rectangular case 
 

Exact (global) recovery in the square case 



Dictionary Learning by        Minimization   
Thanks to … 

Huan Wang (Yale) Quan Geng (UIUC) Dan Spielman (Yale) 

Local correctness of      -minimization for dictionary learning, Geng, W., Arxiv 

Exact recovery of sparse dictionaries, Spielman, Wang, W., COLT ’12. 


