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Discrete Sobolev inequalities

Proposition (Sobolev inequality for discrete images)

Let X ∈ RN×N be zero-mean. Then√√√√ N∑
j=1

N∑
k=1

X 2
j ,k ≤

N∑
j=1

N∑
k=1

[
|Xj+1,k − Xj ,k |+ |Xj ,k+1 − Xj ,k |

]
or

‖X‖2 ≤ ‖X‖TV

Proposition (New! Strengthed Sobolev inequality)

With probability ≥ 1− e−cm, the following holds for all images
X ∈ RN×N in the null space of an m×N2 random Gaussian matrix

‖X‖2 .
[log(N)]3/2√

m
‖X‖TV
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Motivation: Image processing
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Images are compressible in discrete gradient
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Images are compressible in discrete gradient

We define the discrete directional derivatives of an image
X ∈ RN×N as

Xu : RN×N → R(N−1)×N , (Xu)j ,k = Xj ,k − Xj−1,k ,

Xv : RN×N → RN×(N−1), (Xv )j ,k = Xj ,k − Xj ,k−1,

and discrete gradient operator

∇X = (Xu,Xv ) ∈ RN×N×2
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Images are compressible in discrete gradient

In the phantom gradient, only 3% of pixel intensities are nonzero

The image `p-norm is ‖X‖p :=
(∑N

j=1

∑N
k=1 |Xj,k |p

)1/p
X is s-sparse if ‖X‖0 := {#(j , k) : Xj,k 6= 0} ≤ s

Xs = arg min{Z :‖Z‖0=s} ‖X − Z‖ is the best s-sparse approximation to X

σs(X ) = ‖X − Xs‖2 is the s-sparse approximation error
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Images are compressible in discrete gradient

For natural images:
σs(∇X ) = ‖∇X − [∇X ]s‖2 decays quickly in s

Other sparsity-promoting bases for images?
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Images are compressible in Wavelet bases

“Boats” image and its orthonormal bivariate Haar wavelet
transform

X =
N∑

j ,k=1

cj ,kh(j ,k) = H∗c, ‖X‖2 = ‖c‖2,

Figure: First few Haar basis functions h(j,k)

9



Images are compressible in Wavelet bases

Reconstruction of “Boats” from 10% of its Haar coefficients.

Image compression: X → HX → [HX ]s → H∗
(
[HX ]s

)
[Cohen, DeVore, Petrushev, Xu ′99 ]:

‖X −H∗[HX ]s‖2 ≤ C‖∇X‖1/
√

s
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Imaging via compressed sensing

If images are so compressible (nearly low-dimensional), do we really
need to know all of the pixel values of an image in the first place
for accurate reconstruction?
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Imaging via compressed sensing

1. Signal (or image) of interest f ∈ Rd

2. Measurement operator A : Rd → Rm.

3. Noisy Measurements y = Af + ξ.

y

 =

 A




f


+

ξ


4. Problem: Reconstruct f from measurements y
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Reconstructing image from compressed measurements
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Reconstructing image from compressed measurements

`1-minimization for sparse images [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g
‖g‖1 such that ‖Ag − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can recover the signal f stably:

‖f − f̂ ‖2 . ε+
‖f − fs‖1√

s
.
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Restricted Isometry Property

I A : Rd → Rm satisfies the Restricted Isometry Property (RIP)
when there is δ < c such that

(1− δ)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δ)‖f ‖2 whenever ‖f ‖0 ≤ s.

I Gaussian or Bernoulli measurement matrices satisfy the RIP
with high probability when

m & s log d .

I Random Fourier and others with fast multiply have similar
property: m & s log4 d .
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Sparsity in orthonormal basis B

`1-minimization

For orthonormal basis B, f = Bx with x sparse, from observations
y = Af + ξ one may solve the `1-minimization program:

f̂ = argmin
g∈Rd

‖B∗g‖1 subject to ‖Ag − y‖2 ≤ ε.

For B = H bivariate Haar transform, if A : Rd → Rs log(d)

‖f − f̂ ‖2 . ε+
‖f −H∗[Hf ]s‖1√

s
.
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Sparsity in gradient

If X is sparse in gradient, from observations y = AX + ξ one may
solve

Total Variation minimization

X̂ = argmin
Z∈RN×N

‖Z‖TV subject to ‖AZ −AX‖2 ≤ ε

‖X − X̂‖2 =?

Lower bound: ‖X − X̂‖2 . ε+ ‖∇X−[∇X ]s‖1√
s
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Error propagation from gradient to signal
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Gradient error versus signal error

1D mean-zero signals x ∈ RN : ‖x‖2 ≤ N‖∇x‖2

2D mean-zero images X ∈ RN×N : ‖X‖2 ≤ N‖∇X‖2
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Imaging via compressed sensing

Compare `1-Haar wavelet minimization and total-variation
minimization for recovering images X .

X̂Haar = argmin ‖HZ‖1 subject to ‖AZ −AX‖2 ≤ ε,

X̂TV = argmin ‖Z‖TV subject to ‖AZ −AX‖2 ≤ ε.
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Imaging via compressed sensing

(a) Original

(b) TV (c) Haar

Figure: Reconstruction using random matrix A : Rd → R.2d
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Imaging via compressed sensing
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Stable signal recovery using total-variation minimization

Theorem (Needell, W’ 12)

From m ∼ s log(d) RIP measurements y = A(X ) + ξ with
‖ξ‖2 ≤ ε and

X̂ = argmin
Z∈RN×N

‖Z‖TV such that ‖A(Z − X )‖2 ≤ ε,

the error satisfies

‖X − X̂‖TV . ‖∇X − [∇X ]s‖1 +
√

sε (gradient error)

and

‖X − X̂‖2 . log(N) ·
[‖∇X − [∇X ]s‖1√

s
+ ε
]

(signal error)

This error guarantee is optimal up to log(N) factor
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Strengthened Sobolev inequalities for random subspaces
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Discrete Sobolev inequalities
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Strengthened Sobolev inequalities

Proof ingredients:

1. [CDPX 99:] Denote the bivariate Haar wavelet coefficients of
X ∈ RN×N by c(1) ≥ c(2) ≥ · · · ≥ c(N2). Then

|c(k)| .
‖X‖TV

k

That is, the sequence is in weak-`1.

2. If Φ : Rd → Rm has (properly normalized) i.i.d. Gaussian
entries then with probability exceeding 1− e−cm, Φ has the
RIP of order s ∼ m

log d :

3

4
‖f ‖2 ≤ ‖Φf ‖2 ≤

5

4
‖f ‖2 for all

s-sparse f.
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Strengthened Sobolev inequalities: proof
Let Φ : Rd → Rm be a Gaussian matrix (d = N2).

Suppose that Ψ = ΦH∗ : Rd → Rm has the RIP of order 2s.

Suppose ΦX = 0

Decompose c = HX into s-sparse blocks c = cS0 + cS1 + cS2 + . . .

Then Ψc = ΦH∗HX = ΦX = 0 and

0 ≥ ‖Ψ(cS0 + cS1)‖2 −
∑
j≥2
‖ΨcSj‖2

(RIP of Ψ) ≥ 3

4
‖cS0 + cS1‖2 −

5

4

∑
j≥2
‖cSj‖2

(block trick) ≥ 3

4
‖cS0‖2 −

5/4√
s

∑
j≥1
‖cSj‖1

(c in weak `1) ≥ 3

4
‖cS0‖2 −

5/4√
s
‖X‖TV log(d/s)
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Strengthened Sobolev inequalities: proof

So

1. ‖cS0‖2 ≤ 1√
s
‖X‖TV log(d/s),

2. ‖c − cS0‖2 ≤ 1√
s
‖X‖TV (c is in weak `1)

Then

‖X‖2 = ‖c‖2 ≤ ‖cS0‖2 + ‖c − cS0‖2

≤ log(d/s)√
s
‖X‖TV

Proof is complete, because with probability 1− e−cm, RIP of ΦH∗
holds with s ∼ m/ log(d).
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Sobolev inequalities in action!

InView (Austin TX)

Figure: Short Wave Infrared Reconstruction from total-variation
minimization using m = .5N2 measurements
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Until the next time ...

1. Remove log factor in strengthened Sobolev inequality?

2. 1D strengthened Sobolev inequalities? (Numerics would
suggest yes ...)

3. Strengthened Sobolev inequalities for null spaces of partial
Fourier transforms? (Set-up for MRI imaging)

4. ...
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Thank you!
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