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Context

� Backbone of IP networks

� Traffic anomalies: changes in origin-destination (OD) flows 

� Failures, transient congestions, DoS attacks, intrusions, flooding
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� Motivation: Anomalies� congestion� limits end-user QoS provisioning

Goal : Measuring superimposed OD flows per link, identify anomalies 
by leveraging sparsity of anomalies and low-rank of traffic.



Model
� Graph G (N, L) with N nodes, L links, and F  flows (F >> L)

(as) Single-path per OD flow xf,t

Anomaly

� Packet counts per link l and time slot t
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Anomaly
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� Matrix model across T time slots
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Low rank and sparsity

� X: traffic matrix is low-rank [Lakhina et al‘04]

1

2

3

4
x 10

7
|x

f,
t|

4

� A: anomaly matrix is sparse across both time and flows 
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Objective and criterion

� Given and routing matrix  , identify sparse     when      is low rank

� R fat but  XR still low rank

� Low-rank � sparse vector of SVs � nuclear norm || ||* and l1 norm
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� Anomaly identification (ID)
� Change detection on per link time series [Brutlag’00], [Casas et al’10]
� Spatial principal component analysis (PCA) [Lakhina et al’04]
� Network anomography [Zhang et al’05]

Prior art

� Suboptimal ID of anomalies across flows and time
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� Rank minimization with the nuclear norm [Recht-Fazel-Parrilo’10]

� Matrix decomposition [Candes et al’10], [Chandrasekaran et al’11]

� Principal Components Pursuit (PCP)



Challenges and importance

� not necessarily sparse and fat � PCP not applicable

� LT + FT >> LT Seriously
underdetermined

7

� Important special cases

� R = I : matrix decomposition with PCP
� X = 0 : compressive sampling with basis pursuit
� R = I and A = 0 : PCA

XR A Y
underdetermined



Exact recovery 

� Noise-free model:
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Q: Can one recover sparse and low-rank exactly?

� Both rank( ) and support of generally unknown

A: Yes! Under certain conditions on



Identifiability
Y = XR,0+ RA0 = XR,0 + RH + R(A0 - H)

X’R,0 A’ 0

� ,

� Problematic cases

� but low-rank and sparse
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� Sparsity-preserving matrices RH

� For and r = rank(XR,0), low-rank-preserving matrices RH



Incoherence measures ΩR

θ=cos-1(µ)

Ф

� Identifiability requires �� ,

� Incoherence among columns of R � ,
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� Incoherence between XR,0 and R

� Exact recovery requires ,



Main result

Theorem :  Given     and    , if every row and column of       has at most      
k non-zero entries and       has full row rank, then
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M. Mardani, G. Mateos, and G. B. Giannakis,``Unveiling network anomalies across flows
and time via sparsity and low rank," IEEE Trans. Information Theory, 2012 (submitted).

imply  Ǝ for which (P1) exactly recovers



Intuition

� Exact recovery if

� r and s are sufficiently small

� Nonzero entries of A0 are “sufficiently spread out”

� Columns and rows of X0 not aligned with canonical basis
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� R behaves like a “restricted” isometry

� Interestingly
� Amplitude of non-zero entries of A0 irrelevant
� No randomness assumption

� Satisfiability for certain random ensembles w.h.p



Validating exact recovery

� Setup
L=105, F=210, T = 420
R ~ Bernoulli(1/2)
XR = RWZ’, W, Z ~ N(0, 104/FT)

aij ϵ {-1,0,1} w. prob. {ρ/2, 1-ρ, ρ/2}
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� Relative recovery error

% non-zero entries (ρρρρ)
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Centralized algorithm

� Accelerated proximal gradient method for [Lin et al’09]

� Idea: minimize a sequence of overestimates of (P1)

Separable
wrt X and A

1414

� Intelligent choice of T[k] and t[k]

� Converges fast with accuracy O(1/k2)  [Nesterov’83]

wrt XR and A



Thresholded updates
� Traffic matrix update

Singular-value
thresholdingSol. 

� Anomaly matrix update
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� Low rank XR[k+1] and sparse A[k+1]

Soft thresholding

Sol. 
S
τ
(x)

τ

� Anomaly matrix update



Benchmark: PCA-based method

� Idea: anomalies increase considerably rank(Y)

Algorithm [Lakhina et al’04] 
i) Form subspace S via r-dominant left singular vectors of Y (resp. Sc )

ii) Test:                                ,  for t = 1, … ,T
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� Limitations
� Unable to identify flows

� Assumes knowledge of rank(XR)

σi(X)

Index i

-----Y
-----XR



Synthetic data
� Random network topology

� N=20, L=108, F=360, T=760
� Minimum hop-count routing
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PCA-based method, r=5
PCA-based method, r=7
PCA-based method, r=9
Proposed method, per time and flow

Pf=10-4

Pd = 0.97

---- True
---- Estimated



Real data
� Abilene network data 

� Dec. 8-28, 2008
� N=11, L=41, F=121, T=504
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Pf = 0.03
Pd = 0.92
Qe = 27%
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r=1, PCA-based method
r=2, PCA-based method
r=4, PCA-based method
Proposed, per time and flow



Concluding summary
� Exact recovery of low-rank plus compressed matrices

� Important task of network anomaly detection

� Detailed discussion

� Identifibaility and exact recovery
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� Distributed optimization with missing data


