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Motivation For Subspace Clustering

● N-view feature-based motion segmentation
● 2-view feature-based motion segmentation
● Face clustering



  

2-View Motion Segmentation

● In this problem, one has two images of a dynamic 3D scene, taken at 
different times.

● The scene has multiple rigid objects, moving independently.

● We are given the locations of certain “features” in each image. A pair of 
locations for a single feature is called a “point correspondence”.



  

2-View Motion Segmentation

● We want to cluster the point correspondences (or, equivalently, 
cluster the features) according to which rigid objects the are 
from.



  

A Few Proposed Solutions to this Problem

● Optical Flow Segmentation (starting around 1985)

● Expectation Maximization (algorithm formalized in 1970's)

● Multi-Body Fundamental Matrix (starting around 2002)

● Subspace Clustering Approaches

● SSC (2009)
● SCC (2009)
● SLBF (2010)
● Many Others ...



  

One Formulation Using Subspace 
Clustering



  

The Fundamental Matrix

● If we have a set of point correspondences from 
a single rigid object, there exists a matrix:

called the Fundamental Matrix, s.t. if                   
is a point correspondence from the object, with  
   and     represented in standard homogeneous 
coordinates, then:



  

● This is equivalent to:

where:

● The vector    is a function only of the point 
correspondence          and is thought of as a 
nonlinear embedding of that pair into    .



  

● If we perform this “Kronecker Embedding” on all point 
correspondences, then there is a single vector,          , 
which is orthogonal to all embedded points. Thus, the 
embedded point correspondences lie in a subspace of 
dimension 8 or less.

● Subspaces can have dimension less than 8.

● If there are several objects, each gives rise to its own 
subspace.



  

2 views of a dynamic 
3D scene, with point
correspondences.

Point correspondences 
mapped into      via the 
Kronecker embedding 
(shown projected onto 
3rd, 4th, and 5th princ. 
comps)

Visualization of the Kronecker Map



  

Issues for Subspace Clustering Solutions

● Subspaces of mixed dimensions.

● Subspaces of unknown dimensions.

● Unpleasantly distributed data within subspaces.

● Local lower-dimensional structure within subspaces.



  

Global Dimension Minimization (GDM)

● GDM is a new subspace clustering method.

● It is a “global” method. This makes it better at handling 
non-isotropic distributions of points, and at handling 
lower-dimensional manifold structure within 
subspaces.

● GDM can handle mixed and unknown dimensions.



  

Intuition

● Imagine we have access to an oracle, who will provide a 
reliable “dimension estimate” for any set of points.

● Consider a simple data 
set in    , without any 
noise or outliers. 
Assume the data is 
contained in the union 
of a plane and a line



  

Intuition

● Consider a random 
partition of the data into 
2 sets (called the red 
set and the blue set).



  

Intuition

● Consider a random 
partition of the data into 2 
sets (called the red set 
and the blue set).

● Ask the oracle to estimate 
the dimension of each set.

Red Set Blue Set

Dim Estimate ≈3 ≈3

Total Dimension

≈6



  

Intuition

● Now consider a 
partition which is close 
to perfect, but with a 
few errors.

Red Set Blue Set

Dim Estimate ≈2 ≈3

Total Dimension

≈5



  

Intuition

● Now consider a partition 
which is very close to 
perfect (1 error).

Red Set Blue Set

Dim Estimate ≈2 ≈2

Total Dimension

≈4



  

Intuition

● Now consider the 
“correct partition”.

Red Set Blue Set

Dim Estimate ≈1 ≈2

Total Dimension

≈3



  

Intuition

● “Total Dimension” is defined to equal the sum of the 
estimated dimensions of all sets in a partition.

● It seems that the best way to shrink total dimension is 
to group together points which come from the same 
underlying subspace.



  

A Theorem About Total Dimension

:

Subspaces are said to be “independent” if the sum of their dimensions equals the dimension 
of their union.

This theorem has little practical value – total dimension does not behave well when we have 
noisy data. We will see a better result later.



  

What is the next step to apply this idea?



  

What is the next step to apply this idea?

● Develop a way of reliably estimating the 
dimensionality of a set on our own.

● There are many solutions to dimension 
estimation. We will introduce a new 
concept: Empirical Dimension



  

Empirical Dimension
● Empirical Dimension is a way of estimating the dimensionality of a set based on 

singular values.

● Suppose we want to estimate the dimension of the set of vectors:

we stack these vectors into a matrix:

● Let      denote the vector of singular values of     .

● For a fixed                define the “empirical dimension” of the set of vectors to be:



  

Empirical Dimension

● Empirical Dimension enjoys the following properties:

● Scale invariance

● Invariant under rotations of space

● If                      are contained in a    -subspace then 

● If                      are sampled from a spherically 
symmetric distribution in a    -subspace then

Insert Math



  

Empirical Dimension

● We defined an entire class of dimension estimators: one 
for each 

● What effect does    have on the behavior of the estimator?

● It turns out that    is a dial for tuning the “strictness” of the 
dimension estimator

● This is best demonstrated visually...



  

Empirical Dimension



  

Empirical Dimension - Summary

● Empirical dimension provides an estimate of the 
dimensionality of a set.

● This estimate is a continuous function of the input vectors.

● We can “tune” empirical dimension, via a single parameter 
(  ), so as to make it more or less “strict”.



  

Back to Total Dimension

● Now that we have a way of estimating the dimension 
of a set, we re-define total dimension:

Here,       is the “empirical dimension” of the i'th set in 
the partition    .

● To perform subspace clustering, one would want to 
find the partition with lowest total dimension.



  

Does the “Natural Partition” Actually Minimize 
Total Dimension in the Real World?

● If the absence of noise, and when dealing with independent 
subspaces (i.e. high ambient dim.) then yes.

● If we have low ambient dimension, then our subspaces will not 
be independent.

● Noise will inflate the empirical dimension of any set. This can 
have undesirable effects on Total Dimension.

● Either of the above situations can result in degenerate partitions 
having lower total dimension than the natural partition.
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The Problem With Noise and Total Dimension

Noise Free Case:

     (set 1)      (set 2) Total Dim

Natural 
Partition

1 1 2

Degenerate 
Partition

2 2

Noisy Case:

     (set 1)      (set 2) Total Dim

Natural 
Partition

1.3 1.3 2.6

Degenerate 
Partition

2.3 2.3



  

Global Dimension



  

Global Dimension

Optimization objective for Total Dimension: Find a partition with K sets, such that each set 
has low empirical dimension. You may increase the dimension on one set, so long as your 
modification decreases the dimension of another set by at least that much.

Optimization objective for Global Dimension (p large): Find a partition with K sets, such that 
the maximum dimension of all sets in your partition is as low as possible. If there are 
decisions to make which don't effect the dimension of the “largest” set, then make those 
decisions so as to minimize the dimensions of the other sets.



  

Global Dimension

Theorem:

Consider a data set sampled from a mixture of K distinct, non-degenerate measures on
d-subspaces, with each subspace sufficiently represented. Then, there exists p large 
enough that, amongst partitions of the data set into K or fewer sets, the natural partition is 
almost surely the unique minimizer of GD.



  

Global Dimension

● Global Dimension (large p) is far more robust to noise than Total Dimension.
● Global Dimension (large p) works when our subspaces are not independent.

● How large should we make p?
● As large as we can without causing numerical problems.
● In practice, p=15 seems large enough, and does not cause problems.



  

Minimizing Global Dimension

● Now that we have an objective function, how do we minimize it?

● The domain is the set of all partitions of a data set. This is a 
discrete domain.

● 0th-order methods (Genetic Algorithms) can be applied, but 
these are very slow.



  

Global Dimension Minimization (GDM)

● GDM is a 1st-order method, based on the gradient projection 
algorithm. Several problems must be solved to make this 
approach possible:

● Step 1: Extend/Reformulate the problem so that GD is a smooth 
function, defined on a convex domain.

● Step 2: Find a fast way of computing the gradient of GD.

● Step 3: Find a way of projecting an arbitrary state into the 
domain of optimization.

● Step 4: Solve the step-size problem.

● Step 5: Establish Convergence Criteria.
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Extending Global Dimension

● This is accomplished through the use of “fuzzy assignment”

● Instead of assigning each point a label, associating it with a 
single cluster, we assign each point a probability vector.

● This vector holds the strength of the points affiliation with 
each cluster.

● Each point belongs to each cluster, but in different amounts.
● The fuzzy assignment is stored in a matrix     , called the 

membership matrix. Column i of this matrix holds the 
assignment probability vector for point i.



  

Extending Global Dimension

● In the original formulation, to estimate the dimension of the “k'th 
set in the partition”, we would select only those vectors which 
were assigned to set k and compute their empirical dimension.

● Now, we take every vector, and scale it by its membership 
strength to cluster k, and compute the empirical dimension of 
this set of scaled vectors.



  

Extending Global Dimension

● If we add 0 to a set of vectors, it does not effect the (true) empirical 
dimension of that set.

● If we consider a fuzzy partition where each point is fully assigned to a 
single set, then each point is fully expressed in the appropriate set, 
and it has the effect of appending 0 to all other sets.

● Thus, this extended definition agrees with our original definition when 
dealing with a “hard assignment” of the data set. This is therefore an 
extension of the first definition of global dimension.



  

Extending Global Dimension

● With our new definition, Global dimension is a (mostly) differentiable 
function of the members of the membership matrix.

● The domain of optimization is the set of all possible membership 
matrices. Since each column is a probability vector, this set can be 
viewed as the Cartesian product of N K-dimensional probability 
simplexes. This is a convex domain!

● The problem is now appropriate for gradient projection optimization.



  

Differentiating Global Dimension
● The gradient of Global Dimension can be computed (Theorem):

Let                              be the thin SVD of      , the data matrix scaled 
by each vectors association with set k. Let      be the diagonal of       .

● Let                        and define:

● Then, the derivative of Global Dimension with respect to an arbitrary 
element of      is given by:



  

Overview of GDM

● Initialize the membership matrix (randomly or smartly)

● Do until convergence:

● Compute gradient of GD.

● Take a small step in direction                    .

● Project new state back into domain of optimization.

● Threshold the membership matrix and extract “hard assignment”.

Global dimension is a non-convex function - we are not guaranteed to converge to the 
correct state. Therefore:

● Clever initialization can be very helpful.
● We can improve reliability by running the algorithm several times and returning the 

best of all runs (as determined by global dimension).



  

Example on Synthetic Data

Date set sampled from a 
union of 3 subspaces:
● 1 line
● 2 planes

Heavy Gaussian noise 
added to every sample.

● See Video!



  

Example on Synthetic Data

Final State:
Before Thresholding



  

Example on Synthetic Data

Final State:
After Thresholding



  

Results on Real 2-View Data

SCC GDM MAPA

Results on File #6 of RAS Dataset

The “RAS” dataset consists of 13 two-view sequences. Most scenes 
contain multiple rigid or approximately rigid objects, moving independently

The dataset provides pre-tracked point correspondences for each 
sequence. Outliers were removed for this experiment.

Each point correspondence was mapped into      via the Kronecker 
embedding. Various HLM techniques were applied to try and segment the 
embedded data. Other methods were also applied for comparison.



  

Results on Real 2-View Data



  

Thank You!
Bryan Poling
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