
The Fast Fourier Transform (FFT)

Gilad Lerman
Notes for Math 5467

1 FFT for signals

We recall that the DFT of a signal xM = (x(0), . . . , x(M − 1)) ∈ CM has the
form

x̂M(n) =
M−1∑
k=0

xM(k)e
−2πikn
M =

M−1∑
k=0

xM(k)W kn
M ,

where
WM = e

−2πi
M .

It can be evaluated directly in O(M2) computations. Indeed, for each
n = 0, . . . ,M − 1, there are M − 1 additions and M multiplications involved
in computing x̂(n). In addition, there are M − 2 multiplications involved in
computing W 2

M , . . . ,WM−1
M and a constant CM required to compute WM , so

(2M − 1)M + M − 2 + CM = O(M2) computations. We will not distinguish
here between the cost of computing products or additions of numbers, even
though they are complex.

Cooley and Tukey have proposed in 1965 an O(M logM) algorithm for
computing the DFT of a signal in CM , where M = 2m (see [2, 3, 1] for
the history of this algorithm). It applies a “divide and conquer” strategy
by dividing recursively the signal into two signals with half of that length
containing its even and odd indices respectively. That is, the basic step of
their algorithm decomposes X2L ∈ C2L, where L = M/2,M/4, . . . , 1, into
the signals Xeven

L and Xodd
L in CL as follows:

Xeven
L (`) = X2L(2`), ` = 0, . . . , L− 1,

Xodd
L (`) = X2L(2` + 1), ` = 0 . . . , L− 1.

This division has the following property:

1

Lemma 1.1. If L ∈ N, then for all n = 0, . . . , L− 1,

X̂2L(n) = X̂even
L (n) + X̂odd

L (n)W n
2L, (1)

and
X̂2L(n + L) = X̂even

L (n)− X̂odd
L (n)W n

2L. (2)

We denote the number of operations needed to calculate the DFT of a
signal in CL by #L. A direct consequence of Lemma 1.1 is the following
proposition.

Lemma 1.2. If L ∈ N, then given the numerical value of W2L

#(2L) ≤ 2 ·#L + 4L.

This lemma now leads to the main theorem.

Theorem 1.1. If M = 2m, where m ∈ Z, m ≥ 0, and CM is the number of
operations required to calculate WM , then

#M ≤ 2M log2M + CM . (3)

We will prove the above propositions in order.

Proof of Lemma 1.1. For n = 0, . . . , L− 1

X̂2L(n) =
2L−1∑
k=0

X2L(k)W kn
2L

=
2L−1∑
k=0
k=2`

X2L(k)W kn
2L +

2L−1∑
k=0

k=2`+1

X2L(k)W kn
2L

=
L−1∑
`=0

X2L(2`)W 2`n
2L +

L−1∑
`=0

X2L(2` + 1)W 2`n
2L W n

2L

=
L−1∑
`=0

Xeven
L (`)W 2`n

2L +
L−1∑
`=0

Xodd
L (`)W 2`n

L W n
2L

= X̂even
L (n) + X̂odd

L (n)W n
2L. (4)

2

In order to obtain (2) from (4), we use the fact that X̂even
L and X̂odd

L are
L-periodic, i.e., for n = 0, . . . , L− 1:

X̂even
L (n + L) = X̂even

L (n) and X̂odd
L (n + L) = X̂odd

L (n)

as well as
WL

2L = −1 .

Proof of Lemma 1.2. We compute X̂2L(n), n = 0, . . . , 2L − 1, following the
formulas of Lemma 1.2. We note that we need to compute X̂even

L (n) and
X̂odd
L (n) for all n = 0, . . . , L−1, and that this computation requires 2·#L op-

erations. We then need to compute W 2
2L, . . . ,W

L−1
2L via L−2 multiplications.

We also have L multiplications (computing X̂odd
L (n)W n

2L, for n = 0, . . . , L−1),
L− 1 additions of (1) and L− 1 subtractions of (2). Therefore,

#(2L) ≤ 2 ·#L + 4L− 2 ≤ 2 ·#L + 4L . (5)

Proof of Theorem 1.1. The idea of the algorithm is to take the signal of
length M = 2m and recursively divide it into its odd and even components
of half length. We assume that WM ≡ W2m is given. We then compute the
FFT in bottom-up procedure, applying (1) and (2).

We note that WM/2, WM/4,, W2, W1 are computed during this recursive
procedure and accounted for in the estimate provided by Lemma 1.2. Indeed,
at the last level of the computation, where the FFT of the full signal (of
length M) is computed according to the FFTs of the even and odd signals
of lengths M/2 (following (1) and (2)), the algorithm computes W n

M , n =
0, . . . ,M/2 − 1. The values of W n

M , n = M/2, . . . ,M − 1 are obtained by

multiplying by −1 those values respectively (since W
M/2
M = −1). Moreover,

we note that
WM/2q = W 2q

M = for q = 1, . . . ,m.

Therefore, assuming that WM has been computed, the algorithm has com-
puted the values of WM/2q for 1 ≤ q ≤ m and they have been accounted in
the operation count of Lemma 1.2 (for L = M/2).

Next, we prove (3). Given the value of WM (costing CM operations), we
only need to verify that

#M ≤ 2M log2M. (6)

3

We prove it by induction, which we relate to the general scheme of the
algorithm as follows. For arbitrarily fixed M = 2m, we let q = 0, . . . ,m
denote the different levels of the algorithm from bottom to top. That is,
q = 0 is the bottom level of M signals of length 1 and q = m is the top level
with one signal of length M . So the qth step of the induction estimates the
number of operation for any arbitrary signal of length 2q out of the M/2q

signals at level q (so eventually for level q = m (7) is obtained). That is, we
will show that

#L ≤ 2L log2 L for L = 2q, q = 0, . . . ,m. (7)

For q = 0, L = 1 and
x̂1(0) = x1(0).

No operations are needed to compute the DFT in that case and indeed 2 ·
L log2 L = 2 · 1 · log2 1 = 0.

Assume that the formula is true for L = 2q−1. We will verify it for
L′ = 2L = 2q. By applying Lemma 1.1 (while using the remark above that
W2q is known for all q = 0, . . . ,m since WM is known) and the induction
assumption we obtain that

#L′ = #(2L) ≤ 2#L + 4L

= 2 · 2 · L log2 L + 4L = 4L(log2 L + 1)

= 4 · 2q−1 · (q − 1 + 1) = 2 · 2q · q
= 2 · L′ · log2 L

′

2 FFT for Images

We recall that if x ∈ CM1×M2 indexed by x(k1, k2), where 0 ≤ k1 ≤ M1 − 1
and 0 ≤ k2 ≤M2 − 1, then

x̂(n1, n2) =

M1−1∑
k1=0

M2−1∑
k2=0

x(k1, k2)e
−2πi(k1n1

M1
+
k2n2
M2

)

We denote

x̂(n2 | k1) =

M2−1∑
k2=0

x(k1, k2)e
− 2πik2n2

M2 ,

4

and note that

x̂(n1, n2) =

M1−1∑
k1=0

x̂(n2 | k1)e−
2πik1n1
M1

Therefore, in order to compute x̂(n1, n2), for n1 = 0, . . . ,M1 − 1 and n2 =
0, . . . ,M2− 1, we compute x̂(n2 | k1), n2 = 0, . . . ,M2− 1, k1 = 0, . . . ,M1− 1
in O(M1M2 log2M2) operations, using the FFT of one-dimensional signals.
We then compute the FFT of the signals x̂(n2 | k1), k1 = 0, . . . ,M1 − 1,
for all n2 = 0, . . . ,M2 − 1 in O(M2M1 log2M1) operations. Thus the total
amount of computation is O(M1M2 log2(M1M2)).

References

[1] J. W. Cooley. The re-discovery of the fast fourier transform algorithm.
Microchimica Acta, 93(1-6):33–45, 1987.

[2] J. W. Cooley, P. A. W. Lewis, and P. D. Welch. Historical notes on the
fast fourier transform. Proceedings of the IEEE, 55(10):1675–1677, Oct
1967.

[3] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the his-
tory of the fast fourier transform. Archive for History of Exact Sciences,
34(3):265–277, 1985.

5

