The Fourier Transform and Its Properties

If $f \in L_1(\mathbb{R})$, where $f : \mathbb{R} \to \mathbb{C}$, we defined its Fourier transform as follows

$$F(f) \equiv \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$$

It is possible to extend it to other spaces of functions (different than $L_1(\mathbb{R})$).

If $f \in L_1(\mathbb{R})$ we denote

$$F^{-1}(f) \equiv \check{f}(\xi) = \hat{f}(-\xi) = \int_{-\infty}^{\infty} f(x)e^{2\pi i x\xi} dx$$

We will show that if both $f \in L_1(\mathbb{R})$ and $\hat{f} \in L_1(\mathbb{R})$, then

$$\check{f} = \hat{f} = f \,.$$

We recall the following definitions of convolution and correlation of functions $f, g : \mathbb{R} \to \mathbb{C}$ in $L_1(\mathbb{R})$:

$$f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy$$
$$f \diamond g(x) = \int_{-\infty}^{\infty} f(x + y)\overline{g(y)}dy$$

Here are some basic properties of the Fourier transform:

Concept	Change in f	Corresponding FT
Linearity	$\alpha_1 f_1 + \alpha_2 f_2$	$\alpha_1 \hat{f}_1 + \alpha_2 \hat{f}_2$
Shift	$f(x-x_0)$	$e^{-2\pi i \xi x_0} \hat{f}(\xi)$
modulation	$f(x) e^{2\pi i \xi_o x}$	$\hat{f}(\xi-\xi_0)$
conjugation	$\overline{f(x)}$	$\overline{\hat{f}(-\xi)}$
reflection	f(-x)	$\hat{f}(-\xi)$
reflection $+$ conjugation	$\overline{f(-x)}$	$\overline{\widehat{f}(\xi)}$
convolution	f * g	$\hat{f}\hat{g}$
multiplication	$f \ g$	$\hat{f} st \hat{g}$
correlation	$f\diamond g$	$\hat{f}ar{\hat{g}}$
multiplication with conjugate	$far{g}$	$\hat{f}\diamond\hat{g}$
scaling with $a \in \mathbb{R}$	f(ax)	$rac{1}{ a }\hat{f}\left(rac{\xi}{a} ight)$
Fourier of Fourier	$\hat{f}(x)$	$f(-\xi)$
derivative	f'(x)	$(2\pi i\xi)\hat{f}(\xi)$
n-th derivative	$f^{(n)}(x)$	$(2\pi i\xi)^n \hat{f}(\xi)$
multiplication by x	xf(x)	$rac{i}{2\pi}rac{d\hat{f}(\xi)}{d\xi}$
multiplication by x^n	$x^n f(x)$	$\left(\frac{i}{2\pi}\right)^n \frac{d^n \hat{f}(\xi)}{d\xi^n}$

Concept	Property of f	Corresponding FT
Fourier of real	f is real	$\overline{\hat{f}(\xi)} = \hat{f}(-\xi)$ real part even, imaginary part odd
Fourier of imaginary	f is imaginary	$\hat{f}(-\xi) = -\overline{\hat{f}(\xi)}$ real part odd, imaginary part even
Even	f is even	\hat{f} is even $(\hat{f}(\xi) = \hat{f}(-\xi))$
Odd	f is odd	\hat{f} is odd $(\hat{f}(\xi) = -\hat{f}(-\xi))$
$\operatorname{Real} + \operatorname{even}$	f is real and even	\hat{f} is real and even
Real + odd	f is real and odd	\hat{f} is imaginary and odd
Imaginary + odd	f is imaginary and odd	\hat{f} is real and odd
Imaginary + even	f is imaginary and even	\hat{f} is imaginary and even
	•,	

If $f \in L_2(\mathbb{R})$ we can write

$$\hat{f}(\xi) = \lim_{R \to \infty} \int_{|x| < R} f(x) e^{-2\pi i x \xi} dx.$$

We have Parseval's Theorem:

$$\int f(x)\overline{g}(x)dx = \int \widehat{f}(\xi)\overline{\widehat{g}(\xi)}d\xi,$$

and in particular

$$||f||_2 = \int |f(x)|^2 dx = \int |\hat{f}(\xi)|^2 d\xi = ||\hat{f}||_2.$$

Also,

$$\int f(x)\hat{g}(x)dx = \int \hat{f}(x)g(x)dx.$$

We defined the class of Schwartz functions as follows. A function $f : \mathbb{R} \to \mathbb{C}$ is said to be rapidly decreasing if for every integer N, there exists a constant C(N) such that

$$|f(x)| \le \frac{C(N)}{|x|^N}$$
 for all $x \in \mathbb{R}$.

The Schwartz class \mathcal{S} is the set of all functions $f \in C^{\infty}(\mathbb{R})$ such that f and all of its derivatives are rapidly decreasing. The Fourier transform is an invertible mapping from \mathcal{S} onto \mathcal{S} and an isometry in the L_2 norm on \mathcal{S} .

Heisenberg's Uncertainty Principle: If $f \in L_2(\mathbb{R})$ and $\int_{-\infty}^{\infty} |f(x)|^2 dx = 1$, then for every $x_0, \xi_0 \in \mathbb{R}$:

$$\left(\int_{-\infty}^{\infty} (x-x_0)^2 |f(x)|^2 dx\right) \left(\int_{-\infty}^{\infty} (\xi-\xi_0)^2 |\hat{f}(\xi)|^2 d\xi\right) \ge \frac{1}{16\pi^2}$$

and equality holds if and only if $f(x) = \sqrt{\frac{2B}{\pi}} e^{-Bx^2}$ for any B > 0.