Practice Problems 1

Math 5467

1. Basic Concepts of Digital imaging

Solve problems 2.9 and 2.10 of the textbook. In 2.10: "resolution of 1125 horizontal TV lines interlaced..." means "there are 1125 pixels in the vertical direction".

2. Linear Algebra Review

You may solve only 2 out the following 3 questions.
a) Prove that if A is an $n \times n$ (real) symmetric matrix, then there exists an $n \times n$ (real) orthogonal matrix U and $n \times n$ (real) diagonal matrix D, such that $A=U \cdot D \cdot U^{T}$.
b) Given

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

plot the regions

$$
\left\{A x \mid x \in \mathbb{R}^{2} \text { and }\|x\|_{2}=1\right\},
$$

and

$$
\left\{A x \mid x \in \mathbb{R}^{2} \text { and }\|x\|_{2} \leq 1\right\} .
$$

Explain your solution.
c) Let A be an $m \times n$ matrix with elements $\left\{a_{i, j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n}$; express the quantity $\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i, j}^{2}$ as a function of the eigenvalues of the matrix $A \cdot A^{T}$.

3. Basic Matlab for Images

Report your work by printing your Matlab commands and output.
a) Load a color image (any of your favorite which is appropriate to hand in...) having more than 512 pixels in both rows and columns. Create a corresponding 512×512 gray-level image out of it (there are many ways of doing it).
b) Draw a 3-D graph of the function corresponding to the image (use the commands meshgrid and meshc).
c) By manipulating the associated matrix create an up-side-down as well as left-to-right corresponding images.
d) Subsample the image by a factor of 2 , five times, i.e., by factors of $2,4, \ldots, 32$, and show the resulted images in one figure (use the subplot command).

4. Computing the Singular Value Decomposition and the Pseudo-inverse

a) Let A be the 1000×2 matrix satisfying the following conditions:

$$
(A)_{i, j}= \begin{cases}1 & \text { if } j=1 \tag{1}\\ 2 & \text { if } j=2 \text { and } i \text { is odd } \\ 0 & \text { if } j=2 \text { and } i \text { is even }\end{cases}
$$

Compute directly the thin SVD of A (do not use Matlab, but you may use calculator to approximate the irrational numbers; also no need to specify all numbers of the matrix U, but just provide a formula for computing them).
b) Use Matlab to compute the thin SVD and print the matrices S and V only. If they are different than yours, then explain whether the differences are acceptable.
c) Describe the following set in \mathbb{R}^{1000} :

$$
\left\{A x \mid x \in \mathbb{R}^{2}, \quad\|x\|_{2}=1\right\} .
$$

d) Using the appropriate formulas and your answer above (not Matlab), describe the pseudo-inverse of the 1000×2 matrix defined in equation (1); your description could be formulated in a similar way to that of A in equation (1).
e) Use Matlab to verify your answer of part d) and print your commands and short output (do not print the pseudo-inverse). Guide: compare the norms of Matlab's output and your output; you may use the command pinv to compute the pseudo-inverse.

5. Least Squares Solutions of Linear Systems

a) If A is the matrix defined in equation (1) and b and c are $1000 * 1$ vectors whose elements are

$$
b_{i}= \begin{cases}2 & \text { if } i \text { is odd, } \\ 4 & \text { if } i \text { is even },\end{cases}
$$

and

$$
c_{i}= \begin{cases}1 & \text { if } i=1 \bmod 4, \\ 2 & \text { if } i=2 \bmod 4, \\ 3 & \text { if } i=3 \bmod 4, \\ 4 & \text { if } i=0 \bmod 4 .\end{cases}
$$

Find the least squares solutions of the systems $A \cdot x=b$ and $A \cdot x=c$ (do not use Matlab, but solve by hand).
b) If x is the least squares solution of $A \cdot x=b$, find the l_{2} distance of $A \cdot x$ from b. Similarly, if x is the least squares solution of $A \cdot x=c$, find the l_{2} distance of $A \cdot x$ from c (do not use Matlab, but solve by hand).
c) Use Matlab to verify your answers for both parts and print the output (you may use the command regress).

6. Bonus Problem: On a Property of Singular Values

This is a bonus problem, you do not need to submit it.
We denote by $\sigma_{i}(B)$ the i-th singular value of B (sorted in descending order). Prove that if A_{1} and A_{2} are $m \times n$ matrices, then for all i and j in \mathbb{N} :

$$
\sigma_{i+j-1}\left(A_{1}+A_{2}\right) \leq \sigma_{i}\left(A_{1}\right)+\sigma_{j}\left(A_{2}\right) .
$$

