Practice Problems 3

Math 5467

1. Spatial Filters in Practice

Choose your favorite image and use the Matlab commands fspecial, imfilter and imshow to create the following enhancements:
a) Apply $3 \times 3,5 \times 5,10 \times 10$, and 20×20 averaging to the image.
b) Apply Gaussian filters, with various mask sizes and choices of σ.
c) Apply 3×3 Laplacian filters, with various choices of the parameter α.
d) Apply Laplacian of Gaussian filters with various mask sizes.
e) Apply the Sobel filter for differentiating both in the x and y direction. Then apply filters corresponding to both l_{1} and l_{2} norms of the gradient.
f) Choose one filter from the ones you used in part c) and one from part d). For each one of those filters apply a high-boost filter with two choices of the parameter k (note that $k=1$ coincides with the filter unsharp).

2. Properties of the Fourier Transform

Assume that f is a function in $L_{1}(\mathbb{R})$ (or in the Schwartz space $\mathcal{S}(\mathbb{R})$ if you prefer). Establish the following properties.
a) $\widehat{f(x+h)}=\hat{f}(\xi) e^{2 \pi i h \xi}$.
b) $f\left(\widehat{x) e^{-2 \pi} i x h}=\hat{f}(\xi+h)\right.$.
c) $\widehat{f(\delta x)}=\delta^{-1} \hat{f}\left(\delta^{-1} \cdot \xi\right)$.
d) Formulate the analogs of the above properties for a function $f \in L_{1}\left(\mathbb{R}^{2}\right)$.

3. More Properties of the Fourier Transform

You may solve only 4 of the next following 5 subquestions.
Assume that f is a function in the $\operatorname{Schwartz~space~} \mathcal{S}(\mathbb{R})$ (or any reasonable space where you can prove the following identities).
a) Prove that $\widehat{f^{\prime}(x)}=2 \pi i \xi \hat{f}(\xi)$.
b) Prove that $-\widehat{2 \pi i x f}(x)=\frac{d \hat{f}(\xi)}{d \xi}$.
c) Formulate an analog of the above two properties when replacing $f^{\prime}(x)$ by $f^{(n)}(x)$, the n-th
derivative of $f(x)$ in part a) above and when replacing the derivative of $\hat{f}(\xi)$ by its n-th derivative in part b) above.
d) Show that if $f \in \mathcal{S}(\mathbb{R})$, then $\hat{f} \in \mathcal{S}(\mathbb{R})$. Hint: use your result in part c).
e) Formulate the analogs of the above properties for a function $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$

4. Computation of the Continuous Fourier Transform

Let a be a real positive number. Compute 3 of the Fourier transforms of the following 4 functions (in parts 2 and 4 you need to compute the Fourier transform in two different ways):

1. $f(x)=\chi_{[-a, a]}(x)$, where $\chi_{[-a, a]}$ is the indicator function obtaining the value 1 on the interval $[-a, a]$ and 0 outside it.
2. $f(x)=(1-|x / a|) \chi_{[-a, a]}(x)$. Compute the Fourier transform of this function in two different ways. First, by direct calculation. Second, by expressing this function as $g * g$ for some function g (verify your claim) and then using properties of the Fourier transform (Hint: you may use a scaled version of the function in 1 above, or look at exercise 4.7 in the textbook).
3. $f(x)=e^{-a|x|}$.
4. $f(x)=a^{-1 / 2} e^{-\pi x^{2} / a}$. Compute the Fourier transform in two different ways. First, by direct calculation (see e.g., online solution of the textbook problem 4.31*). Then calculate it in the following way: assume that $a=1$ and show that in this case

$$
\frac{d \hat{f}(\xi)}{d \xi}=-2 \pi \xi \hat{f}(\xi)
$$

and that $\hat{f}(0)=1$. Conclude the form of $\hat{f}(\xi)$ when $a=1$. Use properties of the Fourier transform to conclude the Fourier transform of f for any $a \in \mathbb{R}$.
5. Questions from the textbook Solve problems 4.1, 4.5, 4.14, 4.20

6. Bonus Problem: Fixed points of the Fourier transform

Suggest an infinite sequence of functions $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ such that $\hat{f}_{n}=f_{n}$ and moreover no function in the sequence is a linear combination of other functions in the sequence. Explain your answer.

7. Bonus Problem: Demonstration of the "General Principle"

Assume that f is a function in $L_{1}(\mathbb{R})$ whose Fourier transform satisfies

$$
\hat{f}(\xi)=O\left(\frac{1}{|\xi|^{1+\alpha}}\right) \text { as }|\xi| \rightarrow \infty
$$

for some $0<\alpha<1$. Prove that f satisfies a Hölder condition of order α, that is

$$
|f(x+h)-f(x)| \leq M|h|^{\alpha} \text { for some } M>0 \text { and all } x, h \in \mathbb{R}
$$

