Things You Need to Know for Exam I Math 5467 (Spring 2015)

The exam will cover all class material that is relevant to homework assignments 1-2 (material on the topics: Introduction to imaging and Matlab; SVD and applications; Image enhancement in the spatial domain, I plan to finish teaching/reviewing this material by March 3rd). More specifically, I suggest you review carefully the following things:

- 1. All homework problems.
- 2. Describe what is the SVD of an $m \times n$ matrix A, where $m \ge n$ (distinguish between regular, thin and compressed).
- 3. Prove the existence of SVD.
- 4. Define a norm on a vector space.
- 5. For any matrix A define $||A||_2$ and $||A||_F$.
- 6. How can you express range(A), Ker(A), rank(A), $||A||_2$, $||A||_F$, and the set $\{Ax \mid x \in \mathbb{R}^n \text{ and } ||x||_2 = 1\}$ in terms of the SVD of A? Explain your answer.
- 7. If A is an $m \times n$ matrix where $m \ge n$, rank(A) = n and $b \in \mathbb{R}^n$, define the least squares solution of Ax = b as a solution of a minimization problem.
- 8. For $A \in \mathbb{R}^{m \times n}$ such that rank(A) = n define the pseudo-inverse of A (If A is invertible then your definition should coincide with the common definition of the inverse, explain why).
- 9. For $A \in \mathbb{R}^{m \times n}$ such that rank(A) = n, show that the definition above is equivalent with two different formulas for the pseudo-inverse (one of them uses SVD and the other one operations on A). Which one of these formulas is preferable for numerical computations? (explain).
- 10. Prove that if $m \ge n$, $A \in \mathbb{R}^{m \times n}$ such that rank(A) = n and $b \in \mathbb{R}^m$, then x_* is a least squares solution of Ax = b if and only if $x = A^+b$, where A^+ is the pseudo-inverse of A.

11. Given data points $\{z_i\}_{i=1}^N = \{(x_{i,1}, x_{i,2}, \ldots, x_{i,n})\}_{i=1}^N$ in \mathbb{R}^n , describe an algorithm to find a_0 , a_1, \ldots, a_n that minimize the quantity

$$\frac{1}{N}\sum_{i=1}^{N}(x_{i,n}-(a_1\cdot x_{i,1}+\ldots+a_n\cdot x_{i,n-1}+a_0))^2.$$

That is, describe an algorithm for finding the least squares regression (n-1)-dimensional plane of the form $x_{i,n} = a_1 \cdot x_{i,1} + \ldots + a_n \cdot x_{i,n-1} + a_0$.

12. Given data points $\{x_i\}_{i=1}^N = \{(x, y)\}_{i=1}^N$ in \mathbb{R}^2 , describe an algorithm that expresses the y-coordinate as a polynomial p(x) of the x-coordinate with degree at most d so that the following quantity is minimized

$$\frac{1}{N}\sum_{i=1}^{N}(y-p(x))^{2}.$$

13. Assume data points $\{\boldsymbol{x}_i\}_{i=1}^N$ in \mathbb{R}^n , $1 \leq d < n$, describe an algorithm to find a *d*-dimensional plane P in \mathbb{R}^n of the form $\boldsymbol{c} + \operatorname{Sp}(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_d)$, where $\boldsymbol{c}, \boldsymbol{v}_1, \ldots, \boldsymbol{v}_d \in \mathbb{R}^n$, which minimizes among all other *d*-dimensional planes the quantity:

$$\frac{1}{N}\sum_{i=1}^{N}\operatorname{dist}^{2}(\boldsymbol{x}_{i}, P).$$

That is, describe an algorithm for finding the orthogonal least squares d-dimensional plane.

- 14. Given data points $\{(x_{i,1}, x_{i,2}, \ldots, x_{i,n})\}_{i=1}^{N}$ in \mathbb{R}^n , $1 \leq d < n$, find coordinates $\{(x'_{i,1}, x'_{i,2}, \ldots, x'_{i,d})\}_{i=1}^{N}$ describing the projection of the original points on the orthogonal least squares *d*-dimensional plane.
- 15. Given a continuous image with intensities in the range [0, L 1] and pdf function $p_r(r)$. Develop (rigorously) a formula for a monotone transformation S = T(r) of the intensities of the image, mapping [0, L - 1] onto [0, L - 1], and resulting in a new image with uniform pdf $p_s(s)$. What would you do if $p_s(s)$ is not uniform?
- 16. Given a discrete image having intensities k = 0, ..., L 1 with probabilities $p_k(k)$, k = 0, ..., L 1 describe an algorithm (based on your formula above) for monotonically transforming the intensities of that image onto 0, ..., L-1 so that the new image has approximately uniform distribution.
- 17. Define the spaces $\ell_p(\mathbb{Z})$, $\ell_p(\mathbb{Z}^2)$, for $1 \leq p \leq \infty$. Also define the convolution and correlation of vectors in $\ell_1(\mathbb{Z})$ and also in $\ell_1(\mathbb{Z}^2)$. Give examples of signals in $\ell_p(\mathbb{Z})$ and images in $\ell_p(\mathbb{Z}^2)$ for some $1 \leq p \in \mathbb{R}$ and not in the corresponding $\ell_{p'}$ space for another $1 \leq p' \leq \mathbb{R}$. Prove the main properties of the convolution and correlation.

- 18. Define the spaces $L_p(\mathbb{R})$, $L_p(\mathbb{R}^2)$, for $1 \le p < \infty$. Also define the convolution and correlation of vectors in $L_1(\mathbb{R})$ and also in $L_1(\mathbb{R}^2)$. Give examples of functions in $L_p(\mathbb{R})$, $L_p(\mathbb{R}^2)$ but not in the corresponding $L_{p'}$ space another $1 \le p' \le \mathbb{R}$ (similarly for $L_p([0,1])$ and $L_p([0,1]^2)$). Prove the main properties of the convolution and correlation.
- 19. Give an example of a smoothing filter (low-pass) and a "sharpening"/derivative-type filter (high-pass).
- 20. What are unsharp mask and high-boost masks?
- 21. Explain why any 3×3 Laplacian filter is an unsharp mask (or the negative of an unsharp mask).
- 22. You need to know how to find numerical derivatives (at class level) and their corresponding masks.
- 23. Review the common image filters taught in class