
Things You Need to Know for the Final Exam

Math 5467 (Spring 2015)

The exam is cumulative and covers all material taught till and including the last class of instruction.
Below are topics you need to know.

1. All questions given in homework assignments (5 worksheets).

2. Everything you needed to know for exams 1 and 2 (see previous 2 files).

3. a) Define an MRA for L2(R).

b) Specify the Haar scaling function φ, the corresponding functions φj,k(x) (know how to plot them
for any j and k) and the corresponding spaces {Vj}j∈Z. Describe in words the Haar spaces Vj ,
j ∈ Z (make sure to characterize them precisely).

c) What is a scaling equation (equivalently an MRA equation)? Explain why it exists in an MRA.

d) Derive the coefficients of the Haar MRA equation.

4. a) What do we mean by a wavelet function corresponding to an MRA? (clearly state the theorem
that guarantees the existence of a wavelet function).

b) Specify the Haar wavelet function ψ, the corresponding functions ψj,k(x) (know how to plot
them for any j and k) and the corresponding spaces {Wj}j∈Z.

c) What is a wavelet equation? Explain why it exists.

d) Derive the coefficients of the Haar wavelet equation.

5. a) What are the collection of dyadic intervals? and dyadic intervals of scale 2−j?

b) Show directly (using properties of dyadic intervals) that if ψI is the Haar wavelet associated
with the dyadic interval I, then {ψI}I∈D is an orthonormal system in L2(R), where D denotes the
collection of all dyadic intervals.

c) Let φI denotes the Haar scaling function associated with the dyadic interval I. Show that

{ψI}I∈∪∞j=j0
Dj ∪ {φI}I∈Dj0

1



is an orthonormal system in L2(R).

6. Define the spaces Wj , where j ∈ Z, and indicate the relation between the spaces {Vj}j∈Z and
{Wj}j∈Z.

7. Assume an MRA with a scaling function φ, wavelet function ψ, and corresponding spaces {Vj}j∈Z
and {Wj}j∈Z.

a) How do we express the space L2(R) by the spaces Wj , j ∈ Z, and similarly any f ∈ L2(R) as an
infinite linear combination of {ψj,k}k∈Z

j∈Z
? (specify a formula for the coefficients)

b) How do we express f ∈ L2(R) by {φj0,k}k∈Z and {ψj,k}k∈Z
j≥j0

? (specify the coefficients). Also,

how do we express the function space L2(R) by MRA and wavelet subspaces in the same way of
the function representation you have just described.

c) How do we express the MRA subspace Vl, for some l ∈ Z, by the space Vj0 , for some j0 ∈ Z,
where j0 < l, and elements of {Wj}j∈Z? Also, write the representation of f ∈ Vl by shifts and
scales of φ and ψ in the same way as the subspace representation you have just specified.

8. Using the scaling equation and the wavelet equation prove that

φj,k(x) =
∑
m∈Z

h(m− 2k)φj+1,m ,

and
ψj,k(x) =

∑
m∈Z

g(m− 2k)φj+1,m .

9. a) Define the discrete wavelet transform. Make sure to distinguish between the DWT of stage j
and the total DWT.

b) Prove that the DWT can be written in the form

cj+1(k) = cj ∗ f0(2k),

dj+1(k) = cj ∗ f1(2k).

Express f0 and f1 in terms of the scaling and wavelet filters h and g. Also, draw a diagram
corresponding to those formulas.

c) Write down the formula for the discrete Haar transform (expressing cj+1(k) and dj+1(k) in terms
of coefficients of the form cj(k

′)). Explain how it is obtained as a special case of the above equation.

13. Assuming that the number of coefficients for {h} is K and similarly the number of coefficients
for {g} is K. What is the number of operations for computing the first stage of the discrete wavelet
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transform of a signal of length M = 2N? What is the number of coefficients of the total discrete
wavelet transform of a signal of length M = 2N? Prove your claim.

14. a) Using φ and ψ, scaling and wavelet functions respectively for L2(R), describe two different
orthonormal bases for L2(R2) (one of them uses all scales j ∈ Z and only the wavelet function ψ,
but with two different variables, and the other one uses all scales j ∈ Z such that j ≥ J for a fixed
J ∈ Z and both φ and ψ, but with two different variables).

b) Explain what is the 2D discrete wavelet transform and what are the three types of detail
coefficients.

c) Given an M × N image, where M = 2m and N = 2n, explain how the 2D discrete wavelet
transform is organized as an M ×N image.

d) Explain how the 2D discrete Haar transform is computed.
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