The Discrete Fourier Transform and Its Properties

We assume discrete signals in \mathbb{C}^N , which we index their elements by $\{x(k)\}_{k=0}^{N-1}$. We extend these signals to $\mathbb{C}^{\mathbb{Z}}$ as N-periodic signals. That is,

$$x(k) = x(k+N)$$
 for all $k \in \mathbb{Z}$.

We use the standard inner product on \mathbb{C}^N :

$$\langle u, v \rangle = \sum_{i=0}^{N-1} u_i \bar{v}_i, \text{ for all } u, v \in \mathbb{C}^N,$$

so that

$$||u||_2 = \sqrt{\langle u, u \rangle}, \text{ for all } u \in \mathbb{C}^N.$$

The DFT of $x = (x(0), \ldots, x(N-1)) \in \mathbb{C}^N$ is the following signal in \mathbb{C}^N :

$$\hat{x}(n) = \sum_{k=0}^{N-1} x(k) e^{-\frac{2\pi i k n}{N}}$$

The Inverse DFT (IDFT) is obtained as follows

$$x(k) = \frac{1}{N} \sum_{n=0}^{N-1} \hat{x}(n) e^{\frac{2\pi i n k}{N}}$$

We recall that the convolution of N-periodic vectors x and y has the form

$$(x * y)(m) = \sum_{k=0}^{N-1} x(m-k)y(k) \text{ for all } m \in \mathbb{Z},$$

and that x * y is also N-periodic.

We proved the IDFT formula in the following way. We defined the N vectors in \mathbb{C}^N , $\{e_\ell\}_{\ell=0}^{N-1}$, by

$$e_{\ell}(k) = e^{\frac{2\pi i\ell k}{N}}, \quad k = 0, \dots, N-1,$$

and expressed the DFT as follows

$$\hat{x}(n) = < x, e_n > .$$

We showed that $\left\{\frac{e_{\ell}}{\sqrt{N}}\right\}_{\ell=0}^{N-1}$ is an orthonormal basis for \mathbb{C}^N . Therefore,

$$x = \sum_{n=0}^{N-1} \langle x, \frac{e_n}{\sqrt{N}} \rangle = \frac{e_n}{\sqrt{N}} = \frac{1}{N} \sum_{n=0}^{N-1} \langle x, e_n \rangle = e_n = \frac{1}{N} \sum_{n=0}^{N-1} \hat{x}(n) e_n,$$

and

$$x(k) = \frac{1}{N} \sum_{n=0}^{N-1} \hat{x}(n) e_n(k) = \frac{1}{N} \sum_{n=0}^{N-1} \hat{x}(n) e^{\frac{2\pi i n k}{N}}, \quad k = 0, 1, \dots, N-1.$$

This proved the IDFT formula.

You will also prove in your homework that

$$\sum_{k=0}^{N-1} x(k)\bar{y}(k) = \frac{1}{N} \sum_{n=0}^{N-1} \hat{x}(n)\bar{\hat{y}}(n) \,,$$

and thus

$$\|x\|_2 = \frac{1}{\sqrt{N}} \|\hat{x}\|_2.$$

Here are some properties of the DFT

Property	Signal	DFT
Linearity	$\alpha_1 x_1 + \alpha_2 x_2$	$\alpha_1 \hat{x}_1 + \alpha_2 \hat{x}_2$
Modulation	$x(k)e^{\frac{2\pi i k n_0}{N}}$	$\hat{x}(n-n_0)$
Specific modulation	$x(k)(-1)^k$	$\hat{x}(n-\frac{N}{2})$
Translation	$x(k-k_0)$	$\hat{x}(n)e^{rac{-2\pi i n k_0}{N}}$
Translation to center	$x(k-\frac{N}{2})$	$\hat{x}(n)(-1)^n$
Convolution	$x * y(\bar{k})$	$\hat{x}(n)\hat{y}(n)$
Multiplication	x(k)y(k)	$\hat{x} * \hat{y}(n)$
Correlation	$x \diamond y(k)$	$\hat{x}(n)ar{\hat{y}}(n)$
Multiplication by conjugate	$x(k)ar{y}(k)$	$x \diamond y(n)$
Discrete unit impulse	$\delta(k)$	1
Constant impulse	1	$\delta(n)$

Property	Signal	DFT	
Symmetries	x is real	$Re(\hat{x})$ is even	
	x is imaginary	$Im(\hat{x})$ is odd $Re(\hat{x})$ is odd	
		$Im(\hat{x})$ is even	
	x is real and even	\hat{x} is real and even	
	x is real and odd	\hat{x} is imagninary and odd	
	x is imaginary and even	\hat{x} is imaginary and even	
	x is imaginary and odd	\hat{x} is real and odd	