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Summary. The Multiscale Strip Construction, or in short MSC (Lerman et al., 2007), was
initially proposed to identify enriched spots in ChIP-on-chip arrays. Here we extend this method
to the setting of robust high-dimensional curve estimation. We establish its robustness as
well as accurateness by bounding both the empirical influence function and the empirical bias
of approximation at a sufficiently large set of points. We also demonstrate in practice the
robustness and accurateness of MSC by comparing it with other successful methods of robust
regression on artificial data sets with significant outlier components. A new application of the
high-dimensional MSC to edge detection is introduced and tested.
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1. Introduction

The Multiscale Strip Construction, or MSC (Lerman et al., 2007), is a recent heuristic
strategy for robust regression and local variance estimation. It was originally designed in
order to identify enriched spots in ChIP-on-chip arrays. Ideally, those spots correspond to
promoters that bind to a transcription factor of interest. Standard statistical methods have
not performed well with such bioinformatic data because of the nontrivial structure of their
noise and outliers, which are hard to model (Buck and Lieb, 2004).

In this paper we extend the MSC to the higher-dimensional setting of robust curve
estimation in any Euclidean space. We provide here full mathematical and statistical details
of the method (in its extended form) and establish its properties so that it is not any more
a heuristic procedure.

The theoretical goal of this paper is to justify the inherent robustness of MSC through
rigorous analysis. The main result here (Theorem 3.1) shows that there exists a sufficiently
large set of points whose empirical influence function (Huber, 1981; Cook and Weisberg,
1982) and empirical bias of approximation are both well-controlled. The finer the scales of
the local regions obtained by MSC, the better the control is.

In addition to such theoretical foundations, this paper also numerically demonstrates the
success of MSC in various artificial instances, while comparing it with different versions of
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the LOESS algorithm (Cleveland, 1979; Cleveland and Devlin, 1988; Cleveland and Loader,
1996). Moreover, it suggests a new application of the MSC algorithm to edge detection of
images, in particular, ones corrupted with noise. The idea is to search for outliers (deviating
from the main curve) in the high-dimensional set of pixel neighborhoods of a given gray-level
image.

The strategies of the MSC are related to those of Arias-Castro et al. (2006) and some of
its references. Indeed, the idea of the MSC is to zoom in on the given data in a top-down
multiscale procedure and select local regions of various scales. A global nonlinear model is
obtained by combining the local information at those regions.

The paper is organized as follows. In Section 2 we formulate the MSC method in
a general high-dimensional setting, while maintaining the intrinsic dimension to be one.
Theoretical properties of the method are studied in Section 3, in particular, we analyze its
robustness and accurateness, bound its speed and quantify the smooth of its output. In
Section 4 we test the accuracy, robustness and speed of the MSC method on artificial data
sets, while comparing it with other commonly used methods. We also test there the MSC
with the new application of edge detection using high-dimensional pixel neighborhoods. We
conclude with a discussion in Section 5.

2. Description of the High-dimensional MSC Method

The input of the MSC algorithm is data

E = {xi,yi}N
i=1 ⊆ RD+1 ,

where D ≥ 1 (xi ∈ R and yi ∈ RD), and the following parameters: l0, c0, n0, λ0, nsh, q0 and
α0. The output includes the following estimators: 1) A regression function C̃ which explains
the last D coordinates by the first coordinate and is robust to outliers. 2) A conditional
standard deviation S̃, which is robust to outliers. More precisely, the covariance matrix of
y given x is modeled as a scalar matrix with elements S̃2(x). 3) Ranking for data points as
outliers. 4) Set of detected outliers.

The initial step of the algorithm forms a least squares regression line (of y given x) and
then transforms the data by subtracting from its second to last coordinates the correspond-
ing coordinates of this line. Consequently, the x-axis is the new regression line. The next
steps are described in the following subsections, while Figure 3 demonstrates the algorithm
for a very particular data.

2.1. Formation of multiscale grids, regions and lines
For any given half-closed, half-open interval Q, its dyadic children, QL and QR (left and
right respectively), are the two half-closed, half-open intervals of equal lengths whose union
is Q.

The algorithm fixes an interval Q0 := [a0, b0) of almost minimal length containing the
projection of E onto the x-axis. It then repeatedly partitions Q0 to dyadic children, but not
more than l0 times. We denote the set of all such intervals by D(Q0). If Q ∈ D(Q0) \ {Q0},
then we denote by PQ the dyadic parent of Q according to the grid D(Q0) and we also
define PQ0 := Q0.

For each Q ∈ D(Q0) the algorithm associates an infinite strip

Str(Q) = Q× RD ,
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and recursively constructs the regions Cyl(Q), Out(Q) and line LQ from top to bottom
levels as described below (see also demonstration in Figure 1).

Fig. 1. Regions and lines when D = 1.

If Q = Q0, then LQ0 is the transformed x-axis and Cyl(Q0) = Str(Q0). Moreover,
the lines LQ0L

and LQ0R
are the regression lines for the strips Str(Q0L) and Str(Q0R)

respectively (one may first remove from those strips the top and bottom ε/2-quantiles,
where ε ¿ α0). If Q ( Q0, then the regression line LQ has been defined in the previous
level and its corresponding regression function is denoted by y = LQ(x). The region Cyl(Q)
has the form

Cyl(Q) = {(x,y) ∈ Cyl(PQ) ∩ Str(Q) : ‖y − LQ(x)‖2 ≤ c0 · `(Q)} .

The algorithm then forms the lines LQL and LQR as the least squares regression lines for
Str(QL)∩Cyl(Q) and Str(QR)∩Cyl(Q) respectively (the corresponding regression functions
are y = LQL

(x) and y = LQR
(x)). Finally, the algorithm sets the following region of

“putative local outliers”:

Out(Q) =
{

(x,y) ∈ Cyl(Q) ∩ Str(QL) : ‖y − LQL
(x)‖2 >

c0 · `(Q)
2

} ⋃

{
(x,y) ∈ Cyl(Q) ∩ Str(QR) : ‖y − LQR

(x)‖2 >
c0 · `(Q)

2

}
.

2.2. Computation of Local quantities
The algorithm computes at each visited interval Q the following quantities: fQ, FQ, σY|X(Q)
and σX(Q). Their definitions below apply the notation |A| (for general A ⊆ RD) to desig-
nate the number of points in A ∩ E.

The fraction fQ is the ratio of “putative local outliers” to the total number of points
projected on Q. That is,

fQ =
|Out(Q)|
|Str(Q)| .
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The quantity FQ adds up such fractions of all parent-intervals (including current inter-
val), that is,

FQ =
∑

Q′∈D(Q0)
Q′⊇Q

fQ′ .

We remark that distant analogs of this quantity are the square functions of harmonic anal-
ysis (Stein, 1993) or the J function (Bishop and Jones, 1994; Lerman, 2003). The algorithm
computes FQ with a top-down procedure: First, it initializes FQ ≡ 0 for all Q ∈ D(Q0).
Then, it applies the reduction formula (from coarse levels to fine levels):

FQ = FPQ
+ fQ.

The quantities σY|X(Q) and σX(Q) estimate the following local versions of standard
deviations in the regions R(Q) = Str(Q) ∩ Cyl(PQ):

σY|X(Q) =


 1
|R(Q)|

∑

(x,y)∈R(Q)∩E

‖y − LQ(x)‖22




1
2

and

σX(Q) =


 1
|R(Q)|

∑

(x,y)∈R(Q)∩E


x−

∑
(x,y)∈R(Q)∩E

x

|R(Q)|




2 


1
2

.

2.3. Stopping-time Criteria
While proceeding from top to bottom levels, the algorithm stops at an interval Q′ =
[aQ′ , bQ′) ∈ D(Q0) (together with all of its descendants in D(Q0)) if one of the follow-
ing conditions is satisfied:

1. FQ′ > α0. (1)
2. |Cyl(Q′)| < n0. (2)

3. σ2
X(Q) < λ0 · `(Q)2. (3)

4. ` = `0. (4)

We will use the following sets of stopping-time intervals and their parents throughout
the rest of the paper:

Q = {Q ∈ D(Q0) : Q is a stopping-time interval } ,

B = {Q ∈ Q : FQ < α0 or σ2
X(Q) < λ0 · `(Q)2} ,

P = {P ∈ D(Q0) : ∃ Q ∈ Q so that Q ⊆ P} .

2.4. Output of MSC
2.4.1. Main Functions Computed by MSC
The output of the algorithm includes the functions C̃ and S̃ (or alternatively Ŝ). These
functions are defined below for any x ∈ Q0, but in practice only computed for the projection
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of the data onto Q0. For simplicity we describe them as piecewise linear or piecewise
constant functions and present their smoothed versions at the end of this subsection. We
will frequently use here the notation χQ for the indicator function of the interval Q, i.e.
χQ(x) = 1 if x ∈ Q and χQ(x) = 0 otherwise.

The algorithm computes the functions C̃ and S̃ by the formulas:

C̃(x) =
∑

Q∈Q\B
LQ(x) · χQ(x) +

∑

Q∈B
LPQ

(x) · χQ(x) (5)

and
S̃(x) =

∑

Q∈Q\B
σY|X(Q) · χQ(x) +

∑

Q∈B
σY|X(PQ) · χQ(x) .

The optional estimator Ŝ extends the estimates of S̃ outside the regions {Cyl(Q)}Q∈Q
while assuming that the data can be locally approximated by a restriction of a normal
distribution. The algorithm computes Ŝ by the formula

Ŝ(x) =
∑

Q∈Q\B
σ̂Q · χQ(x) +

∑

Q∈B
σ̂PQ · χQ(x) ,

where for each Q ∈ Q, σ̂Q is the solution of the following equation with bQ = c0 · `(Q):

σY|X(Q)2 = − 2√
2π

· σ̂Q · bQ · e
− b2Q

2·σ̂2
Q +

σ̂2
Q

2
·
(

erf

(
bQ√
2 · σ̂Q

)
− erf

(
−bQ√
2 · σ̂Q

))
. (6)

This formula is explained in Appendix A. In practice S̃ and Ŝ are very similar and thus
S̃ can be used if it is important to avoid parametric assumptions.

The functions C̃, S̃ and Ŝ are smoothed as follows: First, the algorithm generates nsh

instances of piecewise constant functions as above but according to different shifted grids.
Then it averages these piecewise constant functions over all those instances.

2.4.2. Ranking and Identification of Outliers
The algorithm assigns scores R̃ and R̂ to any point (x,y) ∈ E by:

R̃(x,y) =
‖y − C̃(x)‖2

S̃(x)
and R̂(x,y) =

‖y − C̃(x)‖2
Ŝ(x)

.

It then assess the significance of outliers, by assigning p-values as follows:

p-value(x,y) =
2√
2π

∞∫

R̂(x,y)

e−
t2
2 dt =

(
1− erf

(
R̂(x,y)√

2

))
. (7)

Outliers are detected by controlling the False Discovery Rate (FDR) following Benjamini
and Hochberg (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). That is,
given an FDR level q0, it orders the computed p-values: p(1) ≤ . . . ≤ p(N) and sets

p∗ = p-value
(

max
{

i : p(i) ≤ q0 · i

N

})
. (8)

It then identifies as outliers the points with p-values less than or equal to p∗.
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2.5. Refinement of the function FQ

We suggest here a slight modification of the function FQ. Numerical experiments with
artificial and experimental data indicate that this modification usually yields slightly better
or comparable identification results. However, our method for determining α0 (described
below in Section 2.6) seems to be more effective with our previously described version.

At each visited interval Q with left and right subintervals QL and QR, the modified
algorithm computes

fQL
=
|Out(Q) ∩ Str(QL)|

|Str(QL)| and fQR
=
|Out(Q) ∩ Str(QR)|

|Str(QR)| .

The quantity FQ is initialized for Q0 by FQ0 ≡ 0 for all Q ∈ D(Q0). When visiting an
interval Q (from coarsest level to finest level), the algorithm computes recursively FQL

and
FQR

as follows:
FQL

= FQ + fQL
and FQR

= FQ + fQR
.

The stopping-time conditions are then applied independently in both intervals QL and QR.

2.6. Choice of the Main Parameter
The choice of most parameters of the algorithm is pretty straightforward (Lerman et al.,
2007), except for the parameter α0. In order to choose the optimal value of α0 one may
apply the MSC algorithm with different values of α0 as well as p-values, p (or alternatively
FDR-levels), and record the corresponding numbers of detected outliers, Nout(α0, p). The
optimal value for α0 is the most significant jump in the quantity Nout(α0, p) across various
p-values. This strategy is justified in Appendix B. Different examples are demonstrated in
Figure 2.

3. Properties of the MSC

Multiscale Influence and Bias of MSC
The RD-valued empirical influence function of the estimator C̃ at the empirical distribution
PN (of the N data points) is defined for any (x,y) ∈ RD+1 by the formula

IFC̃,PN
(x) = lim

ε→0+

C̃((1− ε)PN + εδ(x,y))− C̃(PN )
ε

.

The empirical bias of the data point (x,y) will refer here to the quantity ‖y − C̃(x)‖2 (as
opposed to the bias ‖y −C(x)‖2, where C is the true regression function.

We bound both the empirical influence function and the empirical bias of approximation
at almost all data points in the following way.

Theorem 3.1. Assume that the MSC is applied with the parameter 0 < α0 < 1 to a
data of N points with corresponding empirical distribution PN . Then one can form a subset
G of the data such that

|G|
N

> (1− α0), (9)

IFC̃,PN
(x) ≤ 2 · c0

λ0
for all x ∈ G, (10)
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(b) profile curves and jump analysis for data in (a)
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(c) data with one layer of symmetric outliers (10%)
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(d) profile curves and jump analysis for data in (c)
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Fig. 2. Results of our method for determining α0 for three artificial data.
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(a) Data around the line (in-

terval Q0); Cyl(Q0) is a square

(b) Points in Out(Q0) (gray

area) are detected as “outliers”

and excluded

(c) 2nd level of MSC: Q0

partitioned into Q1, Q2 &
regions formed

(d) New putative “outliers” in

Out(Q1) and Out(Q2) (new

gray area) are excluded

(e) 3rd level of algorithm: Fur-

ther partition and identifica-

tion of new regions

(f) Algorithm stops at 3 left-

most squares while continues at

rightmost square

(g) 4th level of MSC, pro-

ceeding in two rightmost

squares

(h) Final “stopping-time”

squares, i.e., Cyl(Q) for

“stopping-time” Q’s

(i) Strip S̃ (in red), estimat-

ing std in each “stopping-time”

square

Fig. 3. Pictorial representation of how the algorithm works when applied to an artificial and simple
set (C = 0).
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and
∥∥∥y − C̃(x)

∥∥∥
2
≤ 2 · c0 · 1

nsh

nsh∑

i=1

`
(
Qi

stop(x)
)

for all x ∈ G, (11)

where `(Qi
stop(x)) is the length of the unique stopping-time interval containing x in the ith

shift of the initial grid.

We prove Theorem 3.1 in Appendix C. Here we demonstrate the significance of its
statement by comparing MSC with another common method. This method starts with the
same initial transformation (shifting the coordinates of y by those of the regression line).
It then computes the interval Q0 as in Subsection 2.1, partitions Q0 into intervals of equal
length, and excludes from the points projected onto those intervals their top and bottom
α0/2-quantiles. The set G is the union of the points left at all local intervals. The curve C̃
is then formed by local linear regressions of the points in the new regions around the local
intervals (i.e., excluding the top and bottom α0/2-quantiles).

Clearly, the new set G satisfies equation (9). However, the empirical influence function
of points in it can be rather large in some places. In particular, as the size of all these
intervals decreases, the empirical influence function often increases.

Assume next that the latter algorithm uses the whole interval Q0 without partitioning it
(while removing points at the top and bottom α0/2-quantiles of the whole set). In this case,
equations (9) and (10) still hold, but the empirical bias of approximation is rather large. On
the other hand, the MSC has smaller empirical biases at smaller stopping-time intervals as
expressed by equation (11). In view of this example and Theorem 3.1, we observe that the
MSC algorithm is most powerful when having relatively small stopping-time scales. Indeed,
it then obtains small empirical bias of approximation while maintaining relatively small
empirical influences (except at a sufficiently small and designated set).

Complexity of the algorithm
The computational complexity of the algorithm is summarized as follows and proved in
Appendix D.

Proposition 3.1. The storage and speed of the MSC algorithm for a data set of N
points in RD, when using `0 levels and nsh shifts, are of order O(N ·D) and O(N ·D ·`0 ·nsh)
respectively.

On the Quality of Smoothing
Here we assume two additional stopping-time conditions with the parameters δ0, θ0 > 0 at
any visited interval Q:

σY|X(Q) > δ0 · `(Q), (12)
LQ ∩ x-axis 6= ∅ and tan(ang(LQ, x-axis)) > θ0. (13)

Using those two optional conditions and extending the definition of the set B as follows

B = {Q ∈ Q : FQ < α0 or any of equations (3), (12),(13) is satisfied} ,

we claim that the algorithm produces smooth estimators C̃ and S̃ in the following way (the
proof is in appendix E).
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Proposition 3.2. If the MSC algorithm is applied with the additional stopping-time
conditions of equations (12) and (13) (with parameters δ0 and θ0 respectively). Then as
the number of shifts, nsh, approaches infinity the estimators C̃ and S̃ converge to Lipschitz
functions with constants not larger than 2 · √D − 1 · θ0 and 4 · δ0 · (l0 + 1) respectively.

4. Numerical Experiments

4.1. Simulated Data
We evaluate the MSC algorithm on simulated data, while comparing it with other common
and powerful techniques. Since those other methods mainly apply to planar data we take
D = 1.

We fix two arbitrary parameters ε, r > 0 and generate data by sampling N i.i.d. random
variables from a distribution on R2 with pdf of the form

f(x, y) = ε · fin(x, y) + (1− ε) · fout(x, y) .

The “stable” pdf, fin(x, y), is formed by a mixture of ten two-dimensional Gaussian distri-
butions around the curve

C(x) = 10 +
√

x sin2(rx) .

The “outliers” pdf, fout(x, y), is also a mixture of two distributions (with equal weights).
Each one of these is obtained by adding and subtracting respectively a 10-dimensional vector
from the vector of local means of the inner pdf fin(x, y). The software used to generate such
samples is available at http://www.math.umn.edu/∼lerman/supp/multistrip. A sample
simulated that way is exemplified in Figure 4.

−20 −15 −10 −5 0 5 10 15 20

−5
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r=0.500 Out=0.400

 

 

Loess
Lowess
r Loess
r Lowess
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true func

Fig. 4. Illustration of simulated data with r = 0.5, ε = 0.4 and the estimators C̃ by MSC and four
versions of LOESS
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Table 1. Comparison of MSSE and CPU time for MSC (both optimal α0 and α0 = 0.2), ‘loess’,
‘rloess’, ‘lowess’ and ‘rlowess’, using 3000 points of synthetically created data. CPU time in
seconds recorded in Matlabr using a dual processor Intel Core 2.66GHz with 2GB of RAM;
MSSE is averaged for each ε over all r = {0.25, 0.33, 0.42, 0.50, 0.58, 0.67, 0.75, 0.83, 0.92, 1}.

% outliers (ε) MSC MSC (α0 = 0.2) ‘loess’ ‘rloess’ ‘lowess’ ‘rlowess’

1 CPU 0.88 1.08 1.84 6.86 1.67 5.82
MSSE 7.02 7.36 10.98 10.44 11.17 10.45

5 CPU 0.86 1.13 1.93 6.72 1.71 5.77
MSSE 6.85 7.15 14.63 10.99 14.21 10.56

10 CPU 0.85 1.07 2.11 6.99 1.82 5.69
MSSE 7.06 7.50 17.64 11.80 16.97 11.17

20 CPU 0.86 0.98 2.32 7.02 1.91 5.97
MSSE 7.58 7.77 20.36 11.76 19.58 11.90

30 CPU 0.98 0.82 2.41 7.55 1.95 6.26
MSSE 8.15 9.11 23.12 12.68 21.97 12.52

40 CPU 0.98 0.60 2.47 9.53 2.03 7.27
MSSE 9.68 16.91 24.32 17.17 23.25 16.63

We applied MSC to such data with the refinement of FQ described in Subsection 2.5.
We compared it with four different instances of the LOESS algorithm (Cleveland, 1979;
Cleveland and Devlin, 1988; Cleveland and Loader, 1996). Those instances use the following
options in the Matlabr function smooth: ’lowess’, ’loess’, ’rlowess’, ’rloess’. The first one,
’lowess’, is a local regression algorithm using weighted linear least squares and a first degree
polynomial model. The second one, ’loess’, is similar but uses a second degree polynomial
model. The other two, ’rlowess’ and ’rloess’, are robust versions of ’lowess’ and ’loess’
respectively that assign lower weights to outliers.

Our comparison between the different algorithms is based on the quality of estimating
C, which is measured by the Mean Sum of Squares Error (MSSE). Specifically, we have
drawn 30 i.i.d. samples of data and recorded the corresponding values of the estimated local
means by C̃ i, i = 1, . . . , 30. We then compute the MSSE by the formula

MSSE(C̃) :=

√√√√ 1
30N

30∑

i=1

N∑

j=1

‖C(xj)− C̃ i(xj)‖22 .

We have tested the different algorithms for different values of ε while averaging over
different r values (r = 0.25, 0.33, 0.42, 0.50, 0.58, 0.67, 0.75, 0.83, 0.92, 1). For all of the four
versions of LOESS we have optimized the smoothing bandwidth h so that it minimizes the
lowest MSSE. On the other hand, for MSC we have both optimized α0 and fixed α0 = 0.2.

The values of the MSSE and the actual CPU times for the different algorithms are
recorded in Table 1. We have used Matlabr and a Dual processor Intel Core 2.66GHz with
2GB of RAM.

We note that the MSSE of MSC is significantly lower than the MSSE of the other
common algorithms for robust regression. We also note that the MSC algorithm is faster
than the four other methods. Indeed, conventional implementations of local smoothers are
O(N2 · h), where h is the kernel span (B. Seifert, 1994). Robust smoothers, in particular,
’rlowess’ and ’rloess’, perform several re-weighted iterations at each point, adding a (pos-
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sibly) hefty coefficient onto the number of flops. On the other hand the MSC algorithm is
O(N · `0 · nsh) (see Proposition 3.1).

4.2. Edge Detection via MSC for High-dimensional Pixel Data
We also consider high-dimensional data sets of pixel neighborhoods (equivalently patches)
of gray-level images. We map those k×k patches back to the original image by assigning to
each one of them its “center” (it is the exact center if k is odd). We assume that such data
is concentrated around a curve with outliers that correspond to edges in the original image.
This assumption can be verified in two different ways: First of all, by viewing the projection
of the data and detected curves and strips on two dimensional or three dimensional spaces.
Second of all, by checking whether the detected outliers indeed correspond to edges of the
image.

Figure 5 demonstrates the edge detection obtained by MSC with three different images.
We applied the following percentages of outliers: 10%, 20%, 30% and the following sizes of
pixel neighborhoods: k = 3, 5, 7, 9.

Figure 6 explores the effect of additive noise (with SNR of −3.52dB) on the MSC algo-
rithm and other algorithms used by the c©Matlab’s EDGE function. We remark that for
high levels of noise, it is instructive to use relatively high values for the pixel neighborhoods,
e.g., 7, 9 and 11.

5. Discussion

We conclude this work describing three possible extensions of interest to us.

More general regression (higher-dimensional and smoother): It is not hard to
generalize the framework presented here to include the regression of the last D − d + 1
coordinates on the first d of them, where d > 1. For this purpose dyadic intervals along
the line are replaced by dyadic partitions of d-dimensional cubes or rectangles. Also one
can allow higher order of smoothness of the output of the MSC. For example, by locally
fitting higher-order polynomial approximations and applying partitions of unity smoother
than the characteristic functions.

Further theoretical justification of MSC: Theorem 3.1 shows that the MSC algorithm
is most successful when the sizes of the stopping-time intervals are sufficiently small. An
interesting and nontrivial theoretical problem is to determine how effective the MSC algo-
rithm in getting to sufficiently small scales (talking into account restrictions imposed by
large local variances). Peter Jones and the first author of this paper have partially addressed
this question, while modifying some steps of the original algorithm and using a toy model
where C = 0 (i.e., E(Y|X) = 0) and the underlying “standard deviation”, S, is a general
Ap weight (which is defined e.g., in Stein (1993)). The mathematical details of this answer
are beyond the scope of this paper. We are curious about other related analysis.

The structure of high-dimensional pixel data: We are interested in a careful study
of the properties of the main curve and the outliers of pixel neighborhood data for a large
database of images. In particular, we would like to know the dependence of such features
on the images (for example, pure texture images show a somewhat different behavior). We
also remark that this framework could be further generalized to color images, where the
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(a) Race car (b) 20% outliers (“edges”), k = 3 (c) 30% outliers (“edges”), k = 5

(d) Paoulina (e) 10% outliers (“edges”), k = 5 (f) 20% outliers (“edges”), k = 7

(g) peppers (h) 20% outliers (“edges”), k = 5 (i) 30% outliers (“edges”), k = 9

Fig. 5. Edges via MSC for three different images and various parameters.
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(a) Peppers with Gaussian noise (b) 10% outliers (“edges”), k = 9

Szcube = 11, percent out = 80

(c) 20% outliers (“edges”), k = 11

(d) “Prewitt” method (e) “Roberts” method (f) “Sobel” method

(g) “Log” method (h) “Zerocross” method (i) “Canny” method

Fig. 6. Edge detection for gray-level peppers with additive noise drawn from N(0, 3
2
· σ), where σ

is the standard deviation of all pixel values. Algorithms used: MSC and those of c©Matlab’s EDGE
function. Here MSC first projected the data onto its top 9 principal components.
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main curve is usually replaced by a mixture of three curves which are relatively flat (hybrid
flat models for such data are studied by Huang et al. (2004)).
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A. Explanation of Formula (6)

Formula (6) is based on the following observation: If b > 0, X ∼ N(0, σ̂2) is a normal

random variable with density function f = 1√
2π·σ̂2 · e−

x2

2·σ̂2 and σb
2 :=

∫ b

−b
x2f(x) dx, then

σb
2 = − 2√

2π
· σ̂ · b · e− b2

2·σ̂2 +
σ̂2

2
·
(

erf
(

b√
2 · σ̂

)
− erf

( −b√
2 · σ̂

))
.

This observation immediately follows from the following integration by parts:

σb
2 =

b∫

−b

x2f(x) dx =
−σ̂2

√
2πσ̂2

b∫

−b

x · d
dx

e−
x2

2σ̂2 dx =
−σ̂√
2π

[
xe−

x2

2σ̂2

]b

−b
+ σ̂2

b∫

−b

f(x) dx.

B. Justification of the Procedure for Selecting α0

We justify our method for choosing α0 in the setting of planar data (i.e., D = 1) generated
with a constant percentage of outliers independent of the location x. In order to do it, we
need to understand for any given value of α0 the dependence of Nout, the number of outliers
detected by the algorithm, to the threshold p-value. Equivalently, we need to understand
for any given value of α0, the dependence of Nout on the constant B ≡ B(α0) such that
outliers are identified outside the strips C̃(x) + B · Ŝ(x) and C̃(x)−B · Ŝ(x).

We start by considering such dependence and its sensitivity to changes of α0 in the very
special case where there is no outlier component in our model. In this case, it is clear that
the curves describing the dependence of Nout on B, or on the corresponding p-values, vary
continuously with the parameter α0. In Figure 2(a) we describe a sample from this model,
whereas in Figure 2(b) we show that our method does not detect any jump, i.e., no layer
of outliers.

Assume next that the underlying curve lies on the x-axis, i.e., the regression function is
y = 0. Moreover, the distribution is a mixture of two homoscedastic components: stable
and outlier, and the weight of the latter component is pout. We denote the constant stan-
dard variation of the stable component by σin. We assume that the outlier component is
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also bimodal and symmetric around 0 with constant means ±µ and constant conditional
variances around each mode, such that σin, σout / µ. Note that if α0 > pout + ε, where
ε > 0 is a sufficiently small constant, then we expect the algorithm to peel out most of
the outliers and thus use mainly points sampled from the stable distribution to estimate
the stable standard deviation. Therefore, in a similar way to the case above (pout = 0), we
expect continuous variation in the profile curves. Similarly, if α0 < pout − ε, the algorithm
uses points sampled from all the three components of the trimodal distribution. The esti-
mate of the standard deviation varies continuously with α0 and we thus expect continuous
variation in the profile curve. However, when α0 ∼ pout, we encounter a transition from an
underlying unimodal distribution to trimodal distribution (within the strip C̃(x)±B ·Ŝ(x)).
Therefore, for a fixed B (sufficiently large) we expect a jump in the number of outliers de-
tected by the algorithm when transitioning from pout − ε to pout + ε. One can extend this
argument to a more general setting. In Figure 2(c) we describe a sample from a trimodal
distribution, where the true regression curve C is not a line. Next, in Figure 2(d) we show
that our method detects a jump around α0 = pout = 0.1.

The argument above also applies to several modes of outliers and explains how one can
get a few jumps of profile curves. In Figure 2(e) we describe a sample from a distribution
with two layers of outliers, whereas in Figure 2(f) we show that our method detects two
jumps, around the expected fraction of layers of outliers: 5% and 10%.

If we apply the output function S̃ (instead of Ŝ), then additional artificial jumps may
occur. This happens due to discontinuities in the sizes of the regions {Cyl(Q)} and the
corresponding discontinuities in the standard deviations estimated in those regions. The
application of Ŝ corrects the problem by extending the estimates of the standard deviations
outside the restricted regions. However, we suspect that it is possible to have artificial jumps
when the underlying stable distribution is far from the normal assumption. Nevertheless,
we have simulated various artificial data sets with distributions far from normal and could
not observe such a phenomenon when using Ŝ.

Our experience with real data sets (Lerman et al., 2007) indicated that jumps could
occur at a whole range of α0 values. We believe that they represent local changes in the
densities, but it is also possible that they are artificial as discussed above. Consequently,
we have decided to choose in such cases the value of α0 corresponding to the first significant
jump in the number of outliers (instead of most significant one).

C. Proof of Theorem 3.1

We assume that nsh = 1. The general case of nsh ≥ 1 is obtained by averaging the estimates
below (adapted to different shifts when needed). We also assume that Q0 is not a stopping
interval (which is the case with the appropriate choice of parameters).

We form the function Stb(x,y) and the desired set G as follows:

Stb(x,y) =
∑

Q∈Q\B
χCyl(Q)(x,y) +

∑

Q∈B
χCyl(PQ)∩Str(Q)(x,y) ,

G = {(x,y) ∈ E : Stb(x,y) = 1} .
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C.1. Proof of Equation (9)
We first note the following relation between the function Stb and the regions {Out(Q)}Q∈P :

{(x,y) ∈ Q0 × RD : Stb(x,y) = 0} = Str(Q0) \

 ⋃

Q∈Q\B
Cyl(Q)

⋃ ⋃

Q∈B
(Cyl(PQ) ∩ Str(Q))




⊆ Str(Q0) \
⋃

Q∈Q
Cyl(Q) =

⋃

Q∈P
Out(Q) .

We denote by ΠL the projection operator from RD onto L and observe that

|E \G| ≤
∑

Q∈P
|Out(Q)| =

∑

Q∈P
fQ |Str(Q)| =

∑

Q∈P
fQ

∑

x∈E

χStr(Q)(x) =
∑

Q∈P
fQ

∑

x∈ΠL(E)

χQ(x)

=
∑

x∈ΠL(E)

∑

Q∈P
fQ · χQ(x) ≤

∑

x∈ΠL(E)

∑

Q∈Q
FPQ

(x) ≤
∑

x∈ΠL(E)

α0 = α0 · |ΠL(E)| = α0 · |E|.

Consequently,
|G| ≥ (1− α0) · |E| = (1− α0) ·N .

C.2. Proof of equations (10) and (11)
Equation (11) immediately follows from the definitions of the set G and the regions {Cyl(Q)},
{Cyl(PQ)}. For the rest of this subsection we establish equation (10).

We assume first that Q ∈ Q \ B and denote R(Q) = Str(Q) ∩ Cyl(PQ). We recall that
LQ is the least squares regression line for R(Q). If (xi,yi) ∈ R(Q)∩E, then by applying the
formula for empirical influence of linear regression (Cook and Weisberg, 1982, Section 3.4.1)
we obtain that

‖IFC̃,PN
(xi,yi)‖2 =

(
xi − 1

|R(Q)|
∑

(x′i,y
′
i)∈R(Q) x′i

)
‖yi − C̃(xi)‖2

1
|R(Q)|

∑
(x′i,y

′
i)∈R(Q)

(
x′i − 1

|R(Q)|
∑

(x′i,y
′
i)∈R(Q) x′i

)2 ≤
|Q| 2 c0 |Q|

λ0 |Q|2 =
2 c0

λ0
.

Next, we assume that Q ∈ B, so that its corresponding local regression line was computed
in R(PQ) = Str(PQ) ∩ Cyl(PPQ). In this case, if (xi,yi) ∈ R(PQ) ∩ E, then

‖IFC̃,PN
(xi,yi)‖2 =

(
xi − 1

|R(PQ)|
∑

(x′i,y
′
i)∈R(PQ) x′i

)
‖yi − C̃(xi)‖2

1
|R(PQ)|

∑
(x′i,y

′
i)∈R(PQ)

(
x′i − 1

|R(PQ)|
∑

(x′i,y
′
i)∈R(PQ) x′i

)2 ≤
2 c0

λ0
.

D. Proof of Proposition 3.1

Since the shifted grids are processed independently and the regions within each grid are
disjoint, the storage of the MSC algorithm is of order O(N ·D).

In order to bound the time complexity of the algorithm, we first restrict it to the grid
D(Q0). We note that the computation performed in the region Cyl(Q) (for any interval Q
considered by the algorithm) is of order O(|Cyl(Q)| · D). Indeed, the main computation
at each interval involves finding two RD-valued least squares regression lines of |Cyl(Q) ∩
Str(QL)| and |Cyl(Q) ∩ Str(QR)| points respectively. We remark that when Q = Q0, the
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additional computation of the initialization step (described in the beginning of Section 2)
is also accounted. Therefore, the speed of the algorithm, when using only one grid, is of
order

D ·
∑

Q∈Q∪P
|Cyl(Q)| ≤ D ·

`0∑

j=0

∑
Q∈Q∪P

`(Q)=2−j ·`(Q0)

|Cyl(Q)| ≤ D · (`0 +1) · |Str(Q0)| = D · (`0 +1) ·N.

We conclude the proposition by noting that the above estimate holds for any of the nsh

shifted grids.

E. Proof of Proposition 3.2

For simplicity of notation, we shift and scale the data so that Q∗0 = [0, 1]. For any 0 ≤ γ ≤ 1,
we denote Qγ = [−γ, 2− γ). Let S̃γ and C̃γ be the stepwise constant and linear functions
respectively corresponding to the dyadic grid D(Qγ). We define

S̃T (x) =

1∫

0

S̃γ(x) dγ and C̃T =

1∫

0

C̃γ(x) dγ.

We will prove Proposition 3.2 by showing that

‖S̃T ‖Lip ≤ 4 · δ0 · (l0 + 1) (14)

and
‖C̃T ‖Lip ≤ 2 ·

√
D − 1 · θ0 . (15)

We first prove equation (14). For each fixed 0 < γ ≤ 1, we denote by Q(Qγ) the set of
all stopping-time intervals with respect to the grid D(Qγ). For each interval Q ∈ Q(Qγ),
we denote by S̃Q, the value of the function S̃ on the interval Q (S̃Q = σY|X(Q) if Q ∈ Q\B
and S̃Q = σY|X(PQ) otherwise). We also denote the left and right value of any interval
Q ∈ Q(Qγ) by aQ and bQ, that is, Q = [aQ, bQ). Following the above notation we represent
S̃T as follows:

S̃T (x) =

1∫

0

∑

Q′∈Q(Qγ)

S̃Q′ · χQ′(x) dγ =

1∫

0

∑

Q′∈Q(Qγ)

S̃Q′ · χ[aQ′ ,bQ′ )(x) dγ.

The distributional derivative of S̃T,j obtains the following form:

∂

∂x
S̃T (x) =

1∫

0

∑

Q′∈Q(Qγ)

S̃Q′ · (δ(x− aQ′)− δ(−x + bQ′)) dγ, (16)

where δ(·) is the Dirac distribution. Denote

D+(x) =

1∫

0

∑

Q′∈Q(Qγ)

S̃Q′ · δ(x− aQ′) dγ and D−(x) =

1∫

0

∑

Q′∈Q(Qγ)

S̃Q′ · δ(−x + bQ′) dγ.
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Next, we bound the function D+(x). Let Shft(x) denote the set of all possible shifts γ
of [0, 1), so that there exists an interval Q′ in D(Qγ) such that x = aQ′ . Also if γ ∈ Shft(x),
then we denote by Q(x, γ) the interval Q′ in D(Qγ) such that x = aQ′ . Using this notation
we may write D+ as follows:

D+(x) =
∑

γ(x)∈Shft(x)

S̃Q(x,γ(x)).

We note that the stopping-time condition of equation (12) and the definition of S̃Q (for
any interval Q) imply that

S̃Q(x,γ(x)) ≤ 2 · δ0 · `(Q(x, γ(x))). (17)

Furthermore, we have that for any x ∈ [0, 1), the set Shft(x) may contain only one of
the following points: γk,j(x) = −x + k · 2−j+1, j = 0, . . . , l0, k = 0, . . . , 2j − 1. That is,
for any level j (j = 0, . . . , l0), there are at most 2j possible elements of Shft(x) whose
corresponding coefficients (S̃Q(x,γ(x)), where γ ∈ Shft(x)) are not exceeding 2 · δ0 · 2−j (as
implied by equation (17)). Consequently,

D+ ≤ 2 · δ0 ·
l0∑

j=0

2−j · 2j ≤ 2 · δ0 · (`0 + 1).

Similarly we obtain the same upper bound on −D− and thus conclude that
∣∣∣∣

∂

∂x
S̃T (x)

∣∣∣∣ ≤ 4 · δ0 · (l0 + 1). (18)

The Lipschitz bound for C̃ is established similarly. Indeed, note that the formal analog
of equation (16) for ∂

∂xC̃T (x) has the following form:

∂

∂x
C̃T (x) =

1∫

0

∑

Q′∈Q(Qγ)

LQ′ · (δ(x− aQ′)− δ(−x + bQ′)) dγ +

1∫

0

∑

Q′∈Q(Qγ)

∂

∂x
LQ′ · χQ′ .

Equation (13) guarantees a bound similar to that of equation (18) on the first term of
the above equation, where the constant δ0 is replaced by θ0. It also implies that for all
i = 2, · · · , D: |( ∂

∂xLQ′(x))i| ≤ θ0 and thus equation (15) is also concluded.
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