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1 Introduction

1.1 Cosmic-ray muons

Cosmic rays from deep space are continuously striking the Earth’s atmosphere. The result is a shower of
particles of various sorts, travelling in various directions at nearly the speed of light. Some of these particles
are so unstable that they decay before reaching the Earth’s surface. Others are less energetic and are
absorbed by the atmosphere. Muons, on the other hand, are not so unstable and have only a very weak
hadronic interaction. The result is that at the Earth’s surface, there is a shower of muons coming from all
directions between the horizon and the zenith. These muons can pass through several feet of lead and many
yards of rock. Unlike neutrinos, however, they do not make it through the entire planet, which is why muons
only arrive from above. The flux is approximately one per square centimeter per minute.

Muons are similar to electrons, and have an electric charge (which may be positive or negative). Their
one significant interaction with matter is Coulomb scattering, as they are deflected by electron clouds and
nuclei. Their path through matter can be regarded as a form of random walk. The overall deflection angle
as a muon of a given energy passes through a given thickness of material is roughly a Gaussian random
variable. The standard deviation of the distribution is the number of radiation lengths present in the given
thickness of material. The radiation length of a material is a decreasing function of both its density and its
atomic number (Z). Since density also tends to go up with increasing Z, the amount that a muon will be
scattered by a given thickness of material is strongly related to the atomic number of the material. This
is the key to the usefulness of muon radiography, as the danger presented by materials in the context of
nuclear smuggling also tends to go up with atomic number. Even non-radioactive materials such as lead or
tungsten should be regarded as threatening, due to their ability to act as a radiation shield for the purposes
of avoiding detection by conventional means. This is why our problem is framed in terms of detection of
high-Z materials, without worrying much about discriminating among high-Z materials. The background
muon radiation is perfect for this task.

1.2 The data

The data come from two sources, a mid-scale experimental detector arrangement, and simulations of a full-
scale detector apparatus. The muon detectors consist of drift tubes joined together in planar arrays. Two
of these detector planes are positioned above the test volume, two below. In the case of the simulations,
the test volume is a rectangular volume containing an automobile. The larger the planes in relation to the
test volume, the greater the fraction of muons passing through the test volume that will be detected. In the
simulations we have data for, the detectors are 8 meters by 4.5 meters, with detectors in a pair spaced one
meter apart, and the detector pairs 4.5 meters apart.

Each muon that is detected will then have four locations associated with it. Muons that do not pass
through all four detectors are disregarded. The near-light speed of the muons combined with the relatively
low flux rate allows muon detections at the four detectors to be associated with a single muon. See Figure 1.
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A typical simulation is for 60 seconds, in which time about 95,000 muons are detected. The raw data consists
of four locations for each of these 95,000 muons.

Figure 1: Entry and exit rays and the voxels they pass through are shown. The point of closest approach is
green.

1.3 Preliminary processing

Each of the two pairs of locations for each muon define a line in space. We regard these as an entry
ray and an exit ray. We compute the angle between these rays, and regard this as the total scattering.
An experimentally challenging issue is to determine the energy of each muon. At best, this can only be
estimated; our simulations assume an energy estimate with a relative error of about 29%. The scattering
angle is then multiplied by the energy estimate in order to normalize for energy. This product is subsequently
referred to as the scattering for the muon. This represents the best possible estimate, given the data, of the
nature of the material that the muon scattered through. Of course, a single muon can have a large scattering
as a result of passing through a small amount of high-Z material, a large amount of medium-Z material, or
as a result of a chance fluctuation. It is only in the aggregate of many muons that meaningful results are
possible.

The next step is to estimate where the scattering may have occurred. This will be at best a coarse
estimate, as the data do not allow us to distinguish between single and multiple deflections. The best
location estimate is the point that is closest to the entry and exit rays (see Figure 1). This point will be
uniquely defined unless the rays are exactly parallel, a rare event. We call this point the point of closest
approach, or POCA. This represents a single-scatter approximation of the muon’s path.

The simplest reasonable reconstruction is simply a plot of POCAs, perhaps colored according to the
magnitude of the scattering. For simple scenes, even this is enough to distinguish the presence of high-Z
material with data collected for about 60 seconds. However, it is important to be able to identify the presence
of high-Z material when significant amounts of medium-Z material are present in any arrangement, and to
do so with very high reliability and with as little data as possible. All methods improve with collection time,
as the muon flux is the limiting factor. However, it will be crucial to have a method that can operate at a
border crossing without causing delays.

For computational reasons, locations are generally defined discretely, in terms of voxels. We seek to
identify not the location of high-Z material, but the voxel in which it is contained. As before, the best
estimate of the voxel in which a muon has scattered is the one that contains the POCA. One can then regard
each voxel as a histogram bin, and tally up scatterings of muons having their POCAs in a given voxel. The
result is a three-dimensional histogram of scattering. We also compute a histogram of muon count and of
squared scattering. With these, any of several statistics can be computed. The one that seems to work best
is mean squared-scattering.
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1.4 Maximum likelihood reconstruction

A method for estimating the scattering propensity in each voxel that is very different from the POCA
reconstruction method is to compute a maximum likelihood estimate. The description of this method is
beyond the scope of this report; see [6]. The ML reconstructions used in the work described here were
computed by Larry Schultz.

1.5 Voxellation and neighborhoods

An unsettled issue is one of voxel size. The smaller the voxel size, the greater the resolution, but the fewer
the number of muons that will pass through each voxel. Also, even when one is seeking to identify roughly
voxel-sized objects, the signal may be spread over several voxels. Currently, we use 10-centimeter voxels,
though we often work not with individual voxels but with 27-voxel neighborhoods. How this differs from
using 30-centimeter voxels has not been explored.

The result of this processing is that each voxel has a point in 27-dimensional space associated with it,
with the components being the statistics for the voxels in the neighborhood. Much work has been done using
this 27-dimensional data to train a machine-learning classifier to tell whether high-Z material is present in
the central voxel. After early success, this method has had mixed results. More importantly, it must be
coupled with some other method to tell which locations should be tested with the classifier.

1.6 Data clouds

The idea explored in this report is to consider the cloud in 27-dimensional space consisting of all the 27-voxel
neighborhoods in the test volume. Preliminary studies suggested that these clouds will differ in geometric
structure depending on whether high-Z material was present in the volume. See Figures 2, 3, and 4. However,
the differences can be subtle and difficult to characterize. Nevertheless, the value of even moderate success
in distinguishing high-Z material clouds would be substantial.

Figure 2: Data clouds for each of two automobile simulations. The red cloud comes from a simulation with
20-kg uranium spheres present, the blue comes from one with no high-Z material. Shown is one view of
the projections of the clouds onto the first three principal components. Differences should be greater in the
native 27-dimensional space. The red cloud is slightly longer in this view, but otherwise little difference is
apparent.

2 Test scenarios

The multiscale analysis was carried out on three sets of data, which we describe in this section.
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Figure 3: The red cloud is both longer and broader, with some filament structure present in the outliers.

Figure 4: View from the apex of the clouds.
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2.1 Simulated car scenes

In this data set there are 10 different simulated car scenes. The simulations were carried out by Alexei
Klimenko, using GEANT. The scenes, labeled car 6 through car 15 for project historical reasons, are as
follows:

Car 6: U cylinder in steering column, 5 cm radius, 67 cm long.

Car 7: Car only, no high-Z material.

Car 8: Cylinder oriented as in Car 6, but only 7 cm long, and has 1 cm radius U wrapped in 2.5 cm radius
of Pb shielding.

Car 9: Cylinders of same radius as Car 8, but 15 cm long, and located in both bumpers of the car.

Car 10: Two spheres of U, radius 8.33 cm, one centered in the car, the other in the battery.

Car 11: Two shielded cylinders, U radius 2 cm and length 4 cm, shielded by Pb, radius 5 cm, length 10
cm, located in the axles.

Car 12: As in Car 11, but only the high-Z objects, no car.

Car 13: As in Car 10, but radius now 6.33 cm.

Car 14: As in Car 13, but with lighter wheels.

Car 15: As in Car 7 (no high-Z), but with lighter wheels.

Ten simulations representing 60 seconds of muon exposure were produced for each scene. The data were
processed to produce a POCA reconstruction of mean squared scattering (see Section 1.3) and a maximum
likelihood reconstruction (see Section 1.4).

2.2 More simulated cars

This data set consisted of slight variations of the last two scenes described above, cars 14 and 15, with the
former having high-Z material and the latter not. Slightly over 1000 simulations of 60-seconds each were run
by Matthew Sottile. In this case, only POCA reconstructions of mean squared scattering were computed.

2.3 Experimental data

The experimental data come from four event files from the current mid-scale apparatus at LANL. Each
consisted of about 170, 000 muon tracks. For two of the samples, the test volume contained a tungsten
cylinder, and the word “LANL” spelled out in 1-inch lead stock. For the other two samples, the test volume
was empty. POCA reconstructions of mean squared scattering were computed.

3 Our model for the data

We assume that the values of the muon-scattering intensities in voxel neighborhoods have been generated as
a mixture of two distributions. The first one (the “stable” part) represents the background muon scattering,
whereas the second one (the “outlying” part) represents the muon scattering due to high-Z material. We
suppose that the vectors of voxel neighborhoods arising due to the stable distribution are concentrated
around a Lipschitz graph (see Subsection 4.1). More precisely, we assume that the conditional expectation
(according to the stable distribution) of y given x is a Lipschitz function which we denote by C(x) =
(C2(x), . . . , CD(x)) for the given data (in RD). For example, the very special case when the curve is the line
spanned by the uniform vector (1, . . . , 1)′ represents uniform values among voxels of the stable distribution
(background scattering). We further assume that the values of voxel neighborhood sampled according to
the stable distribution are distributed normally around that curve. That is, y|x (sampled according to the
stable distribution) is normal with mean C(x) and with radial symmetry (the distribution is determined by
‖y − C(x)‖). We denote by S(x) the corresponding conditional standard deviation and assume that S is
finite everywhere.
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4 The MSC algorithm

The MSC (short for Multiscale Strip and Curve construction) algorithm was first developed in [5, 4]. It
assumes that a given dataset satisfies the model suggested above, and it constructs a normalizing curve (the
estimated conditional mean) with an enveloping strip (the estimated conditional variance) around it in a
multiscale fashion. The conditional variance estimate is used to identify outliers.

The algorithm builds on the following intuition: it is possible to approximate the data set by lines with
cylindrical regions around them at various locations and scales. Those lines are combined together in order
to estimate the underlying Lipschitz graph (of the function C). The cylindrical regions exclude “initial
outliers.” Inside them the algorithm estimates the local standard deviation S and then uses this estimate
together with the one for C in order to reassess “outliers” of the whole data set.

We sketch our algorithm below (Algorithm 1) for the case nsh = 1. Later subsections contain the details of
the different steps of this scheme and the case where nsh > 1. In this pseudocode and throughout this section
we denote our underlying data set by E, N the number of points in E, and D the ambient dimension. We
fix a line L that approximates E globally. We also assume that the data has been transformed orthogonally
so that L coincides with the first coordinate axis.

The algorithm depends on the following parameters: l0, c0, n0, nsh, and α0. However, the choices for
their values are not arbitrary; the optimal values are selected in a manner to be briefly discussed later, and
elaborated further elsewhere [5].

Algorithm 1 MSC algorithm
• Approximate E by a line L, and apply a rigid transformation to E, so that L = x-axis
• Set Q0 := interval containing the projection of E onto L
• Set ` = 0, Stop Int = ∅, Good Int = {Q0}, Nstop = 0
while l ≤ l0 and Nstop < N do
• For each interval Q ∈ Good Int compute line LQ and form a cylindrical region Cyl(Q) around it
• Compute fQ which describes a local fraction of putative “outliers” inside Cyl(Q)
• Compute FQ which combines fP ’s for intervals P ’s from current and previous levels containing Q
• Compute σQ: standard deviation in Cyl(Q)
• New Stop := all intervals in Good Int satisfying:
FQ > α0 or |Cyl(Q)| < n0.
• Stop Int := Stop Int ∪ New Stop
• Good int := dyadic children of intervals in Good int
• Good int := Good int \ Stop int
• Nstop := number of points in stopping intervals
• l := l + 1

end while
• Record local standard deviations for stopping time cylindrical regions to get S̃
• Record local line approximations for stopping time cylindrical regions to get C̃
• Obtain ranking R̃ by using S̃ and C̃
• Identify outliers according to R̃

4.1 Some notation and definitions

If K is a subset of RD, we denote by |K| ≡ |K ∩ E| the number of points of E in K. We use the notation
−→u = (x,y) for a point in RD; that is y = (x2, . . . , xD) ∈ RD−1. We denote by ‖−→u ‖2 the Euclidean norm of
−→u . The Lipschitz norm of a function f : R 7−→ RD−1 is a global bound on the “approximate derivative” of
f and is defined as follows:

‖f‖Lip ≡ max
x1 6=x2∈R

‖f(x2)− f(x1)‖2
|x2 − x1|

.

A function f : R 7−→ RD−1 is Lipschitz if and only if ‖f‖Lip < ∞. The Lipschitz graph associated with f has
the form: Γ = {(x,y)|x ∈ [a, b] and y = f(x)}.
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4.2 Dyadic intervals and rectangles

We fix an interval Q0 of nearly minimal length containing the projection of the data set onto the x-axis. A
dyadic interval with respect to Q0 is an interval that occurs when dividing Q0 recursively in halves. It is of
level l, if it has been obtained by l consecutive partitions. We denote all dyadic intervals with respect to Q0

by D(Q0). If Q is a dyadic interval, we denote its length by `(Q). If Q ∈ D(Q0) \ {Q0}, then denote by PQ

the dyadic parent of Q according to the grid D(Q0) and also define PQ0 := Q0.
In order to describe the stopping constructions more formally, we will need to define properties of several

regions, which extend dyadic intervals to the space RD. More details of these constructions are in [5].

Figure 5: Demonstration of the different regions associated with the interval Q when D = 2.

For an interval Q ∈ D(Q0), its extension Str(Q) to an infinite strip is

Str(Q) = Q× RD−1.

Its extension Cyl(Q) to a cylindrical region (centered around LQ) is

Cyl(Q) = Q× {y ∈ RD−1 | ‖y − LQ(x)‖2 ≤ c0 · `(Q)}.

The “outer” part of Cyl(Q) is defined, by removing a sub-cylinder of appropriate radius, as follows:

Out(Q) = Cyl(Q) \ (Q× {y ∈ RD−1 | ‖y − LQ(x)‖2 ≤
c0

2
· `(Q)}).

4.3 The stopping criterion

We briefly describe the formal steps of the stopping construction and then explain their motivation. More
details of the stopping construction and the implied properties are formulated and proved in [5].

The algorithm proceeds in a top-down procedure and computes fQ and FQ at any dyadic interval Q it
visits. The fraction fQ has the form

fQ =
|Out(Q)|
|Str(Q)|

.

The cumulative sum of fractions, FQ, is computed as follows: First, the algorithm initializes FQ0 = 0, then
it applies the reduction formula (from coarse levels to fine levels):

FQ = FPQ
+ fQ.
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While proceeding from top to bottom levels, the algorithm stops at an interval Q ∈ D(Q0) (together
with all of its descendants in D(Q0)) if any one of the following two conditions is satisfied:

1. FQ > α0. (1)
2. l > l0. (2)
3. |Cyl(Q)| < n0. (3)

The main stopping criterion (equation (1)) implies a global estimate on the percentages of initially de-
tected outliers (points outside the rectangular regions) as a function of the parameter α0 [5, Proposition 5.1].
The second stopping criterion (equation (2)) controls the maximum level that the program can reach. The
last one (equation (3)) is necessary for having valid local estimates in each interval.

The stopping construction results in local rectangles which aim to cover most of the “stable” set and
to separate away “significant” outliers. The heuristic justification for the success of this separation can be
given as follows. The local quantity fQ measures the local fraction of “putative outliers” in Cyl(Q). High
values of fQ, occurring in combination with sufficiently farther local distance from the core of the “stable”
distribution, imply presence of locally significant outliers. In order to identify outliers that are also globally
significant, we follow several strategies commonly used in harmonic analysis, which combine local quantities
at different scales to identify global structure. We use an additive function FQ, whose analogs have appeared
in similar formulations, as for example in [2] and [3].

4.4 The output functions

The main output functions C̃ and S̃, estimate the local “means” and “standard deviations” of the stable
distribution. That is, in each stopping interval Q,

C̃ = LQ, and S̃ = σQ,

where

σQ
def=

 1
|Cyl(Q)|

∑
(x,y)∈Cyl(Q)∩E

|y − LQ(x)|2
 1

2

.

If the number of points in Q is less than n0, then it assigns LPQ
and σPQ

. Equivalently, if Q(x) is the unique
stopping interval containing x, then the algorithm forms the following piecewise linear function C̃:

C̃(x) =

{
LQ(x), if |Q| ≥ n0;
LPQ(x), otherwise.

and piecewise constant function S̃:

S̃(x) =

{
σQ(x), if |Q| ≥ n0;
σPQ(x), otherwise.

We create a smoother version of the above functions by generating nsh instances of the corresponding
piecewise linear/constant functions according to different grids and averaging those piecewise linear/constant
functions (see [5, Section 4.6]).

The function S̃ estimates “standard deviations” in the rectangles associated with stopping intervals, and
requires a small correction to extend it to the region outside those rectangles. We thus alter it by assuming
that for each stopping interval Q, the points in Cyl(Q) were sampled from the restriction of a Gaussian
random variable to that region. The function Ŝ estimates the standard deviations of the underlying local
Gaussian distributions (see [5, Section 4.5]). Note that except in this last stage, the algorithm need not
make any assumptions about the exact nature of the statistical distributions of data.
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4.5 Ranking and identification of outliers

In the symmetric case, we can assign rankings R̃ and R̂ to any point (x,y) ∈ E by

R̃(x,y) =
‖y− C̃(x)‖2

S̃(x)
and R̂(x,y) =

‖y− C̃(x)‖2
Ŝ(x)

.

We mainly use the ranking R̃ due to convenience and the fact that R̃ ∼= R̂ in practice.
We may fix a threshold level λ and identify a corresponding set of outliers containing all points with

R̃ > λ. We may also assign a p-value to any point (x,y) ∈ E. That is,

p-val(x,y) = erfc

(
R̃(x,y)√

2

)
= 1− erf

(
R̃(x,y)√

2

)
,

where
erf(z) =

2√
π

∫ z

0

e−t2dt for any z ∈ R.

Following Reiner et al [1], we can have adjusted p-values to control the false discovery rate of the multiple
testing procedure. That is, given a false discovery rate level q, we order the computed p-values: p(1) ≤ . . . ≤
p(N) and set

p∗ = p-value(max{i : p(i) ≤ q · i

N
}). (4)

We identify the points with p-values less than or equal to p∗ as being outliers.

4.6 Choice of parameters

We fix the values of the following parameters, except α0, as follows: l0 := 12, n0 := 10, nsh := 10, and c0 is
(a constant multiple of) the ratio of the maximum L2 distance to the length of the projection onto E.

The parameter α0 is crucial for good performance of the algorithm. It describes the global expected
percentage of outliers. We have developed an algorithm for estimating this parameter [5, Section 4.8].
The main idea is to apply the MSC algorithm with different values of α0 and identify outliers at different
thresholds on p-values. For each value of α0, we draw the curve of the number of outliers detected by
the algorithm as a function of the threshold on p-values. The “correct” value of α0 (representing global
percentage of outliers) is detected by the largest jump between the curves. However, we have skipped this
step when processing the data in order to save time and have determined that α0 = 0.1 after trying out a
few values of α0 (e.g., 0.05, 0.10, 0.15, etc.).

4.7 Complexity

The speed of the algorithm for a data set of N points, when using `0 levels and nsh shifts, is of order
O(N ·D · `0 · nsh) and the required storage is O(N ·D) (see [5, Section 5.3]). In practice, the CPU time of
our algorithm was about 0.51 seconds using data with N = 4950 points in R27 and nsh = 1, and an IBM
T43 laptop with Intel Pentium M processor 2.13 GHz and 1 GB of RAM.

5 Numerical results and discussions

We applied the MSC algorithm to the three data sets described in Section 2 and report our results in this
section.
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5.1 Simulated car scenes

5.1.1 POCA data

Recall that for each car scene, the data consist of 10 samples of 4950 27-voxel neighborhoods. We applied the
MSC algorithm to the matrices of 4950 points in R27. We have combined information from the ten different
replicates (samples) in two different ways.

First, in order to compensate for random effects, we have computed the median ranks R̃ along the 10
samples. The larger the rank of a point, the greater the possibility that it is an outlier. Figure 6 shows
sorted values of the ranks R̃ for all 10 cars.

We can see that the cars 6, 10, 12, 13, and 14 all have a significant amount of sample points that have
ranks greater than 2. Cars 7, 8, and 9 have maximum ranks less than 2. Cars 11 and 15 have just a very
small number of points (about 5) that have ranks slightly greater than 2. Note that R̃ = 2 corresponds to
a p-value erfc(R̃/

√
2) = 0.0455. Thus an initial conclusion, which may be statistically imprecise, is that at

the 0.05 confidence level, we can ascertain that cars 6, 10, 12, 13, and 14 have high-Z material inside and
cars 7, 8, and 9 do not. Cars 11 and 15 are a bit on the edge, thus we cannot make a decision about them.

Second, in order to make our analysis more precise in this situation of multiple testing (random values
at different voxels), we have maintained a false discovery rate of 0.2. We have computed for each replicate
a p∗, the threshold p-value (see equation (4)), and have identified high-Z voxels as those that are detected
as outliers in at least 2 (out of the 10) replicates. Cars 6, 10, 12, 13, and 14 were detected in this way as
having high-Z material. Following the ground truth information on the cars, we find that we have failed to
identify cars 8, 9, and 11 as having high-Z material.

In order to obtain some insight into the misclassification of those cars, we decide to observe the data
structures of the 10 cars in some way.

Recall that there are 10 cars, each consisting of 10 samples. These 100 samples are all matrices of size
4950 × 27. We first shift these samples by their centers of mass then rotate them according to the right
singular matrices so that the main axes are the x1-axes. We then plot the second principal axis versus the
first (i.e., x1-axes) in the xy-plane. To save space and for simplicity, Figure 7 describes the 2-dimensional
representations of only 10 samples, each of which is from a separate car. Note that the plots for cars 7, 9,
and 11 were intentionally made to be on the same scale for comparison.

Cars 6, 10, 12, 13, and 14 generally have much more spread-out geometrical structures than the rest,
making it plausible for them to be correctly detected as having high-Z material. However, there is no general
pattern for the other cars, namely 7, 8, 9, 11, and 15. Look at the attached plots that were obtained by
using the first samples and notice the following: the plots corresponding to cars 7 and 11 have very similar
geometrical structures, which makes it very hard to distinguish between them; the plot of car 9 (which has
high-Z) has the most concentrated structure of all; and the plot of car 15 (without high-Z) even looks like
having a few outliers. These abnormal phenomena suggest that the exposure time may not be long enough
so that the random effects may have been dominant in the muon-scattering process.

5.1.2 ML data

For this type of data, we could not obtain as good discrimination as with the POCA data. A similar
two-dimensional inspection of this data is in Figure 8.

5.2 More simulated cars

We have about 1000 samples of 60-second simulations of two cars, one with high-Z material and one without.
Noticing that the two settings are identical except for high-Z material being present or not, we assume the
variances of the stable concentrations in both settings to be the same. The data was then processed in two
different ways. One way was to take medians of ranks over several samples. The other was to first combine
the data to produce histograms for longer exposure times, and then compute the ranks. The former method
generally produced better results.

Several results are plotted in Figure 9. Both processing methods fail to distinguish well between the two
cars with an effective exposure time of three minutes. With four minutes, only a few negative samples have
a rank greater than the lowest 30% of the ranks of positive samples. With five minutes, this decreases to
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(a) Car 6 (b) Car 7 (c) Car 8

(d) Car 9 (e) Car 10 (f) Car 11

(g) Car 12 (h) Car 13

(i) Car 14 (j) Car 15

Figure 6: Sorted median rank for 10 samples for each car.
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(a) Car 6 (b) Car 7 (c) Car 8

(d) Car 9 (e) Car 10 (f) Car 11

(g) Car 12 (h) Car 13

(i) Car 14 (j) Car 15

Figure 7: Plots of two-dimensional projections of the 27-dimensional voxel neighborhoods from POCA
reconstructions.
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(a) Car 6 (b) Car 7 (c) Car 8

(d) Car 9 (e) Car 10 (f) Car 11

(g) Car 12 (h) Car 13

(i) Car 14 (j) Car 15

Figure 8: Plots of two-dimensional projections of the 27-dimensional voxel neighborhoods from maximum-
likelihood reconstructions.

13



about 15%. After eight minutes, the overlap is only a few samples. Using nine minutes processed from the
median of three, three-minute ranks does slightly less well.

(a) 100th-largest median rank of 3 60-
second samples

(b) 50th-largest rank of 180-second
samples

(c) 100th-largest median rank of 4 60-
second samples

(d) 50th-largest median rank of 5 60-
second samples

(e) 10th-largest median rank of 8 60-
second samples

(f) 25th-largest median rank of 3 180-
second samples

Figure 9: Plots of the nth largest median rank, as indicated. Blue is car 14 (high-Z), red is car 15 (no
high-Z).

5.3 Experimental data

We have also applied the MSC algorithm to compute the ranks for all four samples. The plots of the sorted
ranks are in Figure 10.

We see that two plots (plots 1 and 3) have highest values around 2 while the other two (plots 2 and 4)
have highest values around 6. Moreover, for the latter, there are large jumps on the right ends of the plots.
These are all strong evidence that experiments 2 and 4 have high-Z material present and 1 and 3 do not.
This matches the true nature of the four experiments.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 10: Sorted rank for each experimental sample.
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