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1 2.1.1.

More generally show that if ω =
∑
gIduI , then dω =

∑
dgIduI .

Solution. Let f : Rn → Rn be a diffeomorphism such that ui = xi ◦f = f∗(xi). Observe
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the calculation

dω = d
(∑

gI(u)duI

)
= d
(∑

(gI ◦ f)(x)df∗(x1) · · · df∗(xn)
)

=
∑
I

(
d(gI ◦ f)(x)df∗(x1) · · · df∗(xn) +

n∑
j=1

(gI ◦ f)(x)df∗(x1) · · · d2f∗(xj) · · · df∗(xn)
)

=
∑
I

d(gI ◦ f)(x)df∗(x1) · · · df∗(xn)

=
∑
I

dgI(u)duI ,

where in the third equality we used the linearity of d and the product rule, and in the
fourth equality we used the fact that d2 = 0. �

2 3.6.

Prove Stokes’ Theorem for the upper half space.

Solution. Let ω =
∑n

j=1 fndx1 · · · d̂xj · · · dxn be an (n− 1)-form with compact support.
Observe the calculation

ˆ
Hn

dω =

n∑
j=1

(−1)j−1
ˆ
Hn

∂fj
∂xj

dx1 · · · dxn

= (−1)n−1
ˆ
Hn

∂fn
∂xn

dx1 · · · dxn

+
n−1∑
j=1

(−1)j−1
ˆ ∞
0

ˆ ∞
−∞
· · ·
ˆ ∞
−∞

(ˆ ∞
−∞

∂fj
∂xj

dxj

)
dx1 · · · d̂xj · · · dxn

= (−1)n
ˆ ∞
−∞
· · ·
ˆ ∞
−∞

f(x1, ..., xn−1, 0)dx1 · · · dxn−1

=

ˆ
∂Hn

ω,

where in the second equality we used Fubini’s theorem, and in the fourth equality we
used the Fundamental Theorem of Calculus as well as the fact that ω (hence f) has
compact support in Hn. �

3 4.3.1

Volume form on a sphere. Let Sn(r) be the sphere of radius r

x21 + · · ·+ x2n+1 = r2

2



in Rn+1, and let

ω =
1

r

n+1∑
i=1

(−1)i−1xidx1 · · · d̂xi · · · dxn+1.

(a) Write Sn for the unit sphere Sn(1). Compute the integral
´
Sn ω and conclude that

ω is not exact.

(b) Regarding r as a function on Rn+1 \ {0}, show that (dr) · ω = dx1 · · · dxn+1. Thus,
ω is the Euclidean volume form on the sphere Sn(r).

Solution. (a) Let Bn+1(1) be the (n+ 1)−dimensional unit ball centered at the origin.
Observe the calculation

ˆ
Sn(1)

ω =

ˆ
Bn+1(1)

dω =

ˆ
Bn+1(1)

n+1∑
j=1

∂
xj
r

∂xj
(−1)2(j−1)dx1 · · · dxn+1

=

ˆ
Bn+1(1)

n+1∑
j=1

r2 − x2j
r3

dx1 · · · dxn+1 =

ˆ
Bn+1(1)

n

r
dx1 · · · dxn+1

=

ˆ
Sn(1)

ˆ 1

0

n

r
rn+1−1 dr dz = {Surface area of Sn(1)}

where in the first equality we used Stokes’ Theorem, in the fifth equality we used
Fubini’s Theorem to change into spherical coordinates, which is not zero. In particular,
we conclude that dω 6= 0, or equivalently, ω is not exact.

(b) Since r is a 0−form, we may use Proposition 1.3 to easily see that

(dr) · ω = d(r · ω)− r · dω =
n+1∑
j=1

∂xj
∂xj

dx1 · · · dxn+1 − r ·
n

r
dx1 · · · dxn+1

= dx1 · · · dxn+1,

as desired. �

4 4.5.

Show that dπ∗ = π∗d; in other words, π∗ : Ω∗c(M × R1)→ Ω∗−1c (M) is a chain map.

Solution. We use the definitions and notation immediately preceding Exercise 4.5 in [1].
Let ω be a form of type (I). Then note that π∗ω = 0, so that dπ∗ω = 0. On the other
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hand,

π∗dω = π∗d
(
π∗φ · f

)
= π∗

(
(dπ∗φ) · f(x, t)

)
+ π∗

(
(−1)deg(π

∗φ)π∗φ · df
)

= (−1)deg(π
∗φ)π∗

(
π∗φ · ∂f

∂t
dt+

∑
π∗φ · ∂f

∂xi
dxi

)
= (−1)deg(π

∗φ)π∗

(
π∗φ · ∂f

∂t
dt+

∑
π∗(φdxi) ·

∂f

∂xi

)
= (−1)deg(π

∗φ)π∗

(
π∗φ · ∂f(x, t)

∂t
dt
)

= (−1)deg(π
∗φ)φ

ˆ ∞
−∞

∂f(x, t)

∂t
dt

= 0,

where first we used the product rule, then we used the chain rule, the fact that d and
π∗ commute, and the fact that π∗ maps forms of type (I) to 0, and finally we used the
fact that f has compact support.

Now let ω be a form of type (II). Then

π∗dω = π∗d
(
π∗φ · fdt

)
= π∗

(
(dπ∗φ) · fdt

)
+ π∗

(
(−1)deg(π

∗φ)π∗φ · dfdt
)

= (dφ)

ˆ ∞
−∞

fdt+ (−1)deg(π
∗φ)π∗

(∑
π∗(φdxi) ·

∂f

∂xi
dt
)

= (dφ)

ˆ ∞
−∞

fdt+ (−1)deg(π
∗φ)
∑

φdxi

ˆ ∞
−∞

∂f(x, t)

∂xi
dt

= d

(
φ

ˆ ∞
−∞

f(x, t)dt

)
= dπ∗

(
π∗φ · f(x, t)dt

)
= dπ∗ω,

as claimed.

5 4.8.

Compute the cohomology groups H∗(M) and H∗c (M) of the open Möbius strip M , i.e.,
the Möbius strip without the bounding edge.
Solution. We claim that the cohomology groups are

Hq(M) =

{
R q = 0, 1,

0 q > 1,
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and
H∗c (M) = 0, for each q.

Recall that M deformation retracts onto its center circle. By Corollary 4.1.2.1, it follows
that Hq(M) ' Hq(S1) for each q. Since

Hq(S1) '

{
R q = 0, 1,

0 q > 1,
,

due to Exercise 4.3, the first claim follows.
We now consider the compact support cohomology. Since M is a surface, it is clear

that Hq
c (M) = 0 for each q ≥ 3. Thus we have to study Hq

c (M) for q = 0, 1, 2. Let U
and V be open disks in M such that U ∪V = M , and V ∩U is the disjoint union of two
open disks D1, D2 (for instance, we may think of U as covering one half of the Möbius
band with a bit of the other half, and V covers the other half with a bit of the first
half, in such a way that the intersection has two connected components, each of which
diffeomorphic to disks). Then U , V , D1, D2 are all orientable and diffeomorphic to R2,
so the Poincaré Lemma for compact supports gives us that

Hq
c (U) ' Hq

c (V ) ' Hq
c (D1) ' Hq

c (D2) '

{
R q = 2,

0 q 6= 2
,

whence

Hq
c (U ∩ V ) = Hq

c (D1 ∪D2) '

{
R2 q = 2

0 q 6= 2
.

We now apply the Mayer-Vietoris sequence. For each q, we have the long exact sequence

· · · → Hq
c (U ∩ V )→ Hq

c (U)⊕Hq
c (V )→ Hq

c (M)→ Hq+1
c (U ∩ V )→ · · · .

In particular,
0 ' H0

c (U)⊕H0
c (V )→ H0

c (M)→ H1
c (U ∩ V ) ' 0,

so that H0
c (M) = 0. Moreover, we have the exact sequence

0→ H1
c (M)→ H2

c (U ∩ V )
δ−→ H2

c (U)⊕H2
c (V )→ H2

c (M)→ 0.

Via Stokes’ Theorem, it is trivial to check that δ sends generators of H2
c (U ∩ V ) to

elements with no zero-component of H2
c (U)⊕H2

c (V ). Hence δ is a group isomorphism.
By the exactness of the sequence, this observation forces that H1

c (M) ' H2
c (M) ' 0,

as desired. �
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