MATH 8302: Manifolds \& Topology Homework 3

Bruno Poggi
Department of Mathematics, University of Minnesota

March 4, 2019

The book referenced throughout is [1].

Contents

1 2.1.1. 1
2 3.6.
3 4.3.1 2
4 4.5. 3
5 4.8. 4

1 2.1.1.

More generally show that if $\omega=\sum g_{I} d u_{I}$, then $d \omega=\sum d g_{I} d u_{I}$.
Solution. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism such that $u_{i}=x_{i} \circ f=f^{*}\left(x_{i}\right)$. Observe
the calculation

$$
\begin{aligned}
& d \omega=d\left(\sum g_{I}(u) d u_{I}\right)=d\left(\sum\left(g_{I} \circ f\right)(x) d f^{*}\left(x_{1}\right) \cdots d f^{*}\left(x_{n}\right)\right) \\
& =\sum_{I}\left(d\left(g_{I} \circ f\right)(x) d f^{*}\left(x_{1}\right) \cdots d f^{*}\left(x_{n}\right)+\sum_{j=1}^{n}\left(g_{I} \circ f\right)(x) d f^{*}\left(x_{1}\right) \cdots d^{2} f^{*}\left(x_{j}\right) \cdots d f^{*}\left(x_{n}\right)\right) \\
& =\sum_{I} d\left(g_{I} \circ f\right)(x) d f^{*}\left(x_{1}\right) \cdots d f^{*}\left(x_{n}\right) \\
& =\sum_{I} d g_{I}(u) d u_{I}
\end{aligned}
$$

where in the third equality we used the linearity of d and the product rule, and in the fourth equality we used the fact that $d^{2}=0$.

2 3.6.

Prove Stokes' Theorem for the upper half space.
Solution. Let $\omega=\sum_{j=1}^{n} f_{n} d x_{1} \cdots \widehat{d x_{j}} \cdots d x_{n}$ be an ($n-1$)-form with compact support. Observe the calculation

$$
\begin{aligned}
\int_{\mathbb{H}^{n}} d \omega= & \sum_{j=1}^{n}(-1)^{j-1} \int_{\mathbb{H}^{n}} \frac{\partial f_{j}}{\partial x_{j}} d x_{1} \cdots d x_{n} \\
& =(-1)^{n-1} \int_{\mathbb{H}^{n}} \frac{\partial f_{n}}{\partial x_{n}} d x_{1} \cdots d x_{n} \\
+ & \sum_{j=1}^{n-1}(-1)^{j-1} \int_{0}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} \frac{\partial f_{j}}{\partial x_{j}} d x_{j}\right) d x_{1} \cdots \widehat{d x_{j}} \cdots d x_{n} \\
& =(-1)^{n} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n-1}, 0\right) d x_{1} \cdots d x_{n-1}
\end{aligned}
$$

where in the second equality we used Fubini's theorem, and in the fourth equality we used the Fundamental Theorem of Calculus as well as the fact that ω (hence f) has compact support in \mathbb{H}^{n}.

$3 \quad 4.3 .1$

Volume form on a sphere. Let $S^{n}(r)$ be the sphere of radius r

$$
x_{1}^{2}+\cdots+x_{n+1}^{2}=r^{2}
$$

in \mathbb{R}^{n+1}, and let

$$
\omega=\frac{1}{r} \sum_{i=1}^{n+1}(-1)^{i-1} x_{i} d x_{1} \cdots \widehat{d x_{i}} \cdots d x_{n+1} .
$$

(a) Write S^{n} for the unit sphere $S^{n}(1)$. Compute the integral $\int_{S^{n}} \omega$ and conclude that ω is not exact.
(b) Regarding r as a function on $\mathbb{R}^{n+1} \backslash\{0\}$, show that $(d r) \cdot \omega=d x_{1} \cdots d x_{n+1}$. Thus, ω is the Euclidean volume form on the sphere $S^{n}(r)$.

Solution. (a) Let $B^{n+1}(1)$ be the $(n+1)$-dimensional unit ball centered at the origin. Observe the calculation

$$
\begin{aligned}
& \int_{S^{n}(1)} \omega= \int_{B^{n+1}(1)} d \omega=\int_{B^{n+1}(1)} \sum_{j=1}^{n+1} \frac{\partial \frac{x_{j}}{r}}{\partial x_{j}}(-1)^{2(j-1)} d x_{1} \cdots d x_{n+1} \\
&=\int_{B^{n+1}(1)} \sum_{j=1}^{n+1} \frac{r^{2}-x_{j}^{2}}{r^{3}} d x_{1} \cdots d x_{n+1}=\int_{B^{n+1}(1)} \frac{n}{r} d x_{1} \cdots d x_{n+1} \\
&=\int_{S^{n}(1)} \int_{0}^{1} \frac{n}{r} r^{n+1-1} d r d z=\left\{\text { Surface area of } S^{n}(1)\right\}
\end{aligned}
$$

where in the first equality we used Stokes' Theorem, in the fifth equality we used Fubini's Theorem to change into spherical coordinates, which is not zero. In particular, we conclude that $d \omega \neq 0$, or equivalently, ω is not exact.
(b) Since r is a 0 -form, we may use Proposition 1.3 to easily see that

$$
\begin{aligned}
(d r) \cdot \omega=d(r \cdot \omega)-r \cdot d \omega=\sum_{j=1}^{n+1} \frac{\partial x_{j}}{\partial x_{j}} d x_{1} \cdots d x_{n+1}-r \cdot \frac{n}{r} d x_{1} \cdots d x_{n+1} & \\
& =d x_{1} \cdots d x_{n+1}
\end{aligned}
$$

as desired.

$4 \quad 4.5$.

Show that $d \pi_{*}=\pi_{*} d$; in other words, $\pi_{*}: \Omega_{c}^{*}\left(M \times \mathbb{R}^{1}\right) \rightarrow \Omega_{c}^{*-1}(M)$ is a chain map.
Solution. We use the definitions and notation immediately preceding Exercise 4.5 in [1]. Let ω be a form of type (I). Then note that $\pi_{*} \omega=0$, so that $d \pi_{*} \omega=0$. On the other
hand,

$$
\begin{aligned}
& \pi_{*} d \omega= \pi_{*} d\left(\pi^{*} \phi \cdot f\right)=\pi_{*}\left(\left(d \pi^{*} \phi\right) \cdot f(x, t)\right)+\pi_{*}\left((-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \pi^{*} \phi \cdot d f\right) \\
&=(-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \pi_{*}\left(\pi^{*} \phi \cdot \frac{\partial f}{\partial t} d t+\sum \pi^{*} \phi \cdot \frac{\partial f}{\partial x_{i}} d x_{i}\right) \\
&=(-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \pi_{*}\left(\pi^{*} \phi \cdot \frac{\partial f}{\partial t} d t+\sum \pi^{*}\left(\phi d x_{i}\right) \cdot \frac{\partial f}{\partial x_{i}}\right) \\
&=(-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \pi_{*}\left(\pi^{*} \phi \cdot \frac{\partial f(x, t)}{\partial t} d t\right)=(-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \phi \int_{-\infty}^{\infty} \frac{\partial f(x, t)}{\partial t} d t
\end{aligned}
$$

$$
=0
$$

where first we used the product rule, then we used the chain rule, the fact that d and π^{*} commute, and the fact that π_{*} maps forms of type (I) to 0 , and finally we used the fact that f has compact support.

Now let ω be a form of type (II). Then

$$
\begin{aligned}
& \pi_{*} d \omega=\pi_{*} d\left(\pi^{*} \phi \cdot f d t\right) \\
&=\pi_{*}\left(\left(d \pi^{*} \phi\right) \cdot f d t\right)+\pi_{*}\left((-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \pi^{*} \phi \cdot d f d t\right) \\
&=(d \phi) \int_{-\infty}^{\infty} f d t+(-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \pi_{*}\left(\sum \pi^{*}\left(\phi d x_{i}\right) \cdot \frac{\partial f}{\partial x_{i}} d t\right) \\
&=(d \phi) \int_{-\infty}^{\infty} f d t+(-1)^{\operatorname{deg}\left(\pi^{*} \phi\right)} \sum \phi d x_{i} \int_{-\infty}^{\infty} \frac{\partial f(x, t)}{\partial x_{i}} d t \\
&=d\left(\phi \int_{-\infty}^{\infty} f(x, t) d t\right) \\
&=d \pi_{*}\left(\pi^{*} \phi \cdot f(x, t) d t\right)
\end{aligned}
$$

$$
=d \pi_{*} \omega,
$$

as claimed.

$5 \quad 4.8$.

Compute the cohomology groups $H^{*}(M)$ and $H_{c}^{*}(M)$ of the open Möbius strip M, i.e., the Möbius strip without the bounding edge.
Solution. We claim that the cohomology groups are

$$
H^{q}(M)= \begin{cases}\mathbb{R} & q=0,1 \\ 0 & q>1\end{cases}
$$

and

$$
H_{c}^{*}(M)=0, \quad \text { for each } q
$$

Recall that M deformation retracts onto its center circle. By Corollary 4.1.2.1, it follows that $H^{q}(M) \simeq H^{q}\left(S^{1}\right)$ for each q. Since

$$
H^{q}\left(S^{1}\right) \simeq \begin{cases}\mathbb{R} & q=0,1, \\ 0 & q>1,\end{cases}
$$

due to Exercise 4.3, the first claim follows.
We now consider the compact support cohomology. Since M is a surface, it is clear that $H_{c}^{q}(M)=0$ for each $q \geq 3$. Thus we have to study $H_{c}^{q}(M)$ for $q=0,1,2$. Let U and V be open disks in M such that $U \cup V=M$, and $V \cap U$ is the disjoint union of two open disks D_{1}, D_{2} (for instance, we may think of U as covering one half of the Möbius band with a bit of the other half, and V covers the other half with a bit of the first half, in such a way that the intersection has two connected components, each of which diffeomorphic to disks). Then U, V, D_{1}, D_{2} are all orientable and diffeomorphic to \mathbb{R}^{2}, so the Poincaré Lemma for compact supports gives us that

$$
H_{c}^{q}(U) \simeq H_{c}^{q}(V) \simeq H_{c}^{q}\left(D_{1}\right) \simeq H_{c}^{q}\left(D_{2}\right) \simeq \begin{cases}\mathbb{R} & q=2 \\ 0 & q \neq 2\end{cases}
$$

whence

$$
H_{c}^{q}(U \cap V)=H_{c}^{q}\left(D_{1} \cup D_{2}\right) \simeq \begin{cases}\mathbb{R}^{2} & q=2 \\ 0 & q \neq 2\end{cases}
$$

We now apply the Mayer-Vietoris sequence. For each q, we have the long exact sequence

$$
\cdots \rightarrow H_{c}^{q}(U \cap V) \rightarrow H_{c}^{q}(U) \oplus H_{c}^{q}(V) \rightarrow H_{c}^{q}(M) \rightarrow H_{c}^{q+1}(U \cap V) \rightarrow \cdots
$$

In particular,

$$
0 \simeq H_{c}^{0}(U) \oplus H_{c}^{0}(V) \rightarrow H_{c}^{0}(M) \rightarrow H_{c}^{1}(U \cap V) \simeq 0
$$

so that $H_{c}^{0}(M)=0$. Moreover, we have the exact sequence

$$
0 \rightarrow H_{c}^{1}(M) \rightarrow H_{c}^{2}(U \cap V) \xrightarrow{\delta} H_{c}^{2}(U) \oplus H_{c}^{2}(V) \rightarrow H_{c}^{2}(M) \rightarrow 0 .
$$

Via Stokes' Theorem, it is trivial to check that δ sends generators of $H_{c}^{2}(U \cap V)$ to elements with no zero-component of $H_{c}^{2}(U) \oplus H_{c}^{2}(V)$. Hence δ is a group isomorphism. By the exactness of the sequence, this observation forces that $H_{c}^{1}(M) \simeq H_{c}^{2}(M) \simeq 0$, as desired.

References

[1] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer.

