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1 5.12.

Künneth formula for compact cohomology. The Künneth formula for compact cohomol-
ogy states that for any manifolds M and N having a finite good cover,

H∗c (M ×N) = H∗c (M)⊗H∗c (N).

(a) In case M and N are orientable, show that this is a consequence of Poincaré duality
and the Künneth formula for de Rham cohomology.

(b) Using the Mayer-Vietoris argument, prove the Künneth formula for compact coho-
mology for any M and N having a finite good cover.
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Solution. (a) Since M,N have finite good covers, it follows that their cohomologies and
compact cohomologies are finite-dimensional, whence Poincaré duality does tell us that

Hq
c (X) ' Hn−q(X), for each q ∈ N0,

where X = M,N . Let m be the dimension of M and n the dimension of N . Then, for
each integer k = 0, . . . ,m+ n, we have that

Hk
c (M ×N) =

(
Hm+n−k(M ×N)

)∗
=
( ⊕
p+q=m+n−k

Hp(M)⊗Hq(N)
)∗

=
⊕

p+q=m+n−k
(Hp(M))∗ ⊗ (Hq(N))∗ =

⊕
p+q=m+n−k

Hm−p
c (M)⊗Hn−q

c (N)

=
⊕
s+t=k

Hs
c (M)⊗Ht

c(N),

where we used Poincaré duality, then the Kunneth formula for De Rham cohomology,
then the commutativity of the dual operator (·)∗ with direct sum and tensor product,
then Poincaré duality, and finally a change of variables s = m− p, t = n− q.

(b) We follow the Mayer-Vietoris argument. The natural projections π : M×N →M
and ρ : M ×N → N give rise to a map on forms with compact support

ω ⊗ φ 7→ π∗ω ∧ ρ∗φ.

We have that π∗ω∧ρ∗φ has compact support in M×N . Hence we have the pushforward
map in compact cohomology

ψ : H∗c (M)⊗H∗c (N)→ H∗c (M ×N).

We are done as soon as we show that ψ is an isomorphism, which we now intend to prove.
Let U and V be open sets in M and let n be a fixed integer. From the Mayer-Vietoris
sequence

· · · → Hp
c (U ∩ V )→ Hp

c (U)⊕Hp
c (V )→ Hp

c (U ∪ V )→ · · ·

we get an exact sequence by tensoring with Hn−p
c ,

· · · → Hp
c (U ∩ V )⊗Hn−p

c (N)→ (Hp
c (U)⊕Hp

c (V ))⊗Hn−p
c (N)

→ Hp(U ∪ V )⊗Hn−p
c (N)→ · · · ,

since tensoring with a vector space preserves exactness. Summing over all integers p
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yields the exact sequence

· · · →
n⊕
p=0

Hp
c (U ∩ V )⊗Hn−p

c (N)

→
n⊕
p=0

(
(Hp

c (U)⊗Hn−p
c (N))⊕ (Hp

c (V )⊗Hn−p
c (N))

)
→

n⊕
p=0

Hp
c (U ∪ V )⊗Hn−p

c (N)→ · · · .

The following diagram is commutative

⊕n
p=0H

p
c (U ∩ V )⊗Hn−p

c (N)
⊕n

p=0(H
p
c (U)⊗Hn−p

c (N))⊕ (Hp
c (V )⊗Hn−p

c (N))
⊕n

p=0H
p(U ∪ V )⊗Hn−p

c (N)

Hn
c ((U ∩ V )×N) Hn

c (U ×N)⊕Hn
c (V ×N) Hn

c ((U ∪ V )×N) .

ψ ψ ψ

Since M is an m−manifold with finite good cover, each of U, V, U∩V is diffeomorphic
to Rm. Note that Hk

c (Rm) ' 0 for all k 6= m, and Hm
c (Rm) ' R (see p.46). Hence, if

n ≥ m, then

n⊕
p=0

Hp
c (Rm)⊗Hn−p

c (N) ∼= R⊗Hn−m
c (N) ∼= Hn−m

c (N) ∼= Hn
c (Rm ×N),

where we used Proposition 4.7 in the last step. Hence the Kunneth formula is verified
for U, V , and U ∩ V . By the Five lemma, then the Kunneth formula is also true for
U ∪V . enough to show that ψ is an isomorphism on U, V, U ∩V . The Kunneth formula
now follows by induction on the cardinality of a good cover, as in the proof of Poincaré
duality. �

2 5.16.

The ray and the circle in R2\{0}. Let x, y be the standard coordinates and r, θ the
polar coordinates on R2\{0}.

(a) Show that the Poincaré dual of the ray {(x, 0) : x > 0} in R2\{0} is dθ/2π in
H1(R2\{0}).

(b) Show that the closed Poincaré dual of the unit circle in H1(R2\{0}) is 0, but the
compact Poincaré dual is the nontrivial generator ρ(r)dr in H1

c (R2\{0}) where ρ(r)
is a bump function with total integral 1.
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Solution. (a). Let M = R2\{0} and S = {(x, 0) : x > 0}, which is a closed oriented
submanifold of dimension 1. Let i : S → M be the inclusion map. We need to show
that for any ω ∈ H1

c (M), we have thatˆ
S
i∗ω =

ˆ
M
ω ∧ dθ

2π
.

So let ω ∈ H1
c (M), so that there exist f, g ∈ C∞c (M) such that ω = f(r, θ)dr+g(r, θ)dθ.

Now, dω = 0 because ω must be closed, and hence it follows that ∂f
∂θ = ∂g

∂r . Integrating
this identity over r from 0 to ∞ yields that

∂

∂θ

( ˆ ∞
0

f(r, θ) dr
)

=

ˆ ∞
0

∂g(r, θ)

∂r
dr = 0,

where in the last equality we used the Fundamental Theorem of Calculus and the fact
that g is compactly supported in M . Thus the quantity

´∞
0 f(r, θ) dr is a constant in

θ. Hence,

ˆ
M
ω ∧ dθ

2π
=

1

2π

ˆ 2π

0

(ˆ ∞
0

f(r, θ) dr
)
dθ =

1

2π

ˆ 2π

0

(ˆ ∞
0

f(r, 0) dr
)
dθ

=

ˆ ∞
0

f(r, 0) dr =

ˆ
S
f |S dx =

ˆ
S
i∗ω,

as desired.
(b) Let M = R2\{0} and S is the unit circle, which is a closed oriented submanifold

of dimension 1. Let i : S → M be the inclusion map. To show that 0 is the closed
Poincaré dual of S, we have to prove that for any ω ∈ H1

c (M), we have thatˆ
S
i∗ω = 0.

So let ω ∈ H1
c (M), so that there exist f, g ∈ C∞c (M) such that ω = f(r, θ)dr+g(r, θ)dθ.

Now, dω = 0 because ω must be closed, and hence it follows that ∂f
∂θ = ∂g

∂r . Integrating

this identity over θ from 0 to 2π yields easily that the quantity
´ 2π
0 g(r, θ) dθ is a constant

in r. Since for all r and all θ large enough, g(r, θ ≡ 0 since g is compactly supported, we
conclude that

´ 2π
0 g(r, θ) dθ = 0, for some (and hence, for every) r > 0. Consequently,

ˆ
S
i∗ω =

ˆ 2π

0
g(1, θ) dθ = 0,

as claimed.
We now purport to show that ρ(r) dr is the compact Poincaré dual of S, where ρ(r)

is a bump function such that
´∞
0 ρ(r) dr = 1. To do so, we have to prove that for any

ω ∈ H1(M), we have that ˆ
S
i∗ω =

ˆ
M
ω ∧ (ρ(r) dr).
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So let ω ∈ H1(M), so that there exist f, g ∈ C∞(M) such that ω = f(r, θ)dr+g(r, θ)dθ.
Now, dω = 0 because ω must be closed, and hence it follows that ∂f

∂θ = ∂g
∂r . Integrating

this identity over θ from 0 to 2π yields easily that the quantity
´ 2π
0 g(r, θ) dθ is a constant

in r. Thus, we observe that

ˆ
S
i∗ω =

ˆ 2π

0
g(1, θ) dθ =

(ˆ 2π

0
g(1, θ) dθ

)(ˆ ∞
0

ρ(r) dr
)

=

ˆ ∞
0

ρ(r)
(ˆ 2π

0
g(1, θ) dθ

)
dr =

ˆ ∞
0

ρ(r)
(ˆ 2π

0
g(r, θ) dθ

)
dr

=

ˆ
M

[
f(r, θ)dr + g(r, θ)dθ

]
∧ (ρ(r) dr) =

ˆ
M
ω ∧ (ρ(r) dr),

where in the second equality we used the fact that the integral of ρ is 1, in the fifth
equality we used that drdr = 0 and Fubini’s Theorem which is applicable since ρ is
non-negative, smooth, and has bounded support in M (since it is a bump function),
and |g| is bounded in the support of ρ. The claim follows. �

3 6.2.

Show that two vector bundles on M are isomorphic if and only if their cocycles relative
to some open cover are equivalent.

Solution. (Only if). Let (E, π), (E′, π′) be two vector bundles over M which are iso-
morphic, so that there is a vector bundle isomorphism f : E → E′. Let (Uα, φα)
be the open cover of M with the corresponding trivializations for E, afforded by its
definition. Then (Uα, φα ◦ f−1) is an open cover of M together with trivializations
φ′α := φα ◦ f−1 : E′|Uα → Uα ×Rn for some n. Fix α, β and x ∈ Uα ∩Uβ. Note that, in
this case via our construction,

g′αβ(x) = φ′αφ
′−1
β (x) = φαf

−1fφ−1β (x) = φαφ
−1
β (x) = gαβ(x),

so that gαβ and g′αβ are equivalent, but we are not technically done yet because (E′, π′)
may be a priori endowed with different trivializations than φ′α. So let {φ′′α} be any
collection of trivializations with which E′ is endowed over the open cover Uα. Then
we may use Lemma 6.1 to see that g′′αβ is equivalent with g′αβ. Since equivalence is
transitive, we thus have that gαβ is equivalent with g′′αβ, as desired.

(If). Now fix an open cover {Uα} of M . Let (E, π), (E′, π′) be two vector bundles
over M , let φα, φα′ be the respective trivializations over {Uα}, and let gαβ, g

′
αβ be the

respective cocycles. By hypothesis, there exist invertible maps λα : Uα → GL(n,R)
such that

gαβ = λαg
′
αβλ

−1
β , on Uα ∩ Uβ,
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(here, λ−1β is the inverse matrix to λβ, not the inverse map of λβ). For each Uα, let
fα : E|Uα → E′|Uα be the map given by

fα := φ′−1α ◦ (λ−1α · φα).

It is instructive to chase the map of fα. Let x ∈ Uα and ζ ∈ π−1(x). We use the
notation ~φ for the second component of the map φ (the one that maps into Rn). Then

ζ
φα7−→ (x, ~φαζ)

λ−1
α7−→ (x, λ−1α (x)~φαζ)

φ′−1
α7−→ π′−1

(
x, ~φ′−1α λ−1α (x)~φαζ

)
.

Thus we see that fα is a fiber-preserving smooth map that is linear on corresponding
fibers. Now, if x ∈ Uα ∩ Uβ and ζ ∈ π−1(x), then fα(ζ) is given above, while similarly
we have that

fβ(ζ) = π′−1
(
x, ~φ′−1β λ−1β (x)~φβζ

)
.

Hence we see that fα(x) = fβ(x) if and only if

~φ′−1α λ−1α
~φα = ~φ′−1β λ−1β

~φβ,

which in turn occurs if and only if

~φα~φ
−1
β = λα~φ

′
α
~φ′−1β λ−1β ,

which is guaranteed by the hypothesis. It follows that the map

f := f |Uα , on each Uα

is a well-defined vector bundle isomorphism. �

4 6.10.

Compute Vectk(S
1).

Solution. Recall that Vectk(S
1) is the isomorphism classes of rank k real vector bundles

over S1. Let (E, π) be a vector bundle over S1, and let f : [0, 1] → S1 be given
by t 7→ e2πit. Then f−1E is a vector bundle over [0, 1]. Since [0, 1] is contractible,
by Corollary 6.9 we have that f−1E is the trivial bundle [0, 1] × Rk. Now consider
all smooth maps [0, 1] → S1. There are exactly two homotopy classes of such maps,
corresponding to [f ] and [−f ] = [e−2πit], whence by Theorem 6.8 we conclude that for
each k ∈ N, there are two isomorphism classes in Vectk(S

1), corresponding to [f−1E]
and [(−f)−1E]. �
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5 6.14.

Show that if E is an oriented vector bundle, then π∗ωα = π∗ωβ on Uα ∩ Uβ. Hence
{π∗ωα}α∈I piece together to give a global form π∗ω on M . Furthermore, this definition
is independent of the choice of the oriented trivialization for E.

Solution. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be the coordinate functions on
Uα and Uβ, and t = (t1, . . . , tn), u = (u1, . . . , un) the fiber coordinates on π−1(Uα) and
π−1(Uβ) respectively. Fix ω ∈ Ω∗cv(E) and recall that ωα := ω|π−1(Uα). By chasing the
inclusion maps jα : Uα ∩ Uβ ↪→ Uα, jβ : Uα ∩ Uβ ↪→ Uβ, iβ : Uβ ↪→M, iα : Uα ↪→M and
observing that iαjα = iβjβ is the same inclusion map, we deduce that

ωα|π−1(Uα∩Uβ) = ωβ|π−1(Uα∩Uβ). (5.1)

A form ω ∈ Ω∗cv(E) is locally of type (I) or (II). If ωα is of type (I), then π∗ωα is the
zero form, and in particular, it is identically 0 on Uα ∩ Uβ, whence by (5.1), we have
that π∗ωβ = π∗ωα = 0 on Uα ∩ Uβ.

Hence, we may now assume that both ωα, ωβ are of type (II). Then there exist (see
p.61) forms ψ and τ on M , and f, g compactly supported functions for each fixed ζ ∈M ,
such that

ωα = (π∗ψ)f(x, t) dt, ωβ = (π∗τ)g(y, u) du.

Owing to (5.1), it follows that

(π∗ψ|Uα∩Uβ )f(x(ζ), t) dt = (π∗τ |Uα∩Uβ )g(y(ζ), u) du, for each ζ ∈ Uα ∩ Uβ.

Observe the calculation

π∗ωα|Uα∩Uβ = ψ|Uα∩Uβ
ˆ
Rn
f(x, t) dt =

ˆ
Rn

(π∗ψ|Uα∩Uβ )f(x, t) dt

=

ˆ
Rn

(π∗τ |Uα∩Uβ )g(y, u) du = τ |Uα∩Uβ
ˆ
Rn
g(y, u) du

= π∗ωβ|Uα∩Uβ ,

as desired. It is clear then that it does not matter which oriented trivialization we
choose for E. �

6 6.20.

Using a Mayer-Vietoris argument as in the proof of the Thom isomorphism (Theorem
6.17), show that if π : E → M is an orientable rank n bundle over a manifold M of
finite type, then

H∗c (E) ' H∗−nc (M).
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Solution. Our program is to show that π∗ : H∗c (E)→ H∗−nc (M) is an isomorphism. We
adapt the proof of Theorem 6.7. Let U and V be open subsets of M . Using a partition
of unity from the base M we see that

0→ Ω∗c(E|U∩V )→ Ω∗c(E|U )⊕ Ω∗c(E|V )→ Ω∗c(E|U∪V )→ 0

is exact, as in Proposition 2.7. So we have the diagram of Mayer-Vietoris sequences

· · · H∗c (E|U∩V ) H∗c (E|U )⊕H∗(E|V ) H∗c (E|U∪V ) H∗+1
c (E|U∩V ) · · ·

· · · H∗−nc (U ∩ V ) H∗−nc (U)⊕H∗−nc (V ) H∗−nc (U ∪ V ) H∗+1−n(U ∩ V ) · · ·

π∗ π∗

d∗

π∗ π∗

d∗

.

The above diagram is clearly commutative. By Corollary 6.9, if U is diffeomorphic to
Rn, then E|U is the trivial bundle, so that by the Poincaré lemma for compact support
we have that π∗ : H∗c (E|U ) → H∗−nc (U) is an isomorphism. By the Five Lemma, since
the desired conclusion holds for U, V, and U ∩V , then it holds for U ∪V . The proof now
proceeds by induction on the cardinality of a good cover for the base, as in the proof of
Poincaré duality. �
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