MATH 8302: Manifolds \& Topology Homework 4

Bruno Poggi
Department of Mathematics, University of Minnesota

March 25, 2019

The book referenced throughout is [1].

Contents

1 5.12. 1
25.16.

3 6.2. 5
4 6.10. 6
5 6.14. 7
6 6.20. 7

1 5.12.

Künneth formula for compact cohomology. The Künneth formula for compact cohomology states that for any manifolds M and N having a finite good cover,

$$
H_{c}^{*}(M \times N)=H_{c}^{*}(M) \otimes H_{c}^{*}(N)
$$

(a) In case M and N are orientable, show that this is a consequence of Poincaré duality and the Künneth formula for de Rham cohomology.
(b) Using the Mayer-Vietoris argument, prove the Künneth formula for compact cohomology for any M and N having a finite good cover.

Solution. (a) Since M, N have finite good covers, it follows that their cohomologies and compact cohomologies are finite-dimensional, whence Poincaré duality does tell us that

$$
H_{c}^{q}(X) \simeq H^{n-q}(X), \quad \text { for each } q \in \mathbb{N}_{0}
$$

where $X=M, N$. Let m be the dimension of M and n the dimension of N. Then, for each integer $k=0, \ldots, m+n$, we have that

$$
\begin{aligned}
& H_{c}^{k}(M \times N)=\left(H^{m+n-k}(M \times N)\right)^{*}=\left(\bigoplus_{p+q=m+n-k} H^{p}(M) \otimes H^{q}(N)\right)^{*} \\
&= \bigoplus_{p+q=m+n-k}\left(H^{p}(M)\right)^{*} \otimes\left(H^{q}(N)\right)^{*}=\bigoplus_{p+q=m+n-k} H_{c}^{m-p}(M) \otimes H_{c}^{n-q}(N) \\
&=\bigoplus_{s+t=k} H_{c}^{s}(M) \otimes H_{c}^{t}(N)
\end{aligned}
$$

where we used Poincaré duality, then the Kunneth formula for De Rham cohomology, then the commutativity of the dual operator $(\cdot)^{*}$ with direct sum and tensor product, then Poincaré duality, and finally a change of variables $s=m-p, t=n-q$.
(b) We follow the Mayer-Vietoris argument. The natural projections $\pi: M \times N \rightarrow M$ and $\rho: M \times N \rightarrow N$ give rise to a map on forms with compact support

$$
\omega \otimes \phi \mapsto \pi^{*} \omega \wedge \rho^{*} \phi
$$

We have that $\pi^{*} \omega \wedge \rho^{*} \phi$ has compact support in $M \times N$. Hence we have the pushforward map in compact cohomology

$$
\psi: H_{c}^{*}(M) \otimes H_{c}^{*}(N) \rightarrow H_{c}^{*}(M \times N) .
$$

We are done as soon as we show that ψ is an isomorphism, which we now intend to prove. Let U and V be open sets in M and let n be a fixed integer. From the Mayer-Vietoris sequence

$$
\cdots \rightarrow H_{c}^{p}(U \cap V) \rightarrow H_{c}^{p}(U) \oplus H_{c}^{p}(V) \rightarrow H_{c}^{p}(U \cup V) \rightarrow \cdots
$$

we get an exact sequence by tensoring with H_{c}^{n-p},

$$
\begin{aligned}
\cdots \rightarrow H_{c}^{p}(U \cap V) \otimes H_{c}^{n-p}(N) \rightarrow\left(H_{c}^{p}(U) \oplus H_{c}^{p}(V)\right) \otimes H_{c}^{n-p}(N) & \\
& \rightarrow H^{p}(U \cup V) \otimes H_{c}^{n-p}(N) \rightarrow \cdots,
\end{aligned}
$$

since tensoring with a vector space preserves exactness. Summing over all integers p
yields the exact sequence

$$
\begin{aligned}
& \cdots \rightarrow \bigoplus_{p=0}^{n} H_{c}^{p}(U \cap V) \otimes H_{c}^{n-p}(N) \\
& \rightarrow \bigoplus_{p=0}^{n}\left(\left(H_{c}^{p}(U) \otimes H_{c}^{n-p}(N)\right) \oplus\left(H_{c}^{p}(V) \otimes H_{c}^{n-p}(N)\right)\right) \\
& \rightarrow \bigoplus_{p=0}^{n} H_{c}^{p}(U \cup V) \otimes H_{c}^{n-p}(N) \rightarrow \cdots .
\end{aligned}
$$

The following diagram is commutative

Since M is an m-manifold with finite good cover, each of $U, V, U \cap V$ is diffeomorphic to \mathbb{R}^{m}. Note that $H_{c}^{k}\left(\mathbb{R}^{m}\right) \simeq 0$ for all $k \neq m$, and $H_{c}^{m}\left(\mathbb{R}^{m}\right) \simeq \mathbb{R}$ (see p.46). Hence, if $n \geq m$, then

$$
\bigoplus_{p=0}^{n} H_{c}^{p}\left(\mathbb{R}^{m}\right) \otimes H_{c}^{n-p}(N) \cong \mathbb{R} \otimes H_{c}^{n-m}(N) \cong H_{c}^{n-m}(N) \cong H_{c}^{n}\left(\mathbb{R}^{m} \times N\right),
$$

where we used Proposition 4.7 in the last step. Hence the Kunneth formula is verified for U, V, and $U \cap V$. By the Five lemma, then the Kunneth formula is also true for $U \cup V$. enough to show that ψ is an isomorphism on $U, V, U \cap V$. The Kunneth formula now follows by induction on the cardinality of a good cover, as in the proof of Poincaré duality.

$2 \quad 5.16$.

The ray and the circle in $\mathbb{R}^{2} \backslash\{0\}$. Let x, y be the standard coordinates and r, θ the polar coordinates on $\mathbb{R}^{2} \backslash\{0\}$.
(a) Show that the Poincaré dual of the ray $\{(x, 0): x>0\}$ in $\mathbb{R}^{2} \backslash\{0\}$ is $d \theta / 2 \pi$ in $H^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$.
(b) Show that the closed Poincaré dual of the unit circle in $H^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ is 0 , but the compact Poincaré dual is the nontrivial generator $\rho(r) d r$ in $H_{c}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ where $\rho(r)$ is a bump function with total integral 1.

Solution. (a). Let $M=\mathbb{R}^{2} \backslash\{0\}$ and $S=\{(x, 0): x>0\}$, which is a closed oriented submanifold of dimension 1 . Let $i: S \rightarrow M$ be the inclusion map. We need to show that for any $\omega \in H_{c}^{1}(M)$, we have that

$$
\int_{S} i^{*} \omega=\int_{M} \omega \wedge \frac{d \theta}{2 \pi} .
$$

So let $\omega \in H_{c}^{1}(M)$, so that there exist $f, g \in C_{c}^{\infty}(M)$ such that $\omega=f(r, \theta) d r+g(r, \theta) d \theta$. Now, $d \omega=0$ because ω must be closed, and hence it follows that $\frac{\partial f}{\partial \theta}=\frac{\partial g}{\partial r}$. Integrating this identity over r from 0 to ∞ yields that

$$
\frac{\partial}{\partial \theta}\left(\int_{0}^{\infty} f(r, \theta) d r\right)=\int_{0}^{\infty} \frac{\partial g(r, \theta)}{\partial r} d r=0
$$

where in the last equality we used the Fundamental Theorem of Calculus and the fact that g is compactly supported in M. Thus the quantity $\int_{0}^{\infty} f(r, \theta) d r$ is a constant in θ. Hence,

$$
\begin{aligned}
\int_{M} \omega \wedge \frac{d \theta}{2 \pi}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} f(r, \theta) d r\right) d \theta= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} f(r, 0) d r\right) d \theta \\
& =\int_{0}^{\infty} f(r, 0) d r=\left.\int_{S} f\right|_{S} d x=\int_{S} i^{*} \omega
\end{aligned}
$$

as desired.
(b) Let $M=\mathbb{R}^{2} \backslash\{0\}$ and S is the unit circle, which is a closed oriented submanifold of dimension 1. Let $i: S \rightarrow M$ be the inclusion map. To show that 0 is the closed Poincaré dual of S, we have to prove that for any $\omega \in H_{c}^{1}(M)$, we have that

$$
\int_{S} i^{*} \omega=0
$$

So let $\omega \in H_{c}^{1}(M)$, so that there exist $f, g \in C_{c}^{\infty}(M)$ such that $\omega=f(r, \theta) d r+g(r, \theta) d \theta$. Now, $d \omega=0$ because ω must be closed, and hence it follows that $\frac{\partial f}{\partial \theta}=\frac{\partial g}{\partial r}$. Integrating this identity over θ from 0 to 2π yields easily that the quantity $\int_{0}^{2 \pi} g(r, \theta) d \theta$ is a constant in r. Since for all r and all θ large enough, $g(r, \theta \equiv 0$ since g is compactly supported, we conclude that $\int_{0}^{2 \pi} g(r, \theta) d \theta=0$, for some (and hence, for every) $r>0$. Consequently,

$$
\int_{S} i^{*} \omega=\int_{0}^{2 \pi} g(1, \theta) d \theta=0
$$

as claimed.
We now purport to show that $\rho(r) d r$ is the compact Poincaré dual of S, where $\rho(r)$ is a bump function such that $\int_{0}^{\infty} \rho(r) d r=1$. To do so, we have to prove that for any $\omega \in H^{1}(M)$, we have that

$$
\int_{S} i^{*} \omega=\int_{M} \omega \wedge(\rho(r) d r) .
$$

So let $\omega \in H^{1}(M)$, so that there exist $f, g \in C^{\infty}(M)$ such that $\omega=f(r, \theta) d r+g(r, \theta) d \theta$. Now, $d \omega=0$ because ω must be closed, and hence it follows that $\frac{\partial f}{\partial \theta}=\frac{\partial g}{\partial r}$. Integrating this identity over θ from 0 to 2π yields easily that the quantity $\int_{0}^{2 \pi} g(r, \theta) d \theta$ is a constant in r. Thus, we observe that

$$
\begin{aligned}
\int_{S} i^{*} \omega=\int_{0}^{2 \pi} g(1, \theta) d \theta & =\left(\int_{0}^{2 \pi} g(1, \theta) d \theta\right)\left(\int_{0}^{\infty} \rho(r) d r\right) \\
=\int_{0}^{\infty} \rho(r)(& \left.\int_{0}^{2 \pi} g(1, \theta) d \theta\right) d r=\int_{0}^{\infty} \rho(r)\left(\int_{0}^{2 \pi} g(r, \theta) d \theta\right) d r \\
& =\int_{M}[f(r, \theta) d r+g(r, \theta) d \theta] \wedge(\rho(r) d r)=\int_{M} \omega \wedge(\rho(r) d r)
\end{aligned}
$$

where in the second equality we used the fact that the integral of ρ is 1 , in the fifth equality we used that $d r d r=0$ and Fubini's Theorem which is applicable since ρ is non-negative, smooth, and has bounded support in M (since it is a bump function), and $|g|$ is bounded in the support of ρ. The claim follows.

3 6.2.

Show that two vector bundles on M are isomorphic if and only if their cocycles relative to some open cover are equivalent.

Solution. (Only if). Let $(E, \pi),\left(E^{\prime}, \pi^{\prime}\right)$ be two vector bundles over M which are isomorphic, so that there is a vector bundle isomorphism $f: E \rightarrow E^{\prime}$. Let ($U_{\alpha}, \phi_{\alpha}$) be the open cover of M with the corresponding trivializations for E, afforded by its definition. Then ($U_{\alpha}, \phi_{\alpha} \circ f^{-1}$) is an open cover of M together with trivializations $\phi_{\alpha}^{\prime}:=\phi_{\alpha} \circ f^{-1}:\left.E^{\prime}\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ for some n. Fix α, β and $x \in U_{\alpha} \cap U_{\beta}$. Note that, in this case via our construction,

$$
g_{\alpha \beta}^{\prime}(x)=\phi_{\alpha}^{\prime} \phi_{\beta}^{\prime-1}(x)=\phi_{\alpha} f^{-1} f \phi_{\beta}^{-1}(x)=\phi_{\alpha} \phi_{\beta}^{-1}(x)=g_{\alpha \beta}(x),
$$

so that $g_{\alpha \beta}$ and $g_{\alpha \beta}^{\prime}$ are equivalent, but we are not technically done yet because (E^{\prime}, π^{\prime}) may be a priori endowed with different trivializations than ϕ_{α}^{\prime}. So let $\left\{\phi_{\alpha}^{\prime \prime}\right\}$ be any collection of trivializations with which E^{\prime} is endowed over the open cover U_{α}. Then we may use Lemma 6.1 to see that $g_{\alpha \beta}^{\prime \prime}$ is equivalent with $g_{\alpha \beta}^{\prime}$. Since equivalence is transitive, we thus have that $g_{\alpha \beta}$ is equivalent with $g_{\alpha \beta}^{\prime \prime}$, as desired.
(If). Now fix an open cover $\left\{U_{\alpha}\right\}$ of M. Let $(E, \pi),\left(E^{\prime}, \pi^{\prime}\right)$ be two vector bundles over M, let $\phi_{\alpha}, \phi_{\alpha^{\prime}}$ be the respective trivializations over $\left\{U_{\alpha}\right\}$, and let $g_{\alpha \beta}, g_{\alpha \beta}^{\prime}$ be the respective cocycles. By hypothesis, there exist invertible maps $\lambda_{\alpha}: U_{\alpha} \rightarrow G L(n, \mathbb{R})$ such that

$$
g_{\alpha \beta}=\lambda_{\alpha} g_{\alpha \beta}^{\prime} \lambda_{\beta}^{-1}, \quad \text { on } U_{\alpha} \cap U_{\beta},
$$

(here, λ_{β}^{-1} is the inverse matrix to λ_{β}, not the inverse map of λ_{β}). For each U_{α}, let $f_{\alpha}:\left.\left.E\right|_{U_{\alpha}} \rightarrow E^{\prime}\right|_{U_{\alpha}}$ be the map given by

$$
f_{\alpha}:=\phi_{\alpha}^{\prime-1} \circ\left(\lambda_{\alpha}^{-1} \cdot \phi_{\alpha}\right) .
$$

It is instructive to chase the map of f_{α}. Let $x \in U_{\alpha}$ and $\zeta \in \pi^{-1}(x)$. We use the notation $\vec{\phi}$ for the second component of the map ϕ (the one that maps into \mathbb{R}^{n}). Then

$$
\zeta \stackrel{\phi_{\alpha}}{\longleftrightarrow}\left(x, \vec{\phi}_{\alpha} \zeta\right) \stackrel{\lambda_{\alpha}^{-1}}{\longleftrightarrow}\left(x, \lambda_{\alpha}^{-1}(x) \vec{\phi}_{\alpha} \zeta\right) \stackrel{\phi_{\alpha}^{\prime-1}}{\longleftrightarrow} \pi^{\prime-1}\left(x, \vec{\phi}_{\alpha}^{\prime-1} \lambda_{\alpha}^{-1}(x) \vec{\phi}_{\alpha} \zeta\right) .
$$

Thus we see that f_{α} is a fiber-preserving smooth map that is linear on corresponding fibers. Now, if $x \in U_{\alpha} \cap U_{\beta}$ and $\zeta \in \pi^{-1}(x)$, then $f_{\alpha}(\zeta)$ is given above, while similarly we have that

$$
f_{\beta}(\zeta)=\pi^{\prime-1}\left(x, \vec{\phi}_{\beta}^{\prime-1} \lambda_{\beta}^{-1}(x) \vec{\phi}_{\beta} \zeta\right)
$$

Hence we see that $f_{\alpha}(x)=f_{\beta}(x)$ if and only if

$$
\vec{\phi}_{\alpha}^{\prime-1} \lambda_{\alpha}^{-1} \vec{\phi}_{\alpha}=\vec{\phi}_{\beta}^{\prime-1} \lambda_{\beta}^{-1} \vec{\phi}_{\beta},
$$

which in turn occurs if and only if

$$
\vec{\phi}_{\alpha} \vec{\phi}_{\beta}^{-1}=\lambda_{\alpha} \vec{\phi}_{\alpha}^{\prime} \vec{\phi}_{\beta}^{\prime-1} \lambda_{\beta}^{-1},
$$

which is guaranteed by the hypothesis. It follows that the map

$$
f:=\left.f\right|_{U_{\alpha}}, \quad \text { on each } U_{\alpha}
$$

is a well-defined vector bundle isomorphism.

$4 \quad 6.10$.

Compute $\operatorname{Vect}_{k}\left(S^{1}\right)$.
Solution. Recall that $\operatorname{Vect}_{k}\left(S^{1}\right)$ is the isomorphism classes of rank k real vector bundles over S^{1}. Let (E, π) be a vector bundle over S^{1}, and let $f:[0,1] \rightarrow S^{1}$ be given by $t \mapsto e^{2 \pi i t}$. Then $f^{-1} E$ is a vector bundle over $[0,1]$. Since $[0,1]$ is contractible, by Corollary 6.9 we have that $f^{-1} E$ is the trivial bundle $[0,1] \times \mathbb{R}^{k}$. Now consider all smooth maps $[0,1] \rightarrow S^{1}$. There are exactly two homotopy classes of such maps, corresponding to $[f]$ and $[-f]=\left[e^{-2 \pi i t}\right]$, whence by Theorem 6.8 we conclude that for each $k \in \mathbb{N}$, there are two isomorphism classes in $\operatorname{Vect}_{k}\left(S^{1}\right)$, corresponding to $\left[f^{-1} E\right]$ and $\left[(-f)^{-1} E\right]$.

$5 \quad 6.14$.

Show that if E is an oriented vector bundle, then $\pi_{*} \omega_{\alpha}=\pi_{*} \omega_{\beta}$ on $U_{\alpha} \cap U_{\beta}$. Hence $\left\{\pi_{*} \omega_{\alpha}\right\}_{\alpha \in I}$ piece together to give a global form $\pi_{*} \omega$ on M. Furthermore, this definition is independent of the choice of the oriented trivialization for E.

Solution. Let $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$ be the coordinate functions on U_{α} and U_{β}, and $t=\left(t_{1}, \ldots, t_{n}\right), u=\left(u_{1}, \ldots, u_{n}\right)$ the fiber coordinates on $\pi^{-1}\left(U_{\alpha}\right)$ and $\pi^{-1}\left(U_{\beta}\right)$ respectively. Fix $\omega \in \Omega_{c v}^{*}(E)$ and recall that $\omega_{\alpha}:=\left.\omega\right|_{\pi^{-1}\left(U_{\alpha}\right)}$. By chasing the inclusion maps $j_{\alpha}: U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\alpha}, j_{\beta}: U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\beta}, i_{\beta}: U_{\beta} \hookrightarrow M, i_{\alpha}: U_{\alpha} \hookrightarrow M$ and observing that $i_{\alpha} j_{\alpha}=i_{\beta} j_{\beta}$ is the same inclusion map, we deduce that

$$
\begin{equation*}
\left.\omega_{\alpha}\right|_{\pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right)}=\left.\omega_{\beta}\right|_{\pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right)} . \tag{5.1}
\end{equation*}
$$

A form $\omega \in \Omega_{c v}^{*}(E)$ is locally of type (I) or (II). If ω_{α} is of type (I), then $\pi_{*} \omega_{\alpha}$ is the zero form, and in particular, it is identically 0 on $U_{\alpha} \cap U_{\beta}$, whence by (5.1), we have that $\pi_{*} \omega_{\beta}=\pi_{*} \omega_{\alpha}=0$ on $U_{\alpha} \cap U_{\beta}$.

Hence, we may now assume that both $\omega_{\alpha}, \omega_{\beta}$ are of type (II). Then there exist (see p.61) forms ψ and τ on M, and f, g compactly supported functions for each fixed $\zeta \in M$, such that

$$
\omega_{\alpha}=\left(\pi^{*} \psi\right) f(x, t) d t, \quad \omega_{\beta}=\left(\pi^{*} \tau\right) g(y, u) d u .
$$

Owing to (5.1), it follows that

$$
\left(\pi^{*} \psi_{U_{\alpha} \cap U_{\beta}}\right) f(x(\zeta), t) d t=\left(\left.\pi^{*} \tau\right|_{U_{\alpha} \cap U_{\beta}}\right) g(y(\zeta), u) d u, \quad \text { for each } \zeta \in U_{\alpha} \cap U_{\beta} .
$$

Observe the calculation

$$
\begin{array}{rlr}
\left.\pi_{*} \omega_{\alpha}\right|_{U_{\alpha} \cap U_{\beta}}= & \left.\psi\right|_{U_{\alpha} \cap U_{\beta}} \int_{\mathbb{R}^{n}} f(x, t) d t=\int_{\mathbb{R}^{n}}\left(\left.\pi^{*} \psi\right|_{U_{\alpha} \cap U_{\beta}}\right) f(x, t) d t \\
& =\int_{\mathbb{R}^{n}}\left(\left.\pi^{*} \tau\right|_{U_{\alpha} \cap U_{\beta}}\right) g(y, u) d u=\left.\tau\right|_{U_{\alpha} \cap U_{\beta}} \int_{\mathbb{R}^{n}} g(y, u) d u & \\
& =\left.\pi_{*} \omega_{\beta}\right|_{U_{\alpha} \cap U_{\beta}},
\end{array}
$$

as desired. It is clear then that it does not matter which oriented trivialization we choose for E.

$6 \quad 6.20$.

Using a Mayer-Vietoris argument as in the proof of the Thom isomorphism (Theorem 6.17), show that if $\pi: E \rightarrow M$ is an orientable rank n bundle over a manifold M of finite type, then

$$
H_{c}^{*}(E) \simeq H_{c}^{*-n}(M) .
$$

Solution. Our program is to show that $\pi_{*}: H_{c}^{*}(E) \rightarrow H_{c}^{*-n}(M)$ is an isomorphism. We adapt the proof of Theorem 6.7. Let U and V be open subsets of M. Using a partition of unity from the base M we see that

$$
0 \rightarrow \Omega_{c}^{*}\left(\left.E\right|_{U \cap V}\right) \rightarrow \Omega_{c}^{*}\left(\left.E\right|_{U}\right) \oplus \Omega_{c}^{*}\left(\left.E\right|_{V}\right) \rightarrow \Omega_{c}^{*}\left(\left.E\right|_{U \cup V}\right) \rightarrow 0
$$

is exact, as in Proposition 2.7. So we have the diagram of Mayer-Vietoris sequences

The above diagram is clearly commutative. By Corollary 6.9, if U is diffeomorphic to \mathbb{R}^{n}, then $\left.E\right|_{U}$ is the trivial bundle, so that by the Poincaré lemma for compact support we have that $\pi_{*}: H_{c}^{*}\left(\left.E\right|_{U}\right) \rightarrow H_{c}^{*-n}(U)$ is an isomorphism. By the Five Lemma, since the desired conclusion holds for U, V, and $U \cap V$, then it holds for $U \cup V$. The proof now proceeds by induction on the cardinality of a good cover for the base, as in the proof of Poincaré duality.

References

[1] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer.

