MATH 8302: Manifolds & Topology Homework 4

Bruno Poggi

Department of Mathematics, University of Minnesota

March 25, 2019

The book referenced throughout is [1].

Contents

1	5.12.	1
2	5.16.	3
3	6.2.	5
4	6.10.	6
5	6.14.	7
6	6.20.	7

1 5.12.

Künneth formula for compact cohomology. The Künneth formula for compact cohomology states that for any manifolds M and N having a finite good cover,

$$H_c^*(M \times N) = H_c^*(M) \otimes H_c^*(N).$$

- (a) In case M and N are orientable, show that this is a consequence of Poincaré duality and the Künneth formula for de Rham cohomology.
- (b) Using the Mayer-Vietoris argument, prove the Künneth formula for compact cohomology for any M and N having a finite good cover.

Solution. (a) Since M, N have finite good covers, it follows that their cohomologies and compact cohomologies are finite-dimensional, whence Poincaré duality does tell us that

$$H^q_c(X) \simeq H^{n-q}(X), \quad \text{for each } q \in \mathbb{N}_0,$$

where X = M, N. Let m be the dimension of M and n the dimension of N. Then, for each integer k = 0, ..., m + n, we have that

$$\begin{aligned} H_c^k(M \times N) &= \left(H^{m+n-k}(M \times N)\right)^* = \left(\bigoplus_{p+q=m+n-k} H^p(M) \otimes H^q(N)\right)^* \\ &= \bigoplus_{p+q=m+n-k} (H^p(M))^* \otimes (H^q(N))^* = \bigoplus_{p+q=m+n-k} H_c^{m-p}(M) \otimes H_c^{n-q}(N) \\ &= \bigoplus_{s+t=k} H_c^s(M) \otimes H_c^t(N), \end{aligned}$$

where we used Poincaré duality, then the Kunneth formula for De Rham cohomology, then the commutativity of the dual operator $(\cdot)^*$ with direct sum and tensor product, then Poincaré duality, and finally a change of variables s = m - p, t = n - q.

(b) We follow the Mayer-Vietoris argument. The natural projections $\pi : M \times N \to M$ and $\rho : M \times N \to N$ give rise to a map on forms with compact support

$$\omega \otimes \phi \mapsto \pi^* \omega \wedge \rho^* \phi.$$

We have that $\pi^* \omega \wedge \rho^* \phi$ has compact support in $M \times N$. Hence we have the pushforward map in compact cohomology

$$\psi: H^*_c(M) \otimes H^*_c(N) \to H^*_c(M \times N).$$

We are done as soon as we show that ψ is an isomorphism, which we now intend to prove. Let U and V be open sets in M and let n be a fixed integer. From the Mayer-Vietoris sequence

$$\cdots \to H^p_c(U \cap V) \to H^p_c(U) \oplus H^p_c(V) \to H^p_c(U \cup V) \to \cdots$$

we get an exact sequence by tensoring with H_c^{n-p} ,

$$\cdots \to H^p_c(U \cap V) \otimes H^{n-p}_c(N) \to (H^p_c(U) \oplus H^p_c(V)) \otimes H^{n-p}_c(N)$$
$$\to H^p(U \cup V) \otimes H^{n-p}_c(N) \to \cdots,$$

since tensoring with a vector space preserves exactness. Summing over all integers p

yields the exact sequence

$$\cdots \to \bigoplus_{p=0}^{n} H^{p}_{c}(U \cap V) \otimes H^{n-p}_{c}(N)$$

$$\to \bigoplus_{p=0}^{n} \left((H^{p}_{c}(U) \otimes H^{n-p}_{c}(N)) \oplus (H^{p}_{c}(V) \otimes H^{n-p}_{c}(N)) \right)$$

$$\to \bigoplus_{p=0}^{n} H^{p}_{c}(U \cup V) \otimes H^{n-p}_{c}(N) \to \cdots .$$

The following diagram is commutative

Since M is an m-manifold with finite good cover, each of $U, V, U \cap V$ is diffeomorphic to \mathbb{R}^m . Note that $H^k_c(\mathbb{R}^m) \simeq 0$ for all $k \neq m$, and $H^m_c(\mathbb{R}^m) \simeq \mathbb{R}$ (see p.46). Hence, if $n \geq m$, then

$$\bigoplus_{p=0}^{n} H_{c}^{p}(\mathbb{R}^{m}) \otimes H_{c}^{n-p}(N) \cong \mathbb{R} \otimes H_{c}^{n-m}(N) \cong H_{c}^{n-m}(N) \cong H_{c}^{n}(\mathbb{R}^{m} \times N),$$

where we used Proposition 4.7 in the last step. Hence the Kunneth formula is verified for U, V, and $U \cap V$. By the Five lemma, then the Kunneth formula is also true for $U \cup V$. enough to show that ψ is an isomorphism on $U, V, U \cap V$. The Kunneth formula now follows by induction on the cardinality of a good cover, as in the proof of Poincaré duality.

2 5.16.

The ray and the circle in $\mathbb{R}^2 \setminus \{0\}$. Let x, y be the standard coordinates and r, θ the polar coordinates on $\mathbb{R}^2 \setminus \{0\}$.

- (a) Show that the Poincaré dual of the ray $\{(x,0) : x > 0\}$ in $\mathbb{R}^2 \setminus \{0\}$ is $d\theta/2\pi$ in $H^1(\mathbb{R}^2 \setminus \{0\})$.
- (b) Show that the closed Poincaré dual of the unit circle in $H^1(\mathbb{R}^2 \setminus \{0\})$ is 0, but the compact Poincaré dual is the nontrivial generator $\rho(r)dr$ in $H^1_c(\mathbb{R}^2 \setminus \{0\})$ where $\rho(r)$ is a bump function with total integral 1.

Solution. (a). Let $M = \mathbb{R}^2 \setminus \{0\}$ and $S = \{(x,0) : x > 0\}$, which is a closed oriented submanifold of dimension 1. Let $i : S \to M$ be the inclusion map. We need to show that for any $\omega \in H^1_c(M)$, we have that

$$\int_{S} i^* \omega = \int_{M} \omega \wedge \frac{d\theta}{2\pi}$$

So let $\omega \in H^1_c(M)$, so that there exist $f, g \in C^{\infty}_c(M)$ such that $\omega = f(r, \theta)dr + g(r, \theta)d\theta$. Now, $d\omega = 0$ because ω must be closed, and hence it follows that $\frac{\partial f}{\partial \theta} = \frac{\partial g}{\partial r}$. Integrating this identity over r from 0 to ∞ yields that

$$\frac{\partial}{\partial \theta} \Big(\int_0^\infty f(r,\theta) \, dr \Big) = \int_0^\infty \frac{\partial g(r,\theta)}{\partial r} \, dr = 0,$$

where in the last equality we used the Fundamental Theorem of Calculus and the fact that g is compactly supported in M. Thus the quantity $\int_0^\infty f(r,\theta) dr$ is a constant in θ . Hence,

$$\int_{M} \omega \wedge \frac{d\theta}{2\pi} = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\int_{0}^{\infty} f(r,\theta) \, dr \right) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\int_{0}^{\infty} f(r,0) \, dr \right) d\theta$$
$$= \int_{0}^{\infty} f(r,0) \, dr = \int_{S} f|_{S} \, dx = \int_{S} i^{*} \omega,$$

as desired.

(b) Let $M = \mathbb{R}^2 \setminus \{0\}$ and S is the unit circle, which is a closed oriented submanifold of dimension 1. Let $i : S \to M$ be the inclusion map. To show that 0 is the closed Poincaré dual of S, we have to prove that for any $\omega \in H^1_c(M)$, we have that

$$\int_S i^* \omega = 0.$$

So let $\omega \in H_c^1(M)$, so that there exist $f, g \in C_c^{\infty}(M)$ such that $\omega = f(r, \theta)dr + g(r, \theta)d\theta$. Now, $d\omega = 0$ because ω must be closed, and hence it follows that $\frac{\partial f}{\partial \theta} = \frac{\partial g}{\partial r}$. Integrating this identity over θ from 0 to 2π yields easily that the quantity $\int_0^{2\pi} g(r, \theta) d\theta$ is a constant in r. Since for all r and all θ large enough, $g(r, \theta \equiv 0$ since g is compactly supported, we conclude that $\int_0^{2\pi} g(r, \theta) d\theta = 0$, for some (and hence, for every) r > 0. Consequently,

$$\int_{S} i^* \omega = \int_0^{2\pi} g(1,\theta) \, d\theta = 0,$$

as claimed.

We now purport to show that $\rho(r) dr$ is the compact Poincaré dual of S, where $\rho(r)$ is a bump function such that $\int_0^\infty \rho(r) dr = 1$. To do so, we have to prove that for any $\omega \in H^1(M)$, we have that

$$\int_{S} i^* \omega = \int_{M} \omega \wedge (\rho(r) \, dr).$$

So let $\omega \in H^1(M)$, so that there exist $f, g \in C^{\infty}(M)$ such that $\omega = f(r, \theta)dr + g(r, \theta)d\theta$. Now, $d\omega = 0$ because ω must be closed, and hence it follows that $\frac{\partial f}{\partial \theta} = \frac{\partial g}{\partial r}$. Integrating this identity over θ from 0 to 2π yields easily that the quantity $\int_0^{2\pi} g(r, \theta) d\theta$ is a constant in r. Thus, we observe that

$$\begin{split} \int_{S} i^{*} \omega &= \int_{0}^{2\pi} g(1,\theta) \, d\theta = \Big(\int_{0}^{2\pi} g(1,\theta) \, d\theta \Big) \Big(\int_{0}^{\infty} \rho(r) \, dr \Big) \\ &= \int_{0}^{\infty} \rho(r) \Big(\int_{0}^{2\pi} g(1,\theta) \, d\theta \Big) \, dr = \int_{0}^{\infty} \rho(r) \Big(\int_{0}^{2\pi} g(r,\theta) \, d\theta \Big) \, dr \\ &= \int_{M} \Big[f(r,\theta) dr + g(r,\theta) d\theta \Big] \wedge (\rho(r) \, dr) = \int_{M} \omega \wedge (\rho(r) \, dr), \end{split}$$

where in the second equality we used the fact that the integral of ρ is 1, in the fifth equality we used that drdr = 0 and Fubini's Theorem which is applicable since ρ is non-negative, smooth, and has bounded support in M (since it is a bump function), and |g| is bounded in the support of ρ . The claim follows.

3 6.2.

Show that two vector bundles on M are isomorphic if and only if their cocycles relative to some open cover are equivalent.

Solution. (Only if). Let $(E, \pi), (E', \pi')$ be two vector bundles over M which are isomorphic, so that there is a vector bundle isomorphism $f : E \to E'$. Let $(U_{\alpha}, \phi_{\alpha})$ be the open cover of M with the corresponding trivializations for E, afforded by its definition. Then $(U_{\alpha}, \phi_{\alpha} \circ f^{-1})$ is an open cover of M together with trivializations $\phi'_{\alpha} := \phi_{\alpha} \circ f^{-1} : E'|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^n$ for some n. Fix α, β and $x \in U_{\alpha} \cap U_{\beta}$. Note that, in this case via our construction,

$$g'_{\alpha\beta}(x) = \phi'_{\alpha}\phi'^{-1}_{\beta}(x) = \phi_{\alpha}f^{-1}f\phi^{-1}_{\beta}(x) = \phi_{\alpha}\phi^{-1}_{\beta}(x) = g_{\alpha\beta}(x),$$

so that $g_{\alpha\beta}$ and $g'_{\alpha\beta}$ are equivalent, but we are not technically done yet because (E', π') may be a priori endowed with different trivializations than ϕ'_{α} . So let $\{\phi''_{\alpha}\}$ be any collection of trivializations with which E' is endowed over the open cover U_{α} . Then we may use Lemma 6.1 to see that $g''_{\alpha\beta}$ is equivalent with $g'_{\alpha\beta}$. Since equivalence is transitive, we thus have that $g_{\alpha\beta}$ is equivalent with $g''_{\alpha\beta}$, as desired.

(If). Now fix an open cover $\{U_{\alpha}\}$ of M. Let $(E, \pi), (E', \pi')$ be two vector bundles over M, let $\phi_{\alpha}, \phi_{\alpha'}$ be the respective trivializations over $\{U_{\alpha}\}$, and let $g_{\alpha\beta}, g'_{\alpha\beta}$ be the respective cocycles. By hypothesis, there exist invertible maps $\lambda_{\alpha} : U_{\alpha} \to GL(n, \mathbb{R})$ such that

$$g_{\alpha\beta} = \lambda_{\alpha} g'_{\alpha\beta} \lambda_{\beta}^{-1}, \quad \text{on } U_{\alpha} \cap U_{\beta},$$

(here, λ_{β}^{-1} is the inverse matrix to λ_{β} , not the inverse map of λ_{β}). For each U_{α} , let $f_{\alpha}: E|_{U_{\alpha}} \to E'|_{U_{\alpha}}$ be the map given by

$$f_{\alpha} := \phi_{\alpha}^{\prime - 1} \circ (\lambda_{\alpha}^{-1} \cdot \phi_{\alpha}).$$

It is instructive to chase the map of f_{α} . Let $x \in U_{\alpha}$ and $\zeta \in \pi^{-1}(x)$. We use the notation $\vec{\phi}$ for the second component of the map ϕ (the one that maps into \mathbb{R}^n). Then

$$\zeta \xrightarrow{\phi_{\alpha}} (x, \vec{\phi}_{\alpha}\zeta) \xrightarrow{\lambda_{\alpha}^{-1}} (x, \lambda_{\alpha}^{-1}(x)\vec{\phi}_{\alpha}\zeta) \xrightarrow{\phi_{\alpha}'^{-1}} \pi'^{-1} \Big(x, \vec{\phi}_{\alpha}'^{-1}\lambda_{\alpha}^{-1}(x)\vec{\phi}_{\alpha}\zeta \Big).$$

Thus we see that f_{α} is a fiber-preserving smooth map that is linear on corresponding fibers. Now, if $x \in U_{\alpha} \cap U_{\beta}$ and $\zeta \in \pi^{-1}(x)$, then $f_{\alpha}(\zeta)$ is given above, while similarly we have that

$$f_{\beta}(\zeta) = \pi'^{-1} \Big(x, \vec{\phi}_{\beta}'^{-1} \lambda_{\beta}^{-1}(x) \vec{\phi}_{\beta} \zeta \Big).$$

Hence we see that $f_{\alpha}(x) = f_{\beta}(x)$ if and only if

$$\vec{\phi}_{\alpha}^{\prime-1}\lambda_{\alpha}^{-1}\vec{\phi}_{\alpha} = \vec{\phi}_{\beta}^{\prime-1}\lambda_{\beta}^{-1}\vec{\phi}_{\beta},$$

which in turn occurs if and only if

$$\vec{\phi}_{\alpha}\vec{\phi}_{\beta}^{-1} = \lambda_{\alpha}\vec{\phi}_{\alpha}'\vec{\phi}_{\beta}'^{-1}\lambda_{\beta}^{-1},$$

which is guaranteed by the hypothesis. It follows that the map

$$f := f|_{U_{\alpha}}, \quad \text{on each } U_{\alpha}$$

is a well-defined vector bundle isomorphism.

4 6.10.

Compute $\operatorname{Vect}_k(S^1)$.

Solution. Recall that $\operatorname{Vect}_k(S^1)$ is the isomorphism classes of rank k real vector bundles over S^1 . Let (E, π) be a vector bundle over S^1 , and let $f : [0,1] \to S^1$ be given by $t \mapsto e^{2\pi i t}$. Then $f^{-1}E$ is a vector bundle over [0,1]. Since [0,1] is contractible, by Corollary 6.9 we have that $f^{-1}E$ is the trivial bundle $[0,1] \times \mathbb{R}^k$. Now consider all smooth maps $[0,1] \to S^1$. There are exactly two homotopy classes of such maps, corresponding to [f] and $[-f] = [e^{-2\pi i t}]$, whence by Theorem 6.8 we conclude that for each $k \in \mathbb{N}$, there are two isomorphism classes in $\operatorname{Vect}_k(S^1)$, corresponding to $[f^{-1}E]$ and $[(-f)^{-1}E]$.

5 6.14.

Show that if E is an oriented vector bundle, then $\pi_*\omega_\alpha = \pi_*\omega_\beta$ on $U_\alpha \cap U_\beta$. Hence $\{\pi_*\omega_\alpha\}_{\alpha\in I}$ piece together to give a global form $\pi_*\omega$ on M. Furthermore, this definition is independent of the choice of the oriented trivialization for E.

Solution. Let $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$ be the coordinate functions on U_{α} and U_{β} , and $t = (t_1, \ldots, t_n), u = (u_1, \ldots, u_n)$ the fiber coordinates on $\pi^{-1}(U_{\alpha})$ and $\pi^{-1}(U_{\beta})$ respectively. Fix $\omega \in \Omega_{cv}^*(E)$ and recall that $\omega_{\alpha} := \omega|_{\pi^{-1}(U_{\alpha})}$. By chasing the inclusion maps $j_{\alpha} : U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\alpha}, j_{\beta} : U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\beta}, i_{\beta} : U_{\beta} \hookrightarrow M, i_{\alpha} : U_{\alpha} \hookrightarrow M$ and observing that $i_{\alpha}j_{\alpha} = i_{\beta}j_{\beta}$ is the same inclusion map, we deduce that

$$\omega_{\alpha}|_{\pi^{-1}(U_{\alpha}\cap U_{\beta})} = \omega_{\beta}|_{\pi^{-1}(U_{\alpha}\cap U_{\beta})}.$$
(5.1)

A form $\omega \in \Omega^*_{cv}(E)$ is locally of type (I) or (II). If ω_{α} is of type (I), then $\pi_*\omega_{\alpha}$ is the zero form, and in particular, it is identically 0 on $U_{\alpha} \cap U_{\beta}$, whence by (5.1), we have that $\pi_*\omega_{\beta} = \pi_*\omega_{\alpha} = 0$ on $U_{\alpha} \cap U_{\beta}$.

Hence, we may now assume that both $\omega_{\alpha}, \omega_{\beta}$ are of type (II). Then there exist (see p.61) forms ψ and τ on M, and f, g compactly supported functions for each fixed $\zeta \in M$, such that

$$\omega_{\alpha} = (\pi^* \psi) f(x, t) \, dt, \qquad \omega_{\beta} = (\pi^* \tau) g(y, u) \, du.$$

Owing to (5.1), it follows that

$$(\pi^*\psi|_{U_{\alpha}\cap U_{\beta}})f(x(\zeta),t)\,dt = (\pi^*\tau|_{U_{\alpha}\cap U_{\beta}})g(y(\zeta),u)\,du, \qquad \text{for each } \zeta \in U_{\alpha}\cap U_{\beta}.$$

Observe the calculation

$$\pi_*\omega_{\alpha}|_{U_{\alpha}\cap U_{\beta}} = \psi|_{U_{\alpha}\cap U_{\beta}} \int_{\mathbb{R}^n} f(x,t) dt = \int_{\mathbb{R}^n} (\pi^*\psi|_{U_{\alpha}\cap U_{\beta}}) f(x,t) dt$$
$$= \int_{\mathbb{R}^n} (\pi^*\tau|_{U_{\alpha}\cap U_{\beta}}) g(y,u) du = \tau|_{U_{\alpha}\cap U_{\beta}} \int_{\mathbb{R}^n} g(y,u) du$$
$$= \pi_*\omega_{\beta}|_{U_{\alpha}\cap U_{\beta}}.$$

as desired. It is clear then that it does not matter which oriented trivialization we choose for E.

6 6.20.

Using a Mayer-Vietoris argument as in the proof of the Thom isomorphism (Theorem 6.17), show that if $\pi : E \to M$ is an orientable rank n bundle over a manifold M of finite type, then

$$H^*_c(E) \simeq H^{*-n}_c(M).$$

Solution. Our program is to show that $\pi_* : H^*_c(E) \to H^{*-n}_c(M)$ is an isomorphism. We adapt the proof of Theorem 6.7. Let U and V be open subsets of M. Using a partition of unity from the base M we see that

$$0 \to \Omega^*_c(E|_{U \cap V}) \to \Omega^*_c(E|_U) \oplus \Omega^*_c(E|_V) \to \Omega^*_c(E|_{U \cup V}) \to 0$$

is exact, as in Proposition 2.7. So we have the diagram of Mayer-Vietoris sequences

$$\cdots \longrightarrow H^*_c(E|_{U\cap V}) \longrightarrow H^*_c(E|_U) \oplus H^*(E|_V) \longrightarrow H^*_c(E|_{U\cup V}) \xrightarrow{d^*} H^{*+1}_c(E|_{U\cap V}) \longrightarrow \cdots$$

$$\downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \downarrow^{\pi_*} \qquad \cdots$$

$$\cdots \longrightarrow H^{*-n}_c(U \cap V) \longrightarrow H^{*-n}_c(V) \oplus H^{*-n}_c(V) \longrightarrow H^{*-n}_c(U \cup V) \xrightarrow{d^*} H^{*+1-n}(U \cap V) \longrightarrow \cdots$$

The above diagram is clearly commutative. By Corollary 6.9, if U is diffeomorphic to \mathbb{R}^n , then $E|_U$ is the trivial bundle, so that by the Poincaré lemma for compact support we have that $\pi_* : H_c^*(E|_U) \to H_c^{*-n}(U)$ is an isomorphism. By the Five Lemma, since the desired conclusion holds for U, V, and $U \cap V$, then it holds for $U \cup V$. The proof now proceeds by induction on the cardinality of a good cover for the base, as in the proof of Poincaré duality.

References

[1] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer.