# MATH 8302: Manifolds \& Topology Homework 5 

Bruno Poggi<br>Department of Mathematics, University of Minnesota

April 22, 2019

The book referenced throughout is [1]. This solution is joint work with McCleary Philbin and Adrienne Sands.

### 16.45.

On the complex projective space $\mathbb{C} P^{n}$ there is a tautological line bundle $S$, called the universal subbundle; it is the subbundle of the product bundle $\mathbb{C} P^{n} \times \mathbb{C}^{n+1}$ given by

$$
S=\{(\ell, z): z \in \ell\} .
$$

Above each point $\ell$ in $\mathbb{C} P^{n}$, the fiber of $S$ is the line represented by $\ell$. Find the transition functions of the universal subbundle $S$ of $\mathbb{C} P^{1}$ relative to the standard open cover and compute its Euler class.

Solution. The standard open cover for $\mathbb{C} P^{1}$ consists of two open sets: $U_{0}=\left[1, \frac{z_{1}}{z_{0}}\right]$ whenever $z_{0} \neq 0$, and $U_{1}=\left[\frac{z_{0}}{z_{1}}, 1\right]$ whenever $z_{1} \neq 0$. Now set $x=\frac{z_{1}}{z_{0}}$ and $u=\frac{z_{0}}{z_{1}}$. Then $[1, x]$ and $[1, u]$ are new coordinates for $U_{0}$ and $U_{1}$, respectively. Note that therefore we may identify each of $U_{0}, U_{1}$ with $\mathbb{C}$. Since the fibers of $S$ are the complex lines consisting of all those points in the equivalence class of a specific point in $\mathbb{C} P^{n}$, then the transition functions must verify

$$
(u, 1)=g_{01}(1, x), \quad(1, x)=g_{10}(u, 1)
$$

for each coordinate $x, u$. This is achieved if and only if $g_{01}=u=\frac{1}{x}=\frac{z_{0}}{z_{1}}$, and $g_{10}=\frac{1}{u}=x=\frac{z_{1}}{z_{0}}$.

We now compute the Euler class. As in (6.38), we have that

$$
e(S)=-\frac{1}{2 \pi i} d\left(\rho_{0} d \log g_{01}\right), \quad \text { on } U_{1},
$$

where $\rho_{0}$ is 1 in a neighborhood of the origin, and 0 in a neighborhood of infinity in $U_{0} \simeq \mathbb{C}$. In particular,

$$
e(S)=-\frac{1}{2 \pi i} d\left(\rho_{0} d \log \frac{1}{x}\right), \quad \text { on } U_{0} \cap U_{1} .
$$

We now proceed to compute $\int_{\mathbb{C} P^{1}} e(S)$, as in [1] pages 76-77. Fix a circle $C$ in the complex plane with so large a radius that the support of $\rho_{0}$ is contained inside $C$. Let $A_{r}$ be the annulus centered at the origin whose outer circle is $c$ and whose inner circle $B_{r}$ has radius $r$. As the boundary of $A_{r}$, the circle $C$ is oriented counterclockwise while $B_{r}$ is oriented clockwise. Observe the computation

$$
\begin{array}{r}
\int_{\mathbb{C} P^{1}} e(S)=-\frac{1}{2 \pi i} \int_{\mathbb{C}} d\left(\rho_{0} d \log \frac{1}{x}\right)=\frac{1}{2 \pi i} \int_{\mathbb{C}} d\left(\rho_{0} \frac{d x}{x}\right)=\frac{1}{2 \pi i} \lim _{r \searrow 0} \int_{A_{r}} d\left(\rho_{0} \frac{d x}{x}\right) \\
=\frac{1}{2 \pi i} \lim _{r \searrow 0}\left[\int_{C} \rho_{0} \frac{d x}{x}+\int_{B_{r}} \rho_{0} \frac{d x}{x}\right]=\frac{1}{2 \pi i} \lim _{r \searrow 0} \int_{B_{r}} \frac{d x}{x} \\
=\frac{1}{2 \pi i}(-2 \pi i)=-1,
\end{array}
$$

where we used Stokes Theorem and the properties of $\rho_{0}$. To recap,

$$
\int_{\mathbb{C} P^{1}} e(S)=-1
$$

## References

[1] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer.
[2] T. Lawson, Topology: a geometric approach, Oxford University Press, 2006

