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A COMPUTATIONAL MODEL FOR THE INDENTATION AND PHASE
TRANSFORMATION OF A MARTENSITIC THIN FILM

PAVEL BELIK AND MITCHELL LUSKIN

ABSTRACT. We propose a computational model for a stress-induced martensitic phase transfor-
mation of a single-crystal thin film by indentation and its reverse transformation to austenite by
heating. Our model utilizes a surface energy that allows sharp interfaces with finite energy and a
penalty that forces the film to lie above the indenter and undergo a stress-induced austenite-to-
martensite phase transformation. We introduce a method to nucleate the martensite-to-austenite
phase transformation since in our model the film would otherwise remain in the martensitic phase
in a local minimum of the energy.

1. INTRODUCTION

Due to the growing interest in microdevices utilizing shape-memory materials [21], much research
has focused on understanding the behavior of these materials, particularly martensitic alloys. A
geometrically nonlinear theory of martensite has been developed [2,3] and corresponding thin film
theories have been derived [6,9]. Thin films of single-crystal martensitic alloys have recently been
grown [15], and the miniaturization of devices using these films is being pursued.

It is the goal of this paper to demonstrate the feasibility of simulating the deformation of martens-
itic single-crystal thin films during thermally activated and stress-induced phase changes by numer-
ically modeling an experiment of Cui and James [14]. This experiment confirmed the prediction of
the thin film theory that certain alloys of specific composition and orientation have the martensitic
tent described in [6] as a local minimum of the energy. A thin film of CuAINi with a specific
composition and orientation was subjected to a suitable heat treatment, and an indenter in the
shape of the tent predicted by the thin film theory [6] was used to deform the film appropriately.
Upon removal of the indenter, the film remained in the tent-like shape. A water bath was used to
heat the film so that it transformed back to austenite, and the experiment was repeated several
times.

We extend the mathematical model and numerical methods described in [7] for a pressurized film
to numerically simulate this experiment. Our computational model utilizes a penalty to force the
film to lie above the indenter and undergo a stress-induced austenite-to-martensite phase transfor-
mation and a total variation surface energy that allows sharp phase boundaries of finite energy [9].
Our total variation thin film model also allows us to develop a method to nucleate the martensite-
to-austenite phase transformation. The nucleation step in our algorithm is needed since the film
would otherwise remain in the martensitic phase in a local minimum of the energy. Our numerical
results show good qualitative agreement with the experiment.
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In Section 2, we briefly describe the experiment performed by Cui and James with a thin film of
Cu-Al(wt.%)13.95-Ni(wt.%)3.93. In Section 3, we describe the mathematical models we have used
to compute the deformation of martensitic thin films [6,9].

Although the long-term goal of our research is the development of the capability to predict the
quantitative behavior of martensitic single-crystal thin films, we are concerned at this initial stage
with the exploration and validation of mathematical models. Nonetheless, we have used measured
elastic moduli and transformation strains when available, although other physical constants have
been chosen to explore the properties of the model. In Section 4, we describe the properties
of the elastic energy density. Since we did not have the elastic moduli for Cu-Al(wt.%)13.95-
Ni(wt.%)3.93, the elastic density that we use was constructed to match the transformation strains
and the measured austenitic and martensitic elastic moduli for some related copper-based shape
memory alloys with similar crystallography [4,18,19].

Section 5 summarizes the theoretical conditions on the alloy for the tent deformation to a local
minimum of the energy. We apply these conditions to a CuZnAl alloy to determine the necessary
orientation of a thin film of this material to satisfy the conditions for the tent to be a local minimum
of the energy, and we describe the obstacle problem for the indenter experiment and devise a penalty
method to model it. The finite element approximation is given in Section 6, and the results of the
numerical simulation of the indenting stage of the experiment are presented in Section 7.

The description of the model for the heating process of the experiment and the numerical sim-
ulations for this process are presented in Sections 8 and 9, respectively. We introduce a method
to nucleate the martensite-to-austenite phase change since otherwise the film would remain in the
martensitic phase in a local minimum of the energy. In Section 10, we give an analysis to explore
the effect of energy barriers on the numerical solution.

Finally, in Section 11, we present results for the solution to the indenter problem when the
crystal does not exactly satisfy the tent compatibility conditions. This is actually the case for the
Cu-Zn(at.%)15-Al(at.%)17 alloy [10].

2. DESCRIPTION OF THE INDENTER EXPERIMENT

In this section, we describe the experiment performed by Cui and James [14]. The specimen
used in this experiment was Cu-Al(wt.%)13.95-Ni(wt.%)3.93 heat-treated so that it undergoes a
cubic-to-monoclinic transformation. It is shown in [14] that it very closely satisfies the necessary
compatibility conditions formulated in [6] for a suitably oriented thin film to have a tent deformation
as a local minimum of the energy. The thin film used in the experiment was obtained by polishing
a slice of the alloy at high temperature to obtain a film with thickness 0.04 4 0.01 mm.

The indenter was made of PVC and was machined with an orientation required by the thin film
theory for the existence of a stress-free tent with martensitic sides (Figure 1(a)). The fixture used
to hold the film is depicted in Figure 1(b). The film in its austenitic phase was suitably oriented
and tightly attached, but left loose in a middle square area with size equal to that of the indenter
(approximately 1 cm by 1 cm). A water bath was used to control the temperature of the film. The
fluid was brought into the fixture through two plastic tubes on the side of the fixture and circulated
around the edges of the film.

To obtain the tent, the temperature was lowered to 10°C and held constant for about 15 minutes.
Then, the indenter was pushed into the film, and a tent deformation was observed. After the
indenter was removed, the film slightly dropped, but stayed in the shape of a tent (Figure 2). It
was verified by microdiffraction that most of the film on each side of the tent was in a single variant
of martensite. This X-ray method was not conclusive close to the lower edges of the tent as different
variants of martensite were detected.
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(a) (b)

FiGURE 1. The indenter and the fixture used in the experiment. Courtesy of J. Cui
and R. James.

(a) (b) (c)

FIGURE 2. (a) The tent deformation of Cu-Al(wt.%)13.95-Ni(wt.%)3.93 at 10°C on
a film of thickness 40 pm with surface normal [100] and edge [0,4.331, 1]. The size
of the tent is 0.4 x 0.4 x 0.188 inches. (b) and (c) The tent at 70°C and 90°C during
the heating phase. Courtesy of J. Cui and R. James.

After obtaining the tent, the temperature of the water bath surrounding the film was slowly
increased to 95°C, which caused the tent to start to gradually shrink and collapse (Figure 2).
Until the tent had shrunk to about two-thirds of its original size, the shape of the tent was almost
identical to the original shape. Then the shape started to change—all the edges became rounded.
This process continued until most of the film transformed back to its original flat shape. The very tip
of the tent, where perhaps some plastic deformation occurred, took about thirty minutes to flatten
out. The indenting and heating procedures were repeated four times and the tent deformation
and the flat shape were completely recovered each time; however, after the fifth cycle a little bulge
remained visible on the surface of the film even after two hours of heating. This was viewed as a
result of permanent plastic deformation.

3. THIN FiLM MODELS

We assume that the energy density ¢(F,#) is a continuous function ¢ : R3*3 x (6y,60;) — R
representing the energy per unit reference volume of the material as a function of the deformation
gradient I € R3*3 and the temperature 6 € (0g,0;) where 0y < 0. < 6; for the transformation
temperature 6. at which the austenitic and martensitic phases have the same free energy density.
We can assume that the energy density ¢ satisfies the growth condition

c1|FIP — ey < ¢(F,0) < c3(|[F|P+1) for all F € R*3 and 6 € (6,6,), (3.1)
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where ¢1, cg, and c3 are fixed positive constants. This growth condition controls the behavior of
¢(F,0) as |F| tends to infinity; however, in all of our simulations the deformation gradient remains
near the bottoms of the energy wells and hence we do not worry about the growth of ¢ at infinity.

In our computations, we have used the total-variation thin film energy rigorously derived by the
authors in [9] following earlier work on a strain gradient model by Bhattacharya and James [6].
Discussions of the modeling and scaling of surface energy can be found in [2,20]. Our model
gives a finite surface energy to sharp austenite-martensite and martensite-martensite interfaces and
allows the use of continuous, piecewise linear finite elements for the deformation while retaining
surface energy in the model [9]. We have given numerical results to compare the difference between
solutions computed with small surface energy (Figure 5) and solutions computed with no surface
energy (Figure 6).

In our total-variation surface energy model, the bulk energy for a film of thickness h > 0 with ref-
erence configuration 2, = Q x (—h/2, h/2), where 2 C R? is a domain with a Lipschitz continuous
boundary 02, is given by the sum of the surface energy and the elastic energy

/1/ |D(Vu)| + é(Vu,0) dz (3.2)
QO QO

where th |D(Vu)| is the total variation of the deformation gradient [9] and x is a small positive
constant. The total variation of a deformation gradient Vu that has discontinuities across the
piecewise smooth surfaces o;, j = 1,...,J, separating the open sets wy in the disjoint union

Qp, = ZeL:1 wy is given by

/Qh |D(Vu)|=i |[[Vu]]gj\d5+g/w i <%>2dm

j=179j ¢\ mmn=1

where |[Vu],,| denotes the euclidean norm of the jump of the deformation gradient across the
interface 0. The film is assumed to be bonded at 9Q x (—h/2, h/2), so the admissible deformations
are constrained by the boundary condition

u(xy, 2, w3) = yo(z1,22) + bo(21, 22)T3  for (z1,22) € ONY, 23 € (—h/2, h/2),

for fixed functions yg, bp.
It has been shown in [9] that energy-minimizing deformations u of the bulk energy (3.2) are
asymptotically of the form

u(zy, o, x3) = y(x1,x2) + b(21, T2)T3 + O(:L‘%) for (z1,22) € Q, x3 € (—h/2, h/2), (3.3)

where (y,b) minimizes the thin film energy

E(y.b.0) = 1 (/Q|D(Vy|b|b)| +\/§/8Q |b—bo|> +/Q¢(Vy|b, 0) da (3.4)

over all deformations of finite energy such that § = yg on 9€). The map b describes the deformation
of the cross-section relative to the film [6]. We denote by (Vy|b) € R3*? the matrix whose first
two columns are given by the columns of Vy and the last column by b and occasionally refer to it
as the “deformation gradient.” In the above equation, [, |D(Vy|b|b)| is the total variation of the
vector valued function (Vy|b|b) :  — R3*4. An explicit computable formula for the total variation
Jo |D(Vy|b|b)] is given in Section 6 for finite element approximations.

The first integral in the expression for the energy (3.4) models the interfacial (or surface) energy.
Since & is typically small, the interfacial energy term is sometimes neglected by setting x = 0 and
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assuming that the free energy is given by the expression

E(y,b,0) /Q S(Vylb, 0) da. (3.5)

This greatly enlarges the space of admissible deformations since we no longer have to require that
Jo ID(Vylblb)| < oo. To ensure continuity of y up to the boundary, 92, we may assume that p > 2
in (3.1) [1].

However, energy-minimizing deformations of the energy (3.5) do not exist for general boundary
conditions since the minimum energy may only be approached by deformations whose gradients
oscillate between energy wells across layers whose width converges to zero [2,24]. The addition
of the surface energy (k > 0) gives a positive contribution to the energy for each oscillation of
the deformation gradient across a layer, thus limiting the number of layers for energy-minimizing
deformations and guaranteeing the existence of classical solutions [9, 20, 24]. Since the width of
possible layers is bounded below by the mesh size for finite element approximations, the minimum
of (3.4) restricted to finite element deformations exists even for k = 0 [24].

In previous numerical simulations [7,11-13,22], it has been observed that even without imposing
the condition that the deformed body not penetrate itself [17], this was indeed the case. Hence,
we do not impose this condition on the space of admissible deformations. We note that these
requirements have been satisfied by all of the numerical solutions that we have obtained in our
simulations.

4. ELASsTIC ENERGY DENSITIES

We will construct a frame-indifferent energy density [17] with reference configuration given by the
austenitic phase at the transformation temperature. We assume for simplicity that the unstressed
austenitic state does not change for 6 € (6, 01), so that it follows from the frame indifference of the
energy density that ¢(F,0) is minimized at F' € SO(3) for § > 6, where SO(3) denotes the group of
proper rotations. We also assume that the transformation strain U; for the unstressed martensitic
phase does not vary for 6 € (6, 61), so that the energy density is minimized for 6 < 6. at

UZSO(3)U1U"'USO(3)UN, (4.1)
where for the symmetry group G of the austenitic phase we have
{Uy,...,Uxy} ={RTUR: RegG}. (4.2)

As discussed in [6], certain thin films of single-crystal martensitic alloys with specific material
constants support the formation of a four-sided tent each of whose sides is predicted to consist of a
single variant of martensite, with opposite sides consisting of the same, but rotated, variant. The
experimental indentation results of Cui and James [14] using X-ray diffraction confirmed that each
side of the tent had transformed to the predicted variant. One of the goals of our simulations is to
numerically reproduce the indenter experiment discussed in Section 2. For this reason, it is desirable
to use an energy-density model constructed so that it fits as many elastic moduli and transformation
strains for this alloy as possible. Since the elastic moduli and transformation strains for the CuAINi
alloy were not available to us, we utilized published elastic moduli and transformation strains for
some CuZnAl alloys [4, 16, 28].

The CuZnAl alloy we consider undergoes a cubic-to-monoclinic transformation and thus has
twelve (N = 12) variants. However, the theoretical [6] and experimental [6] results described above
have led us for computational efficiency to utilize an energy density that is minimized only at the
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wells with the maximal in-plane extensions generated by the four variants U;, ¢ = 1,...,4, given
by
a 6 0 6 46 0 a —6 0 8 =46 0
U=[(0 B 0), Uy=|6 a 0}, U=[—-0 B 0|, U=|-6 a 0], (43)
0 0 v 0 0 ~ 0 0 v 0 0 ~«n
with a, 8,7,6 > 0, a > 3, and a8 — §? > 0 [4,8]. The parameters for Cu-Zn(at.%)15-Al(at.%)17

are [4,10]
a=1087, =101 ~=0.9093, ¢=0.025.

The reduction to the four-well case (4.3) corresponds to a particular case of the tetragonal-to-
monoclinic phase transformation [8] and therefore the energy densities Wy, and Wy corresponding
to the martensitic phase and defined below will have tetragonal symmetry. However, the energy
density W4 corresponding to the austenitic phase will retain the cubic symmetry.

To construct our energy density, we construct energy densities Wy, (F') for the martensitic phase
and W4(F) for the austenitic phase such that

Wy (F)=0 ifand only if F el =SO3)U;U---USO3)Uy,
W4(F)=0 if and only if F € SO(3),

and such that Wy (F) and W4 (F') approximately match the elastic moduli at their respective
energy wells. We note that it is not possible to match all of the moduli with a reasonably simple
energy density and that elastic moduli for specific alloy compositions are not always available in
the published literature.

We will define the energy density ¢(F, ), similarly as in [7], by

min {WA(F), War(F) + %} for 0 > 0,

6(F,0) = (4.4)

min {WA(F) oL WM(F)} for 0 < 0.

For the energy density ¢(F,0), the minimum value is attained on SO(3) for # > 6. and on U for
0 < 0., and each of the energy wells SO(3) and U are local minimizers for all § € R. We note that
this energy density has been normalized so that its minimum value is zero for all temperatures.
A function of 6 could be added to the energy density without changing the computations that we
present in this paper.

To construct our energy density, we modify the quasi-convex energy density developed by Bhat-
tacharya and Dolzmann [4,5]. Their energy density is given by

13
W (F) =a(det F — (af — 52)7)2 + b [| cof Fes|® — (aff — 62)2}1 + Zci [|Fvi|2 — Bz]j_
i=1

for v; € R?, B; € R and constants a,b,cq,...,c5 > 0, ¢; > 0 that satisfy
C2 =20C3, € =Cs C6=-+""=2Cy, Cl0="''"=C13.

We used above the notation that [s]; = max{0,s}. The values of the constants a, b, and ¢; given
in Table 1 were determined in [4] to approximate the elastic moduli (in GPa) for Cu-Zn(at.%)12.8-
Al(at.%)17.6 [28].

We have used Wy, to construct a nonnegative function Wjs that vanishes only on the union I/
of the martensitic wells (4.1), but preserves the martensitic elastic moduli of Wj;. Since the elastic
moduli are determined by the second derivatives of Wjy, it is only a matter of verifying that these
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i v | B | ci |
1] (0,0,1) 72 1.97
2 | (1,1,0) + 2+ 25(a+ B +9) 0.12
31(,-1,00] o®+3*+26(a+pB+0) [0.12
41 (1,0,0) a? + 62 9.76
5| (0,1,0) a? + 62 9.76
6 | (1,1,1) [o®+ 2+ +25(a+8+0)]| 3.0
7T-L1LY) [ a2+ 4+ +25(a+B+06) | 3.0
S1(,-1,1) [ a2 +p%+92+26(a+B+0)] 3.0
9 (1,1,-1) [ a®?+2+72+25(a+3+0)]| 3.0
10] (1,0,1) a? 4 6% + 472 0.38
111 (1,0,-1) a? + 6% + 42 0.38
12] (0,1,1) a? 4 6% + 42 0.38
13](0,—1,1) a? 4+ 6% + 472 0.38

| a=29.61 b=6.8 |

TABLE 1. The vectors and constants in the definition of Wy, and W),.

second derivatives of Wy, when evaluated at Uj, do not change from those of Wj;. The elastic

moduli at the remaining U; will then be matched by the tetragonal symmetry of the energy density.

We illustrate the idea for constructing the energy Wy from Wj, by the following example.

Assume that w : R — [0,+00) is given by w(z) = clz — 1]2 + ¢[-1 — z]2 with ¢ > 0 so that

it vanishes on the interval [-1,1] and lim,\ ; w"(z) = lim, »_; w”(x) = 2c. Then the function
— C

w(z) = £(z — 1)%(z 4+ 1)? is nonnegative, vanishes at +1, and w”(+1) = 2c.

In our computations, we use the energy

War(F) = a (det F — (@B — 6%)7)° +b (| cof Fes|?> — (e — 6%)?) + ¢1 (|Fui|* — By)?

C2 2 2 2 2 Cy 9 9 ) 9
+m(|F’Ug| — Ba)" ([Fus|” — Bs) +m(wwl — B4)” (|Fvs|® — Bs)

c 9 ) ) )
+ a7t 7 Lol = Bo) + (1B = Bo)*| - (1For® = o) (s = By)

C10 2 2 2 2 2 2 9 2
+ m |:(‘FU10| - BIO) + (‘FU11| - Bll) :| . [(‘Fvu\ — Bu) + (‘FU13| — B13) } .

The constants a, b, ¢;, and B; and the vectors v; agree with those in the definition of Wj; and
are given in Table 1. We note that the energy density Wi (F') also vanishes on a spurious set
U=S03)U1U---USO(3)Uy in addition to U = SO(3)U; U---USO(3)Uy. Since tr FT F =~ 8.007

for F € U, we could add the term [tr FTF — 4]1 to the energy density to ensure that it does not
have zero energy density on the spurious set 2 = SO(3)U; U --- U SO(3)Uy, but we did not need
to do so since we never obtained such deformation gradients in our computations.

Next, we construct an energy density, W4, corresponding to the austenitic phase. To this end, we
recall that the parent austenitic phase of CuZnAl has cubic symmetry and so there are only three
independent elastic moduli [23]. These have been measured for Cu-Zn(wt.%)21.4-Al(wt.%)5.9 [16].
Using the standard notation [23], we have from [16] that

(CH =130+1 GPa, (C44 =86+t1 GPa,
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and
Cr =1 (Cy1 + Ci2 + 2Cy4) = 203 £2 GPa, C'=1(Cy; — Cy2) =5.84£0.2 GPa,

_ 2Cy
Cin—Cy2

It is easy to see that it is not possible to choose C11, C139, and Cyy so that all of the above quantities
fall within the given ranges. Hence, we take

Cll =130 GPa, Clg = 1184 GPa, C44 = 86 GPa,

A =150+£1.

so that
Cr, = 210.2 GPa, ¢’ =5.8 GPa, A= 14.8.

A simple example of a function W4 that is frame-indifferent, has cubic symmetry, vanishes only on
the set SO(3), and has the elastic moduli C;1, Cjo, and Cyy is

Wa(F) =d(det F —1)* + e (Ch +Cl + C3) + f [(C11 — 1)+ (Cyy — 1)* + (C33 — 1)2} ,
where C = FT I is the Cauchy-Green strain corresponding to the deformation gradient F and
d=1Ci, e=1Cu, f=1(Cy1—Cya).
We will also experiment numerically with the energy density ¢ defined by

min {WA(F), War(F) + %} for 0 > 0.,

P(F,0) = (4.5)

. 0:.—0)W T
min {WA(F) Lt WM(F)} for 0 < 0.

The minimum of ¢(F,0) is attained on SO(3) for # > 6. and on the quasi-convex hull 2% [4] for
0 < .. We also have that each of the energy wells SO(3) and Y% are local minimizers for all
6 € R. We note that ¢ is not quasi-convex, although the martensitic energy density Wi (F) is
quasi-convex [4].

5. TENT DEFORMATION

We now show that for a slight change of the parameter § there exists a stress-free tent defor-
mation of a square surface orthogonal to es with faces in the martensitic phase [6]. We note that
R(m/2,e3) U1 R(/2,e3) = Uy where R(m/2,e3) € SO(3) is the rotation of /2 radians about ez. It
thus follows from the theory of Bhattacharya and James [6] that there exists such a square surface
orthogonal to ez with a side parallel to e € R?, |e| = 1, e - e3 = 0, along which that tent has
deformation gradient RU; for R € SO(3) if and only if there exists @ € SO(3) such that

QUie =e,
QUin-QUie =Uin-Uie =0 for n = e3 x e, (5.1)
|QUin| = |Uin| > 1.
Since the subspace {v € R : v -e3 = 0} is invariant for Uy, necessary and sufficient conditions
for the existence of a tent can be given that are much simpler than those given for the general case

in [6]. It is easy to see that (5.1) holds if and only if Q@ = R(x,e) for any rotation of x radians
about e and

Uy=e®e+In®@n+ve3 R es (5.2)
for A > 1. If (5.1) holds, then a stress-free tent deformation can be formed with sides having
deformation gradient R(x,e)U;, R(x,n)Us, R(—x,e)Uy, and R(—x,n)Uy for x = 4 arccos A7L.
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Now the eigenvalues of Uy are

(a+P) % /@a—BP 145
2 b

Since @ > 1 and (3 > 1, we see that the larger eigenvalue satisfies

(a+B) 4+ /(o — )% + 462 -

L,
2

but the smaller eigenvalue satisfies

(+8) - Vo BT
2

£1

for a = 1.087, g = 1.01, 6 = 0.025. However,

@48 —lo—pr+a8?

5 =

for
0 =+/(a—1)(3—1) ~0.0295.

We shall use the value § = 6 = 0.0295 in our subsequent computations to guarantee the existence of
a stress-free tent. We shall also present computational results for the measured value § = 0.025 in
Section 11 to investigate solutions of our thin film model when the tent conditions are not exactly
satisfied.

It can be checked that for § = 6 we have that

e=(a+5-2(Vi-1 —va—T1,0),
n=(a+pf—2)"V2 (\/a—l,\/ﬂ—l, 0),
(a+B)+\/(a=0)2+402 (a4 8)+/(a—B2+4a— 1B~ 1)

- - 9

2 2

VR —T= g latBat -2,

To model the indenting stage, we have to solve an obstacle problem. Our numerical procedure
consists of continuation in the height of the indenter; the indenter is incrementally inserted further
and further into the film, and the obstacle problem is solved at each step by using a variant of the
Polak-Ribiere conjugate gradient method [7,26] to minimize the energy with the previous solution
serving as the initial guess. (See Section 6 for a precise description of this step.) We start with the
indenter below the film at o = 0 and the film in the flat austenitic phase, and we raise the indenter
to fully transform the film at o = 1 by

C(ylay27 U) = max (Oan(y13y2) + 5(0- - 1)) for (ylayQ) €eQl= (0’ 1) X (Ov 1)3
for £ = 0.225504 obtained from (5.3) where

n(y1,y2) = 2min (§y1, (1 —y1), Eyo, E(1 —y2))  for (y1,42) € 2= (0,1) x (0,1).

(5.3)

PN,

¢ = height of tent =
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The energy with a penalty for the indenter is then

E(y,b,0,0) = K UQID(Vbe|b)I+\/§/m\b—bol] +/Q¢(V?J|bv9)dx (54)

v /Q € (1(2), 2(2),0) — v3(2)]2. da

We numerically solve the indenter problem for a given temperature distribution 6 : 2 — R by
minimizing the energy (5.4) over continuous, piecewise linear finite element deformations y and
piecewise constant b satisfying the boundary condition

y(x) = yo(x) = (z1,22,0) for all x = (x1, z2) € O, (5.5)

where  is the unit square domain whose one side is determined by the vector e given in (5.3) and
where by = (0,0,1). Note that the boundary condition (5.5) corresponds to the fact that outside
of the domain 2 the film is attached to the substrate and hence remains in the austenitic phase.

6. FINITE ELEMENT APPROXIMATION OF THE INDENTER EXPERIMENT

To describe our finite element approximation of (5.4), we let the elements of a triangulation 7
of €2 be denoted by K and the inter-element edges by e. To distinguish between the internal edges
of 7 and the boundary edges of 7, we shall write e C §2 for the internal edges and e C 90X for the
boundary edges. Given an internal edge e C ) and two elements K7y, Ko € 7 sharing the edge e,
we define the jump across the edge e of a function ¥ by

H¢H€ = we,Kl - we,Kg

where 1 g, denotes the trace on e of |k, for i = 1,2. Since only the euclidean norm of the jump
will enter the discrete energy below, the sign ambiguity in the definition of the jump will not cause
an ambiguity in the description of the energy below. For a boundary edge e C 952, we define 9|, to
be the trace on e. Finally, we denote by P;(7) the space of continuous, piecewise linear functions
on €2 which are linear on each K € 7, and by Py(7) the space of piecewise constant functions on 2
which are constant on each K € 7. Then, for (y,b) € Pi(7) x Po(7) and 0 € Py(7), the energy (5.4)
is well-defined, and we have that

. [ [ i@+ vz | Q|b—bo|] + [ o(alb.0)da
=k (Z\[{(vmmb)ue
eCQ2

where |e| denotes the length of the edge e, | - | denotes the euclidean vector norm, |K]| is the area
of the element K, and

|e|) £ (b)) K],

Ker

el +v2 3 [ble — bole
eCON

2 2\ 1/2
vyl 1| = (19D +2] 160 )
Since the above term is not differentiable everywhere, we have regularized it in our numerical
simulations.
We approximate the penalty for the indenter by

v 3 (P (P). o) — ws(PP

where P; denote the nodes of the triangulation 7 and where h denotes the diameter of the elements
in the (uniform) finite element meshes we use in the computations (Figure 3). Notice that if the
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(a) (b)

FI1GURE 3. The finite element meshes used in the simulations.

point (y1(P;),y2(P;),y3(P;)) lies above the indenter, that is y3(P;) > ((y1(P;),y2(P;), o), then the
contribution to the penalty function is 0; on the other hand, the contribution is positive for points
Pj satisfying yg(P]) < C(yl(Pj),yg(Pj),U).

To model the action of the indenter, we employ the quasi-static continuation techniques used
in our previous computations [7]. As we increment o from 0 to 1, the indenter is inserted a little
deeper into the film, and the augmented energy (5.4) is re-minimized with the previous minimum
modified to lie above the indenter serving as the initial guess. More precisely, the initial guess at
each node P; is formed by raising the height y3(P;) of the solution at the previous value of o to
C(y1(Pj),y2(Pj),0) if it is below this value. We start with the film in the austenitic phase and the
indenter removed (o = 0). The final stage is with the indenter fully inserted into the film (o = 1).
At this stage, the film should have been completely transformed to martensite.

7. NUMERICAL RESULTS FOR THE INDENTER EXPERIMENT

In all of the simulations presented for the indenting and heating process with the energy density
¢, we have used regular refinements of the finite element mesh shown in Figure 3(a). This mesh is
chosen to fully accommodate the fact that the normal to the plane of the reference configuration
is a four-fold axis of symmetry of the crystal. Also, the presence of the edges along the diagonals
of the square allows for the alignment of the interfaces with that predicted by the theory. Since we
seek to study thin films cut or grown along crystallographic planes that allow phase and variant
interfaces along specified lines, we have used this information a priori in the construction of the
finite element mesh.

We note that the mesh in Figure 3(b) biases the alignment of the martensitic interfaces to that
expected for the tent, whereas the finite element mesh in Figure 3(a) does not bias the formation of
interfaces along either of the diagonals. We have obtained very similar results for the finite element
mesh in Figure 3(b) as for the mesh in Figure 3(a) with the energy density ¢. However, we will see
in Figures 7 and 8 that we obtained different results on the two meshes for the simulation of the
heating process with the “relaxed” energy density ¢.

We have displayed results for the criss-cross mesh in Figure 3(a) with A = 1/48 and the results
for the mesh in Figure 3(b) with h = /2 /64, where h always denotes the diameter of the largest
element of the triangulation. We have utilized the techniques given in [12,24] to visualize the
deformation gradients of the computed deformations.
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As the indenting process proceeds, the largest stresses occur at the tip of the indenter; hence, the
tip should provide a mechanism for the nucleation of martensite. This is what we also observe in
the computed deformations. We fix the temperature of the film at § = —0.3, that is, slightly below
the transformation temperature normalized to 8. = 0. Due to the stresses caused by the indenter,
our computational model is able to simulate the transformation from austenite to martensite.

The simulation was performed with the strain-gradient coefficient x = 4 x 10~%, mesh size
h = 1/48, and continuation steps in o equal to 1/94. Notice that as the indenter penetrates
further into the film, more martensite appears and the expected variants (colored red and yellow,
respectively, in Figure 4) arrange themselves on the sides of the film and their volume fraction grows
(Figure 4(b) and (c)). Finally, when the indenter is fully inserted, the whole film has transformed
to martensite, with its sides having deformation gradients in the wells corresponding to U; (red)
and Uy (yellow) of (4.3).

When the indenter is removed (o = 0) and the energy (5.4) is re-minimized, the film stays in the
same tent shape (Figure 4(d)), but the height decreases slightly from £ = 0.225504 to £ = 0.225219.
We believe that this small decrease in the height can be explained by the observation that for a
small decrease in the height ¢ = 0.225504 of the tent, the surface energy decreases linearly (up
to higher order terms) in the height perturbation since the length of the four tent interfaces is
reduced linearly, while the elastic energy increases only quadratically (up to higher order terms) in
the height perturbation since the first variation of the elastic energy is zero for the tent with height
€ = 0.225504 (note that the deformation gradients are at the bottom of the energy density wells
for the tent with height £ = 0.225504).

We have simulated the indenting process without surface energy (x = 0) and found results similar
to those in Figure 4, but with a slightly more irregular austenite-martensite phase boundary and
with other variants occasionally appearing near the interface. We have also simulated the indenting
process with the quasi-convex energy density in ¢ and found results similar to those with ¢ and
Kk = 0.

8. COMPUTATIONAL MODEL FOR THE MARTENSITE-TO-AUSTENITE PHASE TRANSFORMATION
BY HEATING

Since elastic waves propagate and attenuate on a time scale that is fast compared to that of
heat conduction [27,29], we have developed a quasi-static model in which the film is assumed to
have reached elastic equilibrium after each time interval during which the temperature has diffused
within the film. We assume that the temperature on the boundary is fixed at a constant value,
0y, above the transformation temperature, .. We make the simplifying assumption that the heat
diffuses in the reference configuration instead of the deformed configuration, and we model the
evolution of the temperature 6(x,t) by the heat equation

Or(x,t) = pAb(z,t) for (z,t) € Q x (0, 400),
O(x,t) = O for (z,t) € 9Q x (0,400), (8.1)
0(x,0) = Ot for x € €,

where Oipix < 6. is the constant initial temperature of the film. Here, p is the diffusivity coefficient
which we can take equal to 1 by scaling time. The greatest simplifying assumption in this treatment
of the thermal diffusion is the neglect of the latent heat of the transformation which could be
expected to slow the kinetics of the transformation.
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FIGURE 4. The indenting phase of the experiment at § = —0.3 with x = 4 x 1074
and h = 1/48. The tip of the indenter provides a mechanism for nucleation of the
martensite (a) when the indenter is inserted sufficiently far into the film. Upon
further penetration of the indenter, more martensite appears and the compatible
variants align on the appropriate sides of the tent (b), (c¢). Notice that the part of
the film that is still in austenite is strained, which is exhibited by the lighter shade
of gray. When the indenter is fully inserted, the film is completely transformed
to martensite. When the indenter is removed and the energy is re-minimized, the
shape of the tent remains practically unchanged (d).
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Since 2 = (0,1) x (0,1), we have for 0sn = 0 and i,y = 1 the analytic solution 5(1‘1,3:2,75) =
O(xz1,t)O(x2,t) for x = (x1,22) € Q given by separation of variables where

\ .
0.0 = (1) X e Ty e 0,1, e
m odd

Therefore, the solution to (8.1) is given by
0(z,t) = 0(z. t)(Oimic — Oo) + Ooq-

Since the terms in the series decay rapidly for ¢ > 0, we use the analytic solution above to evaluate
the temperature at each desired time so that the error is on the order of the machine precision.

To model the deformation during the heating of the film, we discretize time during the process by
partitioning [0, 7] for T'>0by 0 =ty < t; < --- < tr_1 < tr, =T. We then obtain the deformation
(y(te),b(te)) € Ay for £ =0,...,L by computing a local minimum for the energy £(v,c,6(ts)) by
the Polak-Ribiere conjugate gradient method [26] where E(v, ¢, 0(t;)) is the thin film energy

ev.c.0) = | [ 1Dl + V2 [ fe-w] + [ovileoey) 52
defined for the space of approximate admissible deformations
A ={(v,¢) € Pi(1) X Po(T) : v=1yo on 0} (8.3)
where
yo(x) = (1,22,0) for z = (z1,x2) € 01,
bo(z) = (0,0,1) for x = (z1,x2) € 00

Since the martensitic transformation strains 4 C R3*3 are local minimizers for the energy density

(F,0) for all 6 € (0y,061), the tent deformation will continue to be a local minimum for the bulk
energy E(v,c,0(t)) for all t > 0. Thus, our computational model will not simulate a transforming
film if we compute (y(t¢),b(tp)) € A; by using an energy-decreasing algorithm (such as the Polak-
Ribiere conjugate gradient method [26]) with the initial state for the iteration at t, given by the
deformation at t,_y, that is, if (yl%(t,), b0 (t))) = (y(te—1),b(te—1)). For this reason, we have
developed and utilized an algorithm to nucleate regions of austenite into (y(ts—1),b(ti—1)) € A: to
obtain an initial iterate (yl(t,), bl (t,)) € A, for the computation of (y(t;),b(t¢)) € A,.

The volume fraction of austenite in a crystal near the transformation temperature 6 depends
on the history of the temperature [29,30]. The volume fraction of austenite will increase from zero
to one if the crystal is initially in a martensitic state at a temperature sufficiently below 6o and
is then heated slowly to a temperature sufficiently above 8c. To model this behavior, we cycled
through the elements of the triangulation 7 and used an “equilibrium distribution” function, P(6),
to determine the probability that the crystal will be in either the austenitic or martensitic phase
at a temperature 6 in that element with the property

Pl)—0asf — —oco0 and P(O)—1asf— .

Motivated by equilibrium statistical mechanics [25], we have constructed P(#) by the approximation
eﬁ(e-oc) e—B(d)(austenite,G)—¢>(martensite,9)) e—ﬁd)(austenite,e)

P(e) = . +65(9—6C) ~ 1+ e—,@(¢(austenite,0)—qb(martensite,@)) - e—B¢(austenite,0) +6—B¢(martensite,9)

where ¢(austenite, ) = ¢(U1,0) = --- = ¢(Us, 0) and ¢(martensite, §) = ¢(I,6). We note that in

this model the temperature has been scaled so that

¢(austenite, §) — ¢(martensite, ) ~ (0 — 0¢) for 6 near 0c.



INDENTATION AND PHASE TRANSFORMATION OF A MARTENSITIC THIN FILM 15

We describe below how a history dependent distribution function for the volume fraction of austenite
can be used in our algorithm. .

In our computations, we have set 3 = 20 for which the width of the annular region where
0.1 < P(#) < 0.9 is about 2k at t = 1.2 x 102 and about 5h at t = 4.8 x 102 in the computations
shown in Figures 5-8. We note that a deterministic version of our algorithm can be obtained from
the limit 8 — oo by setting

P)=0 for < 6.,
PO)=1 for 0 > 0.

We use (4.4) to determine the phase of a state (F,0) € R3*3 x (0g,01). We say (F,0) is in the
austenitic phase if

Wa(F) < Wy (F) + mﬁi(}f;)_i_w(/;(_ljle)c)

(0. — )W (1)
Wor(D) + (0o—0) * Wy(F)  for 6 <0,

Otherwise, we say that (F,6) is in the martensitic phase.

We observe from (4.3), that if F' € U, then |Fes| = v and Fe; - Fez = Fes - Fez = 0. Also, if
F € SO(3), then |Fes| =1 and Fe; - Fez = Feg - Fez = 0. Hence, if (Vy(x,t,—1)|b(z,t,—1)) is near
the martensitic well , then (Vy(z,t,_1)|b) will generally be nearer the austenitic well SO(3) if

for 6 > 6,

WA(F) +

- yi(z,te—1) x yo(z, te—1)
[y (2, te—1) X yo(z, ti—1)|

Also, if (Vy(z,ti_1)|b(x, ty_1)) is near the austenitic well SO(3), then (Vy(z,t,_1)|b) will generally
be nearer the martensitic well U/ if

ya(e, te 1) X yo(z, te 1)
‘y,l(xatf—l) X y,2($7t£—1)|

b=~

To compute (y(t,),bl%(ty)) € A, we first compute a pseudo-random number, o(K, ¢) € (0,1),
on each triangle K € 7. We then set

YOl (te) = y(te1) € Pi(r)

and compute the piecewise constant bl%(t,) € Py(7) by computing bl (zx,t,) € R? on each K € 7
by (zx denotes the barycenter of K):

(1) If o(K,0) < P(0(xk,t¢)) and (Vy(zg,te—1)|b(zx,ti—1),0(zK,te)) is in austenite, then set
bz g, ty) = blak, to—1) on K.
(2) If o(K,l) < P(0(xk,te)) and (Vy(zr,te—1)|b(xk,ti—1),0(z K, t¢)) is in martensite, then set

on K.

o (e ty) — y1(zr,tie1) X ya(rK,te—1)

[y (zr, te-1) X yo(Tr, te-1)|
(3) If o(K,0) > P(0(xk,t¢)) and (Vy(zg,ti—1)|b(xk,ti—1),0(zK,te)) is in austenite, then set
y1(zr,te—1) X yo(Tr,te—1)
Wa(@r, ti-1) X y2(ek, te-1)]
(4) Ifo(K,€) > P(0(xk,tr)) and (Vy(xx, ti—1)|b(xx, ti—1),0(x K, tp)) is in martensite, then set

bz g, te) = bz, te 1) on K.

b (@ g, tp) =~ on K.
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We then compute the conjugate gradient iterations (y™(ty),bl™(t,)) € A, for m = 1,2,...
which converge to the local minimum (y(t),b(t¢)) € A; of the thin film energy £(v,c,0(ty)) in
the energy well (with respect to A;) of the initial iterate (y%(t,),bl%(t;)) € A,. The state of an
element K € 7 will transform back to martensite during the energy-decreasing conjugate gradient
interations even though the above “nucleation” step has transformed (y%(t,), bl%(ty)) to austenite
on K € 7 if the transformation is energetically unstable.

We have also experimented with several other versions of the above algorithm for the compu-
tation of bl (t¢). For instance, the above algorithm can be modified to utilize different probability
functions P(0) in elements with increasing and decreasing temperature. One can also prohibit the
transformation from austenite to martensite in an element in which the temperature is increasing or
prohibit the transformation from martensite to austenite in an element for which the temperature
in decreasing.

9. COMPUTATIONAL RESULTS FOR PHASE TRANSFORMATION BY HEATING

In this section, we present the results of the numerical simulations of the heating phase for
fsq = 1 and Oin;; = —1 and compare them to the results of the experiment. In Figure 5, we present
the results with the energy density ¢ for k = 4 x 1074, in Figure 6 with the energy density ¢ for
k = 0, and in Figures 7 and 8 we present the results of the heating phase with the “relaxed” energy
density ¢. The subfigures labeled with the same letters correspond to results with an identical
temperature distribution.

We used the energy (3.4) with various nonnegative values of k. We present the results with
k=4 x107* and & = 0. The differences between the case with x = 4 x 107* and x = 0 were
as expected: the resulting deformations for £k = 0 had a more irregular austenite-martensite phase
boundary and variations in the energy-minimizing deformations extended well beyond just a narrow
region near the phase boundary. (This phenomenon could have been expected a priori, since any
“paper-folding” deformation with the deformation gradient satisfying (Vy(z)|b(z)) = R(z)F for
some F' € R33 and R(z) € SO(3) has elastic energy independent of R(x) [6].) In the computations
with k > 0, these variations were suppressed to the extent determined by the size of k. We have
empirically found the value k = 4 x 10™* to be small enough for the elastic energy to be the
dominant term of the total free energy and to be large enough to have an impact both on the
results of the minimization and on the speed of convergence of our algorithm. (See also Section 11
for further justification of the value xk =4 x 1074.)

We have also experimented with the “relaxed” model obtained from the energy density ¢ given
in (4.5). We have found that the elimination of energy barriers in the “relaxed” model has a
great impact on the solutions obtained for stationary problems by iterative methods, similar to
the impact one would expect for time-dependent problems. We see from Figure 7 (computed with
the mesh in Figure 3(a) and h = 1/48) and Figure 8 (computed with the mesh in Figure 3(b) and
h =12 /64) that the solution with the “relaxed” energy ¢ is very sensitive to the mesh orientation.
We will propose an explanation for the solution given in Figure 8 in the next section and see
that the resulting deformations very closely resemble the deformations in the minimizing sequence
constructed in Figure 11.

We observe that the deformation for both meshes immediately becomes round for the simulations
with the “relaxed” energy density ¢, whereas in the experiment the deformation maintained a tent
shape until the tent had shrunk to about two-thirds of its original size [14]. On the other hand,
the sides of the tent remained sharp during the entire heating process for the energy density ¢,
whereas in the experiment the tent sides seem to become rounded after the tent had shrunk to
about two-thirds of its original size. So, although the lack of energy barriers in the energy density
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¢ seems to make the interfaces too mobile during the early part of the computation, the energy
barriers in the energy density ¢ may make the interfaces too immobile in the later stage of the
computation.

Comparing Figure 5 with Figure 6, we see that the height of the film was greater when surface
energy (k = 4 x 10*) was included in the model with the energy density ¢, presumably because it
helped to maintain a more rigid tent shape during the heating process. Also, comparing Figures 7
and 8 with Figures 5 and 6, we see that the round shape obtained with the “relaxed” energy density
had a height lower than that obtained with the energy density ¢ and no surface energy (x = 0).
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FIGURE 5. The heating phase of the experiment at t = 1.2 x 1072, 2.4 x 1072,
3.6 x 1072, and 4.8 x 1072 with k = 4 x 107, h = 1/48, 050 = 1, Oy = —1, and
At =2.5x 107°.
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FIGURE 6. The heating phase of the experiment at t = 1.2 x 1072, 2.4 x 1072,
3.6 x 1072, and 4.8 x 1072 with k = 0, h = 1/48, Opq = 1, Oy = —1, and
At =2.5x 107°.
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FIGURE 7.

The heating phase of the experiment at t = 1.2x 1072 and 2.4 x 10~2 with

the quasi-convex martensitic energy density, h = 1/48 for the mesh in Figure 3(a),

Op0 = 1, Oinit = —1, and At = 2.5 x 107°.
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FIGURE 8. The heating phase of the experiment at t = 1.2x 1072 and 2.4x10~2 with
the quasi-convex martensitic energy density, h = v/2 /64 for the mesh in Figure 3(b),

Opa =1, Oy = —1, and At = 2.5 x 107°.
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FIGURE 9. The computed level set S(t) for the temperature 0(x,t) = 0 at t =
1.5x 102 and an illustration of the regions _(¢) where the temperature is negative
and Q4 (t) where the temperature is positive.

10. ENERGY-MINIMIZING SEQUENCES FOR THE HEATING PROCESS

To discuss the effect of energy barriers, we will assume that k = 0 and 6. = 0. We recall that
O(z,t) is the solution to (8.1) for constants fyn > 0 and 6iniy < 0. We will construct at each t > 0
a sequence of admissible deformations {(yx(t),bx(t))} such that

E(yr(t),bi(t),0(t) -0 ask — co. (10.1)

Our numerical simulations of the thermally-activated phase transformation of the film modeled
with the energy density ¢ have yielded a shrinking tent (Figure 5). On the other hand, our
simulations with the “relaxed” energy density ¢ have given a round deformation (Figure 7) similar
to that of our construction (Figure 11). The difference in the computed solutions can be explained
by the ability of the iterative method to create and move microstructure as time evolves when there
are no energy barriers between the variants.

It is easy to see that at each ¢ > 0, the lines ;1 = 0.5 and x2 = 0.5 are axes of symmetry of 0,
that is,

(1 —x1, 29, t) = 0(x1,22,t) = 0(x1,1 — 22,t) for all (z1,22) € Q, t > 0. (10.2)
Second, Q is a disjoint union of the sets Q_(t), S(t), and Q4(¢) given by
Q_(t) ={zx € Q: O(x1,22,t) < 0}, Qp(t) ={z € Q: O(x1,z2,t) > 0},
Sit)y={z€Q: 0(x1,z9,t) =0},

where the level set S(t) is a convex curve (Figure 9).

To construct the minimizing sequence {(yx(t),br(t))} for (10.1), we approximate the level set
S(t) by a polygon whose sides are parallel to the sides of the film, have the symmetry (10.2), and
such that the distance between the level set S(¢) and the approximating polygon converges to zero
as k — oo (Figure 10). We can then construct {(yx(t),bx(t))} as visualized in Figure 11 such
that its deformation gradient takes on the martensitic values R(x,e)U1, R(x,n)Us, R(—x,e)Uy,
and R(—x,n)Uy used to construct the tent in Section 5 inside the approximating polygon and
the austenitic deformation gradient I outside the approximating polygon. Clearly, the energy
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FIGURE 10. Approximation of S(t) with a polygon whose sides are parallel to the
sides of the square domain.

density of this deformation is minimized outside the thin layer between the curve S(t) and its
approximating polygon; and since the (Vyy|by) are uniformly bounded everywhere in €2, the energy
of the deformation in the layer is proportional to the thickness of the layer and hence converges to
0 as k — oc.

We remark that the volume fractions of the variants (or Young measure [3]) associated with
this minimizing sequence can be fully described in terms of the tangents to S as can be seen from
Figure 11. For example, consider the subdomain (0, 0.5] x (0,0.5]. Denote by 7(z) = (11(%), 72(Z))
the tangent to S at # scaled so that |71| + |72| = V2. Denoting the volume fraction of the “red”
martensitic variant at a point = by Aj(x) and the volume fraction of the “yellow” martensitic
variant by A2(z), we can easily see that, for x € Q_ N (0,0.5] x (0,0.5], in the limit as k — oo the
volume fractions satisfy A\ (z) = 71(Z) and Ao(z) = —72(Z) where T € (0,0.5] x (0,0.5] lies on the
intersection of § and the line parallel to 9 = 1 and passing through =z.

We note that the energy-minimizing sequence described above would exhibit immediate rounding
off of the edges and the tip of the tent, whereas in the experiment of Cui and James [14] this does
not occur until the tent has shrunk to about two-thirds of its size.

11. COMPUTATION OF NEARLY TENT-LIKE DEFORMATIONS

Finally, we would like to compute the solution to the indenter problem when the orientation of
the film or the material constants only approximately satisfy the tent compatibility conditions (5.1).
Recall that to satisfy these conditions we use & = /(ar — 1)(8 — 1) ~ 0.0295, instead of using the
measured value § = 0.025. We will now present results that show what happens if the experimental
value § = 0.025 is retained and used in the computations.

First, it can be checked that there exists no invariant line defined by the e € R? in (5.1) in
the reference plane when 6 = 0.025. However, as determined in [8], the two wells SO(3)U; and
SO(3)Uy are still rank-one connected, that is, QU; — Uy = a®n for some Q € SO(3) and a,n € R?.
Moreover, there exist two distinct solutions @)1, a1,n1 and Q2, as, no with ni orthogonal to no and
both orthogonal to e3. The vectors n; and no are the normal directions of planar interfaces that
separate two regions of constant deformation gradient of a continuous deformation, namely QU;
and Uy. Hence, it is natural to rotate the square computational domain so that ny and no are the
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directions of the diagonals of the square. We remark that [8]

1/2 1/2
1 5 N 5 /
= |5+ 5 .0

2t i T @7 2 i (@ op

and that if § is chosen so that 6> = (a — 1)(8 — 1), then this orientation coincides with that in
Section 5. This orientation will allow for low-energy interfaces between the martensitic variants,
but the lack of compatibility between martensite and austenite cannot be overcome by choosing
a different computational domain. (The choice of the film orientation in the experiment in [14]
was made assuming the alloy satisfies the compatibility conditions exactly, which required a slight
theoretical modification of the monoclinic angle.)

In Figure 12, we present the results of simulating the behavior of the film after the indenter has
fully deformed the film and then been removed. We present two results, one with no surface energy
(k = 0) and one with x = 4 x 10~%. The initial guess for these computations is constructed to be
exactly the tent-like deformation that should be obtained theoretically if 6% = (a — 1)(8 — 1).

Figure 12(a) shows the resulting deformation when there is no surface energy. Notice that due to
the lack of compatibility between austenite and martensite the sides of the tent are distorted and
the height of the tent (0.222131) is slightly below the value expected for a fully compatible tent
(0.225504). The drop of the height of the film is a phenomenon also observed in the experiment
performed by Cui and James [14] and is probably due to the lack of compatibility—in the experiment
and in the model.

Figure 12(b) shows the resulting deformation when x = 4 x 10™*. Notice that the sides of the
film are nearly flat. We do not present the results of the similar computations with £ = 107> and
x = 1075, but there was no visible flattening effect on the resulting deformation with these choices
of k. Therefore, in all the computations presented above we used x on the order of 10™#, with the
particular choice x = 4 x 10™* corresponding approximately to h? where h is the mesh size.
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Ficure 11. Construction of an energy-minimizing sequence of deformations for a
given temperature distribution by combining two compatible variants of martensite
inside the curve & and austenite outside.
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Ficure 12. The deformation of the thin film after the indenter has been fully
inserted and then removed for the experimental value of § = 0.025 at temperature
0 = —0.3 with mesh size h = 1/48. The deformation (a) was obtained with no
surface energy (k = 0) and the deformation (b) was obtained with k = 4 x 107
The sides of the tent are distorted when no surface energy is used, but they are
nearly flat for k = 4 x 1072,
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