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ON THE NUMERICAL MODELING OF DEFORMATIONS OF PRESSURIZED
MARTENSITIC THIN FILMS

PAVEL BELIK, TIMOTHY BRULE, AND MITCHELL LUSKIN

ABSTRACT. We propose, analyze, and compare several numerical methods for the computation of
the deformation of a pressurized martensitic thin film. Numerical results have been obtained for
the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

1. INTRODUCTION

Active martensitic thin films are increasingly being utilized in new and proposed technologies [7,
32]. The development of techniques for the growth of single crystal martensitic thin films [23] offers
the promise of even larger work output per cycle [32]. Recently, Bhattacharya and James have
derived a thin film model for martensitic thin films [7] from the geometrically nonlinear bulk theory
of martensite [4,5,15,41]. We have utilized the Bhattacharya-James model to develop several finite
element models for the deformation of active martensitic thin films.

If the film is deposited on a substrate in the austenitic phase and it is released in a square region,
then it can pop up and form a “tent” in the martensitic phase (Figure 1) if the transformation strain
satisfies compatibility conditions (6.1) —(6.3) [7]. Such a “tent” deformation has been proposed for
use in a temperature activated micro-valve (Figure 2).

We propose and utilize an energy density for a cubic to tetragonal transformation that satisfies the
conditions (6.1)—(6.3) for the “tent” deformation. In this paper, several finite element approximations
for the deformation are tested and compared. We computed the deformation of a pressurized film by
continuation in the temperature as the film is cyclically cooled and heated through the transformation
temperature and obtained nearly rectangular hysteresis in the deformation (Figure 5).

We have found in our model that the corners where the film is attached to the substrate provide a
nucleation mechanism for the phase transformation from martensite to austenite. The discontinuous
Morley element gave unstable results under mesh refinement for the transformation temperature.
We believe this is because the Morley element does not accurately model the deformation in the
corner. More stable results were obtained with the reduced Hsieh-Clough-Tocher element and the
Zienkiewicz element, both of which are continuous elements.

An analysis of the convergence of the finite element approximation of the thin film model for
martensitic crystals is given in this paper. We have developed a stability theory and analysis of
the finite element approximation for bulk martensitic crystals in [8,11,35-37,40,41]. The stability
theory was also used to analyze the microstructure in ferromagnetic crystals in [42]. Related results
on the numerical analysis of nonconvex variational problems can be found, for example, in [12-14,
16,22,29,33,38, 44, 46].

In Section 2, the Bhattacharya-James thin film model is given, and in Section 3, the finite element
spaces that we use to approximate the thin film model are described. In Section 4, we describe
the optimization and continuation methods that we use to compute minima for the energy as the
temperature or pressure are varied. In Section 5, rigorous results for the convergence of the finite
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element approximation are given, and in Section 6, the results of our numerical experiments are
given and intrepreted.

2. THE THIN FiLM MODEL

2.1. General settings. We assume that 2 C R? is a bounded domain with a Lipschitz continuous
boundary, 8€). We consider functions whose domain is € and range is R®. The gradient of a typical
such function y will be a function whose domain is ) and range is R®*2, the set of all real 3 x 2
matrices, and will be denoted by Vy. The columns of Vy will be denoted by y;,% = 1,2. For a
matrix A € R3*3, we also write A = (A12]|A3) where A4;, i = 1,2, 3, represent the columns of 4, and
Aj;, represents the 3 x 2 submatrix of A formed by the columns A; and A,. We define y; o = 0y;/0zq
fori=1,2,3 and @ = 1,2, y; op = 0%y;/0x,0zs for i = 1,2,3 and a, 8 = 1,2, and denote by V2y
the 3 x 2 x 2 tensor of all second order partial derivatives of y. We equip all matrix spaces with the
usual component-wise inner products and the corresponding norms. The elastic energy density is
denoted by the function ¢(F, ) : R**3 x R — R. Finally, the temperature will be denoted by 6 and
the applied hydrostatic pressure by P.

Bhattacharya and James [7] and James and Rizzoni [31] have shown that deformations u €
H?2(Qp; R?) minimizing the bulk energy of a pressurized film of thickness h with reference configu-
ration

Qn=Q x(=h/2,h/2)
are asymptotically of the form (see [7,31] for a precise description of the results)
u(z1, T2, 3) = y(@1,22) + b(z1, T2)T3 +0(x3)  for (x1,29,23) € O,

where (y,b) € H2(Q; R®) x H'(Q; R®) minimizes
gﬁngp(y7b) = / {"v (|VZZ/|2 +2 |Vb|2) + ¢(Vylb,0) — Pys(y1,1y2,2 - y1,2y2,1)} dx (2.1)
Q

among all pairs (y,b) € H2(2;R?) x H'(Q; R?) satisfying prescribed Dirichlet boundary conditions
(y(2),b(x)) = (§(x),b(z)) forz €T, (2.2)

where I' C 09 is a relatively open set of positive one-dimensional Hausdorff measure and (g,b) €
H?(Q;R?) x H'(;R?). Let us define the space of admissible deformations A by

A={@b) € HHQR) x B (%R : (y,b) = (3,5) onT}. (2.3)
We note that A = M x N where
M={ye H¥Q;R): y=§ onT} and N:{beHl(Q;R3): b=b onr}. (2.4)

The requirement that the film not penetrate itself [30] is not included in the definition of the space
of admissible deformations, A. However, this requirement has been satisfied by all of the numerical
solutions that we have obtained with this model with the admissible space given by (2.3).

The deformation of the film, whose reference (undistorted) configuration is given by the domain
Q, is described by y, while the deformation of the cross-section can be thought of as being described
by b. The first term of the energy functional is the strain-gradient term modeling the interfacial
energy of the thin film and is the limit of the corresponding term for a three-dimensional thin film as
the thickness of the film tends to zero. Here & is a small material constant, called the strain-gradient
coefficient.

The second term of the energy functional, [, (Vy|b,8) dz, models the elastic energy of the film
at the temperature 6, and it is the limit of the corresponding three-dimensional elastic energy. The
third term of the energy functional models the effect of applying uniform hydrostatic pressure P > 0
under the surface of the film. This term has the form P x V' (pressure x volume) where V' denotes
the volume under the distorted film [31].
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2.2. Boundary Conditions. The ”"tent” deformation can be obtained from a film that is attached
to a film in the austenitic phase on its boundary and satisfies certain compatibility conditions [7].
The boundary conditions are

(y1(21,22),y2(®1,72), y3(w1,22)) = (T1,22,0)

(b1 (w1, 22), b2 (21, 72), b3(21,22)) = (0,0,1) } for (21, 22) € 00 (25)

2.3. Energy density ¢. The requirement that deformations not be penetrating [30] implies that
the energy density ¢ need only be defined on R1X3 x R where Riw denotes the set of matrices
F € R3*3 such that det F > 0. However, we shall assume for simplicity that ¢ is defined on all of
R3*3 x R, and we note that the energy density that we propose in (6.6) and use in our numerical
computations is defined on all of R3*3 x R.

We assume that ¢ is rotationally invariant, or frame-indifferent, that is, for any 6 € R,

#(RF,0) = (F,6) for all F € R3*3 and R € SO(3), (2.6)

where SO(3) is the group of rotations, and also that it inherits the symmetry of the more symmetric,
high temperature phase of the crystal, so that, for any 6 € R,

#(FR;,0) = ¢(F,0) forall Fe R®*3 and R; € G, (2.7)

where G C SO(3) is the symmetry group of the austenite.

We assume that near the transformation temperature the energy density has a local minimum
at the identity deformation gradient I corresponding to the austenitic phase, and also at the set of
variants

{U1,...,Unu} = {R;UR] : R; € G}, (2.8)
where the U; are deformation gradients for an unstressed crystal in the martensitic phase. From the
frame indifference (2.6) and from the material symmetry (2.7), it follows that ¢ has local minima
on the set SO(3) and on the union of the energy wells

U=U U---UlUy, (2.9)

where U; = SO(3)U;. We note that ¢ is constant on U by the frame indifference (2.6) and the material
symmetry (2.7). We model the phase transformation by assuming that the set of global minimizers
of ¢ is exactly the set of rotations SO(3) for temperatures above the transformation temperature,
the set U for temperatures below the transformation temperature, and the union &/ U SO(3) at the
transformation temperature.

Since U; = SO(3)U;, it follows from (2.8) that det U is constant for all U € Y. We assume that
the minimizing deformations are orientation preserving, that is,

detU =detU; >0 forallUeU.

We also assume that the free energy density ¢ is continuous, and that ¢ satisfies certain growth
conditions that will be described in detail in Section 5.

We focus on the cubic to tetragonal transformation in Section 6.3, and we give there the energy
density ¢ that we choose for our numerical experiments.

3. FINITE ELEMENTS

In our computations, we have experimented with various conforming as well as nonconforming
finite elements. To construct a conforming finite element space for the deformation y, one needs to
ensure that the basis functions are of class C*(Q) [17]. This results in more complicated spaces than
if nonconforming finite element spaces are used. We implemented two conforming elements and two
nonconforming elements for the deformation vector y, together with a corresponding conforming
(C°(Q)) or nonconforming P; element for the vector b.

As the first conforming finite element, we implemented the Argyris triangle [2,9,17] for y and the
conforming P; element [9,17] for b. The large number of degrees of freedom (21) for the Argyris
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triangle made this element less efficient for the resolution that we require for our problem than the
reduced Hsieh-Clough-Tocher (HCT) finite element described in the following paragraph.

As the second conforming finite element, we implemented the reduced Hsieh-Clough-Tocher
(HCT) finite element [6,9,17,18] for y, together with the conforming P; element for b. The re-
duced HCT finite element space consists of functions that are of class C'(2) and are such that,
when restricted to an element, they are cubic polynomials on each of three triangular subdomains,
patched together in such a way so as to form a C!(£2) function. This element has 9 local degrees of
freedom.

We implemented the nonconforming, but C°(Q), Zienkiewicz element [17,34] for y, but in this case
we used again the conforming P; element for b. The main reason is that the reduced HCT triangle
and the Zienkiewicz triangle have exactly the same degrees of freedom (the values and the first
partial derivatives at the nodes of the triangle) and therefore the result of one of the two methods
can be used as an initial guess (or preconditioner) for the other one — as long as the elements used
for b are the same. The Zienkiewicz finite element space consists of functions v that are continuous
on 2 and when restricted to an element K of the triangulation they belong to the space Ps, the
space of cubic polynomials, satisfying the constraint

A+ Ay + A3) 1< 1
V| ———————— | =< v(4;) + — Dv;
( 3 3 ; )+ 35 lsj,zw ok
J#k
where the A; denote the vertices of K and Dv; = Vu(4;) - (Ar — 4;).

We also implemented the simplest nonconforming element one can use for fourth-order problems,
the Morley element [9,17,43,49], which is not C°(2). The Morley finite element space consists of
functions that are element-wise quadratic polynomials and that are moreover continuous at the mid-
points of the edges of the triangulation. For this reason, we used the nonconforming P; element [9,17]
for b corresponding to the finite element space consisting of element-wise linear functions which are
also continuous at the midpoints of the triangulation edges.

4. NUMERICAL MINIMIZATION METHOD

In this section, we describe the gradient minimization method we use to approximate the mini-
mizer of the total energy (2.1). It is based on variants of conjugate gradient methods used in [19-21]
with a simplification that increases the efficiency.

Let M}, and N}, denote the finite element spaces approximating the spaces M and N, respectively,
defined in (2.4). In general, the boundary conditions (2.2) for M and N will have to be approximated
in the definition of M}, and N},. Define My o and Nj o to be the same spaces as My, and Nj,
respectively, but with the Dirichlet boundary conditions on I replaced by zero. Finally, we set
Ap = My x N and Apg = Mpo x Npo. We note that for linear boundary conditions and
polygonal domains, we have that M, C M and N}, C N for the conforming finite element spaces
discussed in this paper.

For the nonconforming finite element spaces the energy functional (2.1) is not well-defined, since
the interfacial energy term only makes sense element-wise. Hence, the corresponding energy in these
cases is

Er0,Pn(Yy,b) = Z/ {r (IV?y” +2|VDb|*) + ¢(Vy|b,0) — Pys(y1,1y2,2 — y1,292,1) } dz,
= /K

where the sum is taken over all triangles K in the triangulation of 2. We note that the nonconforming
energy above relaxes the penalty for oscillations in the deformation gradient across element edges.
The oscillations for convergent nonconforming methods must approximately cancel so as to give
global accuracy [36]. We found that the nonconforming Zienkiewicz element gave similar results
to the conforming reduced HCT element for the “tent” problem with the mesh sizes h and strain
gradient coefficient x described in Section 6.
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To simplify our notation, we denote by u the pair (y,b) € Ay and by £(u), u € Ap, the energy
functional to be minimized over the space Aj. For a fixed temperature and pressure, we choose
an initial approximation u® € Ay and determine an iteration sequence, {u™} C Ay, such that u™
converge to a local minimum of £ as n — oo. The (local) minima of £ determine (meta-)stable states
of the thin film. We perform a simple continuation in pressure (or temperature), starting from a
state of the film that is physically reasonable. Controlling the step size in pressure (or temperature),
we can argue that the continuation procedure models the quasi-static behavior of the thin film.

The iteration procedure goes as follows. Having computed u™ € A, we determine a gradient
direction g™ € Ap o (see Section 4.1 below). We then determine a search direction d” € Ay o (see
Section 4.2 below) and compute p, > 0 such that

EW™ + ppd™) < E(U™ + pd™) (4.1)
for all p in a neighborhood of p,. Finally, we set
u™tt =" + ppd” (4.2)

and continue this process until a stopping criterion has been satisfied.

4.1. Gradient direction. Denote the first variation of the energy £(u) in the direction v € App
by 6€(u;v). Then the gradient direction g™ € A can be computed as the L2(Q)-projection of this
quantity, namely,

/ g" -vdx =6E(u;v) forallv e App. (4.3)
Q

(See, for example, [20].) This way of computing ¢g” results in a matrix system with a well-conditioned
matrix, the mass matrix. However, this matrix still needs to be inverted, at least approximately.

A computationally more efficient way is to project the first variation into the finite element space
in the following way

N
gt = 255(Un;vi) Vi, (4.4)

i=1
where N = dim Ay o and the v;, 4 =1,..., N, form a basis of Ay 9. We can easily see that —g§" is a

descent direction: letting v = Zf;l ¢;v;, we have for € > 0,

N
E(™ —ev) =E@W™) —EZci&‘,’(un;vi)J;—o(s) ase — 0.
i=1

Hence, choosing ¢; = d€(u™;v;) defines a direction v = §™ such that E(u"™ — ev) < E(u™) for €
positive and sufficiently small. Note that to determine §”, we only have to compute the values
0&(u™;v;) (which are the same as those in the right-hand side of the matrix system corresponding
to (4.3)), because the mass matrix is replaced by the identity matrix. We have successfully used the
computation of §™ as in (4.4) in our code.

4.2. Search direction. Having computed g™, we need to choose the search direction d" for the
univariate optimization (4.1). The simplest way is to set d* = —g", corresponding to the steepest
descent algorithm. We use variants of the conjugate gradient method to obtain greater efficiency.
The Fletcher-Reeves variant [28,45] starts with an initial guess, u’ € A;, and an initial search
direction d®° = —¢° € Ap,o is computed. After u” € A; and d" € Ap o have been computed, we
perform the line search as in (4.1) and u™*! is computed as in (4.2). We then compute the new
gradient, g"*! € Ap, 0, and a new search direction, d"*t! € Ay o, by

dn+1 — _gn+1 + /\ndn

where
0 (u™tt; g™ t)

A = e (s g
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The algorithm we choose for the univariate minimization (4.1) is the quadratic fit method [39].
This algorithm does not require evaluations of the derivatives of the function to be minimized,
only the function itself. The local convergence of this method is super-linear, but to ensure global
convergence the algorithm is usually modified and can, in the worst case, degenerate to linear
convergence.

Finally, when the norm of the gradient reaches a given tolerance, the algorithm is stopped.

4.3. Quadrature rules for the triangular elements. In this section, we describe the quadrature
rules that we use to approximate the integrals in the total energy. Clearly, different quadrature rules
are needed for different terms and different elements. We do not discuss those elements or terms
in the energy functional for which a low order quadrature rule will suffice (such as the P; elements
for b or the interfacial energy term for the quadratic Morley element), but we mention those where
higher-order quadrature rules are needed.

We have not established the order of convergence of the finite element methods (see Section 5 for
obtained results). Therefore, we have not been able to study the effect of numerical quadrature on
the convergence and determine the optimal quadrature rules, that is, those of the lowest possible
order preserving the order of convergence. Hence, our choice was to integrate the interfacial energy
terms exactly while using some higher order rules for the other two terms.

4.3.1. The Zienkiewicz triangle (and the Argyris triangle). The interfacial energy term is the integral
of a polynomial of degree 2, therefore the quadrature rule utilizing only the values at the midpoints
of the edges of the triangle with weights 1/3 gives the exact value of the integral [17].

For the other lower order terms, that is, for the elastic energy term and the pressure term, we use
the 12-point Gaussian rule used, for example, in the software package Modulef for problems solved
using the Argyris triangle (see also [24]). It is exact for polynomials in the space Ps.

We also used this rule for all three terms in the energy functional when using the Argyris triangle.

4.3.2. The reduced Hsieh-Clough-Tocher triangle (and the Morley triangle). Since the space P for
this element is a space of functions that are polynomials on subtriangles K; of K, the quadrature
rules should be applied to integrals over K; rather than K. On each K;, the functions of P are
cubic polynomials and hence the interfacial energy term is an integral of a polynomial of degree 2.
Therefore, we can use the same 3-point rule as for the interfacial energy term with the Zienkiewicz
triangle.

For the elastic energy term and the pressure term, we use the 7-point Gaussian rule. This rule
is exact for polynomials of degree 5. Note that this results in 21 nodes for each triangle K rather
than 36 had we used the 12-point quadrature rule described above in Section 4.3.1. Also note that
the pressure term is an integral of a polynomial of degree 7. However, to integrate this term exactly
would require an excessive number of quadrature nodes (for example, the 13-point rule from [24]
would require 39 quadrature nodes).

We also use the same 7-point quadrature rule for the elastic energy term and the pressure term
when using the Morley element. Note that for this element the pressure term is an integral of a
polynomial of degree 4, so we could conceivably use a lower-order quadrature rule for this term
(see [24]).

5. THEORETICAL RESULTS

In this section, we give some theoretical results concerning convergence of the conforming finite
element methods. We show that for a global minimizer (or an isolated local minimizer) u = (y,b) of
the energy (2.1) over the space A of admissible deformations there exists a sequence {uy} € Ap of
global (or local) minimizers of the energy over the spaces Ay, such that & 0 p(un) = Ex,p,p(w) and
up — win H2(Q;R3) x HY(Q; R?) as h, the diameter of the largest element K in the triangulation
of Q, goes to zero. We first give a result on the continuity and coercivity of the energy &, 9 p(y,b)
for fixed parameters £k > 0, 8 € R, and P > 0.
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Lemma 5.1. We assume that the energy density, ¢(F,0), is continuous in F € R®*3 and that for
any 0 € R there exist constants c¢1,c2 > 0 and 3 < q1 < g2 such that

ci(|[F|" —1) < ¢(F,0) < co(|F|®2 +1)  for all F € R¥*3, (5.1)

Then the energy, Ex.0,p(y,b), is weakly lower semi-continuous and strongly continuous on H?(£; R )x
HY(Q;R®). Furthermore, there exists a positive constant c3 and a constant cy such that

Er0,p(Y,0) > ca(|lyllF(rs) + DIl ray) — (5.2)

for all (y,b) € A.
Finally, if in addition ¢(-,0) is differentiable for every 6 € R and there exist constants cs > 0 and
qs > 0 such that

g—?(F, e)‘ <cs(|F|% +1) for all F € R®*3, (5.3)

then the energy functional, €. 9 p : H2(;R3) x HY(Q;R®) — R, is Gateaux differentiable and

6&x.0.p ((y,0); (v, ¢)) :/Q/c{Q(V2y) - (V20) +4(Vb) - (Vo) } de

o¢

+ A 6—F(Vy|b, 0) - (Vvlc) dx

- P/ U3 (y1,1y2,2 - y1,2y2,1) dz (5-4)
Q

- P/ Y3(v1,1y2,2 — V1,2¥2,1) dz
Q

- P/ Y3(Y1,102,2 — Y1,202,1) dx
Q
for all (y,b), (v,c) € H2(Q;R3) x HY(Q; R?).
Proof. Tt is easily seen that
/ & (|V2y|* +2|Vb|?) dz
Q

is weakly lower semi-continuous and strongly continuous on H?(2; R?) x H!(Q;R?).
From the Sobolev embedding theorem [1], we have that
H2(Q;R%) x HY(QRY) € Wh (S RP) x LT( R®) (5.5)

is a compact embedding for any 1 < r < oo.
From the bounds for ¢(F,0) in (5.1) and the embedding (5.5), we have by a generalization of the
dominated convergence theorem [47, page 92] that

/ 6(Vy|b,0) dx
Q

is weakly continuous on H?(Q2;R3?) x H'(Q;R?).
Finally, we have by the identity
A2B202 — A13101 = (A2 — Al)BQC2 + A1 (B2 — Bl)CQ + AlBl(CQ — 01),

Holder’s inequality, and the embedding (5.5) that the term

/ yS(yl,ly2,2 - y1,2y2,1) dx
Q

is weakly continuous on H?(2;R?®) x H'(£; R®). Thus, we can conclude that the energy, £« 9. p(y,b),
is weakly lower semi-continuous and strongly continuous on H2(2;R?) x H!(Q;R?).
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To prove the coercivity result (5.2), we observe by Holder’s inequality, the boundary condi-
tion (2.2), and the Poincaré inequality that there exists a positive constant c¢g and a constant ¢r

such that
1/3 2/3
< ( / |y3|3dw) ( / |Vy|3dx) <o [ [Vt (50
Q Q Q

for all y € W13(Q;R?) (and hence for all y € H?(Q;R?) by (5.5)). It follows from the lower bound
for ¢(F,0) in (5.1) that since g1 > 3 there exists a constant cs, depending on ¢; and ¢gP + 1, such
that

‘/ Y3(Y1,1Y2,2 — Y1,292,1) dx
Q

H(F,0) > (ceP +1)|F|> —cg for all F € R3*3. (5.7)
Hence, we have from (5.6) and (5.7)

/Q¢(Vy|b= 0) — Py3(y1,1y2,2 — y1,2y2,1) dz > /Q |Vy|* dz — ¢z P — cs meas ).
We thus obtain that
Er,o,P(y,b) = /Q {& (IV?y* +2|V0]%) + ¢(Vy|b,0) — Pys(y1,192,2 — y1,2921) } de (5.8)
> /Q & (|V?y|* +2|Vb|?) dz + /Q |Vy|® dx — c7 P — cg meas (5.9)

for (y,b) € H*(Q;R®) x H'(;R?). The coercivity result (5.2) for (y,b) € A then follows by the
Poincaré inequality.

Finally, to prove that the energy, &£, g, p, is Gateaux differentiable and that (5.4) holds, it is
enough to show that the elastic energy term is Gateaux differentiable and that, for a fixed ¢ > 0,

%/905(11)1 (z) + swa(z)) dz = /Q g—?,(wl () + swy(z)) - wo () da

for s € (—¢,€) and wy, w, € H'(Q;R3*3). However, this follows from [25, Theorem 2.27], since we
have by (5.3)

‘%(wl (#) + swa (@) - wa ()| < 5 (Jwi(2) + sw2(2)|* + 1) |wa(2))|

OF

< colwy ()| + crolwa ()| BT + cr1|wa ()|

for some constants cg, c19, c11, where the right-hand side is independent of s and belongs to L!(£2; R)
due to the embedding (5.5). O

Remark 5.1. We note that we can take ¢; = 0 for the boundary conditions (2.5). We also note that
the constant ¢4 in (5.2) depends on ¢1, ¢1, and the pressure P. Using the same proof as above, the
coercivity result (5.2) can be extended to the case ¢; = 3 for P such that ¢z P < ¢;.

We next give a result for the existence of a global minimizer u = (y,b) € A of the energy (2.1)
for fixed parameters kK > 0, 0 € R, and P > 0.

Lemma 5.2. Let £ > 0, 0 € R and P > 0 be given. Assume that the growth condition (5.1) holds.
Then there exists a global minimizer u = (y,b) € A of the total energy (2.1).

Proof. We have by the coercivity inequality (5.2) that the energy &x ¢, p is bounded below for (y,b) €
A. Consider an energy minimizing sequence {(yn,b,)} C A. By the coercivity inequality (5.2), this
sequence is bounded in H2(;R?) x H'(Q; R®). Considering a weakly convergent subsequence, the
existence of a minimizer of & ¢ p over A then follows from the weak lower semi-continuity of £, o p
over H2(Q;R®) x H1(Q;R?®) and the weak closedness of A in H?(Q;R?) x H'(; R?). O
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Remark 5.2. We note that the energy density defined in (6.6) below satisfies (5.1). We also remark
that using the same argument as in the proof of Lemma 5.2 we can show the existence of a minimizer
of the total energy (2.1) over any nonempty, weakly closed subset of A. Also, the finite dimensionality
of Ap, and the coercivity inequality (5.2) ensures the existence of minimizers of the total energy (2.1)
over the finite element spaces A, for any h > 0.

Our next result gives the strong convergence of minimizing sequences of the energy.

Theorem 5.1. Let £ > 0, 0 € R and P > 0 be given. Assume that the growth condition (5.1) holds.
Let {(yn,bn)} be a minimizing sequence in A so that

Ex,0,P(Yn,bp) & min En,g,p(gj,g) as h — 0.
(§,b)eA

Then there exists a subsequence of {(yn,bn)}, not relabeled, such that as n — oo
Yn =y in HX(Q;R3),
by = b in H' (Q;R®),

where u = (y,b) minimizes the total energy (2.1) over A.
If the energy (2.1) has a unique minimizer u = (y,b) € A, then we have for the complete sequence

{(yn,bn)} that
yn —y in H* (G R?),
b, = b in H' (O R).
Proof. Recall from the proof of Lemma 5.2 that the fact that {(yn,b,)} is an energy minimizing

sequence in A implies that there exists u = (y,b) € A and a subsequence of {(yn, bn)}, not relabeled,
such that

Ero,p(y,b) = min E.p p(§,0) = Um  Exp p(Yn,bn) (5.10)
(g,b)eA n—00
and

yn =y in H (G R),
b, = b in H'(Q;R?).
From the proof of Lemma 5.1 we have that the elastic energy term and the pressure term are
weakly continuous over H2(2; R®) x H'(Q; R?). Hence, it follows that

lim sup gn,O,P(yna bn) - gn,O,P(ya b)

n—ro0
= lini)sup/ {IV?(yn — y)I> +2(V?y) - V2(yn — y) + 2|V (bn — b)|* +4(Vb) - V(b, — b) } d=
= lirILsup/ {IV*(yn — y)|> + 2|V (bn — b)*} dz.
Therefore, since we can conclude from (5.10) that
1im_>sup/ {IV?*(n — )| +2|V(b, — )|’} dz = 0,
we have established the strong convergence in the H2(Q;R?) x H!(Q;R®) topology. O

In our analysis below, we shall assume that the deformation y € M is approximated by the
reduced Hsieh-Clough-Tocher element [9,17], although the analysis applies to other conforming
methods and even to some nonconforming methods. We shall assume that b € N is approximated
by the continuous, piecewise linear element. We also assume that the boundary conditions on A
are compatible with the finite element approximation in the sense that A, C A for all h, where
h denotes the maximum of the diameters of the elements of a triangulation of Q. (For the linear
boundary conditions of the tent problem (2.5) with = (0,1) x (0,1) this is the case.) So, in what
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follows A = My, x N}, where My, is the reduced Hsieh-Clough-Tocher finite element space and N},
is the continuous, piecewise linear finite element space.

We assume that a quasi-regular family of triangulations {74} of  is given, that is, there exists a
constant ¢ such that, for all K in each triangulation and for all triangulations of the family,

hK S OpK,

where hi denotes the diameter of K and pk the supremum of the diameters of balls contained in
K. We also assume that h = maxger, hx. We then have the following result for the density of
Ap =My x Npyin A = M x N as h = 0 (see Theorems 3.2.3 and 6.1.7 in [17]).

Lemma 5.3. Assume that a quasi-regular family of triangulations {m,} of Q is given. Then for any
@ = (g,b) € A, we have that
lim  inf (||17 — Jnlla2@ms) + b — 5h||H1(Q;R3)) =0.
h—=0 (g, ,br)€ AR
The next result on the convergence of the energy of the finite element approximations uy of u
follows from the above result and from the continuity of £ g p over H2(;R®) x H(Q; R?).

Theorem 5.2. Let £ >0, 0 € R and P > 0 be given. Assume that the growth condition (5.1) holds.
Then

I_nin En,o,p(gjh, i)h) — min Sn,o,p(g, I;) as h — 0.
(Tn,bn)EAR (§,0)eA

The following result on the strong convergence of global minimizers of finite element approxima-
tions, (yn,brn) € Ap, follows as a corollary of Theorems 5.1 and 5.2.

Corollary 5.1. Let k > 0, 6 € R and P > 0 be given. Assume that the growth condition (5.1) holds.
Let {(yn,bn)} be global minimizers of the energy over Ay, for a family of quasi-regular triangulations.
Then there exists a subsequence of {(yn,bn)}, not relabeled, such that as h — 0

yp =y in H* (O R®),
by = b in HY(Q;R?),
where (y,b) minimizes the total energy (2.1) over A.

If the energy (2.1) has a unique minimizer (y,b) € A, then we have for the complete sequence
{(yn,bn)} that

Y =Y In H2(Q;R3),
by = b in HY(Q; R?).

We now recall the rate of approximation of (§,b) € H3(Q;R3) x H2(Q;R3) N A by the finite
element functions (yp,bp) € A = My x N C A [9,17].

Lemma 5.4. Assume that o quasi-regular family of triangulations {4} of Q is given. Then there
ezists a constant C, independent of h, such that

it {17 dallo + b~ Galls + 15—l } < CWlils, G € HU(QRS) 1M,
inf LB Ballo +AlIb = Balli } < CA2[B)s, be HA%R) NN,
brEN,
where ||.||x denotes the H*(Q)-norm and |.|, the H*(Q)-seminorm.
For (§,b) € M x N we can define the projection ITj(7,b) = (H%g,l’[%g) € Mp x N, by
{115 = T3gllo + Allg — TGl + h?1§ — T35]12}

= inf {115 = Gnllo + hlli — Gl + B2NG — Gnlla)
ghth{lly Gnllo + hllg — Gulls + h2(|F — Gnll2} (5.11)

{116 —1033llo + Alb~ 0Bl } = inf {I[b—Ballo + hllb— Bal: }
N

brnENR
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By classical bootstrap arguments, a minimizer v = (y,b) € A of the total energy (2.1) will
be smooth in the interior of Q if ¢ is smooth and satisfies the growth conditions (5.1) [26,27].
For appropriate boundary conditions (y,b) = (gj,B) on T, we can expect that (y,b) € H?(;R3) x
H2(Q; R?). If the minimizer (y, b) has reduced regularity, then the following proof will give a reduced
rate of convergence.

Theorem 5.3. We assume that a quasi-regular family of triangulations {1} of Q is given. We also
assume that ¢ satisfies the growth condition (5.1) and that it is differentiable and satisfies (5.3).
We assume further that a minimizer u = (y,b) € A of the total energy (2.1) (whose existence is
guaranteed by Lemma 5.2) satisfies the regularity assumption

(y,b) € H3(Q; R3) x H?*(Q; R?).
Then there exists a constant C > 0, independent of h, such that

0<  min  Eepp(fn,bn) — min Exgp(f,b) < CM°. (5.12)
(9n,bn)EAR (7,b)EA

Proof. The first inequality in (5.12) is trivial since A, C A. For the second one, define (II}y,II%b)
by (5.11). We then have that

min  Exp,p(§h,bn) — min Ex g p(§,0) < Exo,p(ILy,TI4b) — Ex p,p(y,b)
(Gn,bn)EAR (§,b)eA

since (y,b) € A is a minimizer and (IIYy,N%b) € A,. We next define (ef,eb) by (ef,el) =
(I1¥y, T b) — (y,b). Then

gn,a P Hyya Hb b) gm [ P(y7 b)

/ (V22 +2(V2y) - (V2e!) + 2|Vel > +4(Vb) - (Vel)) da
+ /Q [6(V(y + )b+ €l 0) — d(Vy[b,0)] de (5.13)
- P / (s + ely) (1 + e )@z + €)= (Wi + efy o) W21 +elyy) )| do

+ P/ y3(y1,192,2 — y1,292,1) dz.
Q

Since (y, b) is a minimizer over A and since ¢ is differentiable and satisfies (5.3), the Euler-Lagrange

equation (5.4) with (v,c) = (e}, €?) is equal to 0, and hence

5&,9,P(Hyy7 th) - SH,G,P(?J, b)
= / K {|v26%|2 +2 |Ve;’l|2} dz
Q
¢

+ [ 6T+ et)ib+ eh6) = 6Tul6) = S (T 6) - (Veleh| da

- P/Q(ya' + 6%3)(621,1#2,2 - 6%1,2€z2,1) dz

v (. y v y
- P/ €hs(€n1,1Y2,2 T Y1,1€h 0 — €4y 2Y2,1 — Y1,2€45 1) dT.
Q

Denoting now by C' a generic constant independent of h (but depending on (y,b) and ), we find
by using Lemma 5.4, the mean value theorem, the Cauchy-Schwarz inequality, and the growth
assumption (5.3) that

/ & {|V2el|? +2|Vebh|?} dz < Ch?, (5.14)
Q
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and

/ ‘qs(wy L el)bt e, 6) — 6(Vylh,0) — 22 (Vylb,6) - (el eh)

< Ch2. .
°F dz < Ch (5.15)

From the embedding [1]
H*(Q) C C(Q)
and the fact that [le} || g2(o,rs) — 0 as h — 0, we have

/Q ‘(y3 + 6%)(6%1716%2’2 — 6%1726z2’1)‘ dr < C/Q |Vel|? dz < Ch*.
From the fact that y € H3(Q; R?) we have

(VYL (ir3x2) < Cllyllas@irs),
and hence, by the Cauchy-Schwarz inequality,

/ ‘6%3(6%1,1112,2 + yl,leZzz - ezmy?,l - ?/1,261/12,1) dz < C”e?}JLHLQ(Q;R:")”vez”H(Q;R“Q) < CH.
Q
Adding all of the above terms establishes the claim of the theorem. O

Remark 5.3. We note that we can obtain a weaker result under weaker assumptions. If we assume
that ¢ satisfies a local Lipschitz condition of the form

|¢(F1,0) - ¢(F2,0)| S C |F1 - F2| [1 + (|F1| + |F2|)q3] fOI‘ all Fl,FQ S R3X3,

where g3 > 0 (instead of differentiability of ¢ and the growth condition (5.3)), then it is easy to see
from (5.13) that
0< min g,iyg,p(:ljh,i)h) — min g,i,g,p(:lj,i)) < Ch.
(Fn,bn)EAR (g,b)eA
On the other hand, if the minimizer satisfies

(y,) € H (G R®) x H (O R?),

and the space M is approximated by a finite element space My C M such that piecewise cubic
functions belong to My, (for example, the full Hsieh-Clough-Tocher or the Argyris finite element
space) and N is approximated by the continuous, piecewise quadratic finite element space Np, we
obtain that the left-hand side of (5.14) is bounded by Ch*. Similarly, if the energy density, ¢,
is twice differentiable everywhere with respect to F € R3*3, and the second derivative satisfies a
growth condition similar to (5.3), the left-hand side of (5.15) is bounded by ChS and hence
0< min Eepp(fr by) — min &g p(§,b) < Ch*.
(#h,bn) € An (#,b)eA

Remark 5.4. We note that if the global minimizer (y, b) is sufficiently smooth and the determinant
of (Vy,b) is positive, then we can expect that (VII}y,II5b) has positive determinant and that the
result of Theorem 5.3 holds when the spaces A and Aj are restricted to functions constrained by
the requirement that (Vy,b) has positive deformation gradient.

The above results can be extended to a statement about an isolated local energy minimizer
u=(y,b) € A
Theorem 5.4. Let £ > 0, 0 € R and P > 0 be given. Assume that the growth condition (5.1) holds.
Let u = (y,b) € A be an isolated local minimizer of the energy (2.1) in the H>(Q;R?) x H'(Q;R?)
topology. Given a quasi-reqular family of triangulations {7} and the corresponding conforming finite
element spaces Ay, with h sufficiently small, there exists a sequence of local minimizers (yp,br) € Ap,
of the energy (2.1) over the spaces Ay, such that as h — 0

yn =y in H*(Q;R3),
b, = b in HY(Q;R?).
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Proof. Since u = (y,b) € A is an isolated local minimizer of the energy (2.1), there exists an open
ball B C H2(;R®) x H'(Q;R?®) containing u such that

gn,G,P(y, b) < EN,H,P(gv b)
for all (§,b) € AN B such that (§,b) # (y,b), where B denotes the closure of B in H?(;R3) x

HY (O R3 ). It follows from Lemma 5.3 that for any quasi-regular family of triangulations {75} there
exist (§pn,bp) € Ap such that

(Gn,bn) = (y,b) in H*(Q;R®) x H'(Q;R®) as h — 0,
and hence the finite element spaces Ay, satisfy A, NB # 0 for h sufficiently small. Let (yp,bs) € AnNB
be such that

Eno.p(un,br) =  min  E.p p(Gn,bn).
(n,bn)EARNB

From the strong continuity of the energy in H2(Q;R®) x H'(2; R®) we have that
Ex0,P(Gnsbr) = Exo.p(y,b) as h— 0,

and therefore it follows from the inequality Ex.0,p(y,b) < Ex.0,P(Yn,bn) < Exo,p(Gh, br) that
Ei0,P(Yn,bn) = Exo,p(y,b) ash—0.

Since the sequence {(yn,bs)} is bounded in H?(;R*) x H'(Q;R?), there exists a subsequence of
{(yn,br)}, not relabeled, and (¢,b) € A such that as h — 0

yn = in H*(R?),
by = b in H'(Q;R?),

and from the weak lower semi-continuity of the energy we have

Ex0,P(§,0) < Lminf Exg.p(yn,bn) = Ex0,p(y,D).
From the fact that a closed ball in a normed linear space is also weakly closed [48], we have (7, b) € B,
and the fact that there exists a unique minimizer of the energy over .4 N B then implies

(,0) = (y,b).
Repeating next the argument of Theorem 5.1, we have from the convergence of the energy that
yn =y in H>(Q;R?),
by, — b in H'(Q;R®),
and we can conclude that (yp,bp) — (y,b) for the whole sequence.
Finally, since (yp,br) — (y,b) in H2(;R3) x H'(Q; R®) and (y,b) € B, we have that (yp,bs) € B

for h small enough, and therefore (yp, by) is a local minimizer of the total energy (2.1) over A for
all such h. O

6. NUMERICAL EXPERIMENTS

In this section, we describe the numerical experiments we have performed. We first describe the
“tent” deformation [7] and give the conditions under which this deformation is possible. Then we
discuss one of its possible applications, a temperature operated valve. Our main goal is to try to
qualitatively simulate the action of the valve in our computations. Finally, we discuss the issue of
displaying the numerical results and present some of our graphical output.
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F1GURE 1. The “tent” deformation of the film. Outside of a square domain, the
film is attached to a substrate and remains in the austenite. On the square domain,
it is released and transforms to a four-sided tent. Each side of the tent satisfies
(Vy|b) = QU; for some i where ) € SO(3) and the U; are martensitic variants.

'mm
ricy

BRRRER
|

Pressure

FIGURE 2. The temperature operated valve. At a high temperature, the film is in
the austenitic phase, effectively opening the valve (left). At a low temperature, the
film is in the martensitic phase, effectively closing the valve (right).

6.1. Conditions for a “tent”. We assume that ez is a unit vector normal to the reference plane
of the film. Assume that one of the sides of the film satisfies (Vy|b) € SO(3)U; where U; is one of
the variants (2.8). The formation of a symmetric k-sided tent (See Figure 1 for a four-sided tent) is
then possible [7] if and only if there exist e € R® such that e-e3 = 0 and |e| = 1 and Q € SO(3)
such that

(QU; — e =0, (6.1)
n-Ufe =0, (6.2)

where n = e x e3, and, moreover, that e; is an axis of k-fold symmetry of the austenite. (Note
that it follows from crystallography theory [3] that k € {2,3,4,6}.) The vector e is the direction of
the line interface between the martensite with (Vy|b) € SO(3)U; and the austenite attached to the
substrate. The normal to this interface is n. To satisfy the Hadamard condition of compatibility,
we need to require (6.1). To ensure there is no shear along the interface, we need to require (6.2).
Finally, (6.3) enables the film in the martensitic phase to stretch in the direction of n. The fact that
e3 is an axis of k-fold symmetry of the austenite simply allows the film to form k symmetric sides
of the tent.

Tt is easily seen that the opposite sides of the symmetric four-sided tent can be chosen to belong
to the same martensitic well. Hence, only two martensitic variants are needed to participate in the
formation of the four-sided tent (Figure 1).

6.2. Application of the tent — valve. In this section, we describe a possible application of the
tent to a temperature operated valve. Consider a mechanism such as the one in Figure 2. In a



THIN FILM COMPUTATIONS 15

certain temperature range above the transformation temperature, the film is in the austenitic phase,
effectively opening the valve. Note that the film is not completely flat due to the bias pressure in the
lower part of the valve. Upon cooling the film, the pressure below the film helps it to transform into
martensite and bulge up, effectively closing the valve. Heating the film again causes it to transform
back to austenite and open the valve. Note that one simple way to supply heat to the film could be
electric current passing through it.

6.3. Computational example of the energy density ¢. We next provide an example of an
energy density satisfying all of the qualitative requirements discussed in Section 2.3. It certainly
does not possess all the quantitative properties of the free energy density for a martensitic alloy, but
it suffices for our computational purposes and demonstrates the expected effects.

As mentioned in Section 2.2, we will make a simple special choice of a martensitic transformation
so that we do not need to rotate the reference domain 2 out of its natural position in the z;zs-plane;
that is, the reference direction normal to the film is es, and the vectors e and n from (6.1)—(6.3) lie
in the xjzs-plane. From the theoretical considerations in Section 6.1 (where k = 0), we are led to
expect that only two martensitic variants appear in the deformed configuration. However, the film
can transform to additional variants when the effects of surface energy are included. To confirm
these expectations numerically, but to keep the model reasonably simple, we consider the cubic to
tetragonal transformation [4,5,35] given by the three transformation matrices Uy, Uz, Us (in the
cubic basis {e1, ez, e3}), where

VIFE 0 0 1 0 0 10 0
Uy=| 0 10|, Us=1|0 vI*t€ 0|, Us=|[01 0 (6.4)
0 01 0 0 1 0 0 VIté

and where £ > 0.

The symmetry group G of the austenite is the symmetry group of the cube. It has 24 elements
which are the rotations determined by rotating the orthonormal system {e;, ez, e3} onto another
(right-handed) system {+e,(1), £e(2), Tex(3)} Where 7 is a permutation of the set {1,2,3}.

We observe that if U = Uy, e = e5 and @ is any rotation about e, then the conditions (6.1)—(6.3)
are satisfied. Since e3 is clearly a 4-fold axis of symmetry of the cube, this configuration supports
the formation of a regular 4-sided tent with the reference configuration being a square with its sides
parallel to e; and es.

It follows from (2.6) (by the polar decomposition theorem) that if F € R}Y®, then ¢(F,0) =
®(C,0) where @ is a function of C = FTF, the Cauchy-Green strain corresponding to the strain
F. We will thus define below an energy density ¢ : R®*® x R — R that is frame-indifferent (2.6) by
setting ¢(F,0) = ®(C,0) for & : R3*3 x R — R.

Given £ > 0 and F € R**3, we set C = FTF and define

¢e(F) = (011 +Ca2+Cs3—(3+ ﬁ))2 + (011022033 - (1+ 5))2
+ (C11Ca2 + C11C3s3 + C22C33 — (3 + 25))2 +2a(C}, + C + C3),

where a > 0 is a constant chosen to penalize the off-diagonal elements of C. Note that since ¢¢ is a
symmetric function of the diagonal elements and a symmetric function of the off-diagonal elements
of C, it satisfies the material symmetry (2.7). Also, it is a nonnegative function of F € R**3 and
equal to zero if and only if F' € U where U is given by (2.9) and the U; by (6.4). Note that for £ =0
the matrices (6.4) degenerate into the identity matrix I and U = SO(3).

To model the dependence on the temperature, §, we make the following simplifications. Let the
temperature be allowed to range from —oc to +oo with 0 being the transformation temperature.
We define the energy density ¢ to be the continuous function

¢(F,0) = min{éo(F) —T(0), ¢on(F)+T(0)} (6.6)
with suitably chosen constants ¢ > 0 and n > 0. Here n determines the preferred martensitic strain.
To maintain the local minima for the energy density ¢ for all temperatures 8 € R, T'(6) is taken

(6.5)
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to be an increasing, bounded, and odd function of §. The choice of the minimum function in (6.6)
does not allow ¢ to be differentiable everywhere, but this is more of a technical point and does not
cause problems in computations. We also note that our model neglects the thermal expansion of the
austenitic and martensitic strains. Finally, we remark that ¢ satisfies the growth condition (5.1).

6.4. Choice of parameters. We first give and discuss the numerical values of the parameters
k, 8, P, n, a, ¢ and the function T'(f) that we have used for our computations. We need to mention
that all of these quantities have to be chosen more or less ad hoc, since not very many experiments
with various single crystal thin films have been performed yet to provide good quantitative infor-
mation as to how these quantities should be chosen. Moreover, the behavior of the energy density
¢ away from the energy wells is far from fully understood.

We start with the strain gradient coefficient, . In the models of the behavior of bulk martensitic
material, the size of this quantity determines the length scale of microstructure. Since the interface
conditions for the thin film limit of the bulk model are less stringent than for the bulk model [7],
we expect less microstructure in thin film configurations. Instead, possibly large deformations with
a few interfaces are expected [7]. For this problem, choosing x on the order of h results in severe
penalizations of large curvatures of the deformed film which is not desirable. We set k = 5-1075.

The quantity 7, used in (6.6), determines the energetically preferred strains for the crystal below
the transformation temperature. Qur choice is 7 = 0.16. This corresponds to, approximately, 7.7%
strain, which is reasonable for martensitic alloys. Moreover, this corresponds to the height of the
tent in Figure 1 being precisely 0.2 for the reference domain Q = (0, 1) x (0,1). Of course, this height
is expected to be achieved only approximately, due to the fact that the deformation cannot suffer
jumps in the gradient of y, or in b (as Figure 1 suggests), and also due to the hydrostatic pressure
under the film which causes the deformed film to take the shape of a bubble.

The values for the pressure, P, have been taken from the range (0,0.2). We present the results
for P =0.15.

The parameter o of (6.5) was set to 5. The energy itself depends little on small changes in «
and the goal of choosing it larger than 1 was to penalize the off-diagonal terms of the Cauchy-Green
strain C' more than its diagonal terms.

We set é = 2/(3n) = 4.16 to have the height of the barrier in the elastic energy at the transforma-
tion temperature equal to 1. We remark that little is known about the barrier heights in the energy
but order of 1 seems reasonable.

The choice of T'(0) was

T(6) = g én? arctan .
This ensures that, at any temperature § € R, both SO(3) and U are sets of local minima of the
energy density ¢. As 8 — +00, the energy of the austenite lowers while the energy of the martensite
grows, and the martensitic well becomes smaller. In the limit as § — +o00, the energy density is
only minimized on the austenitic well. Similarly for 8 - —oo.

6.5. Results and graphics. The deformation y € R® provides the (immediately visualizable) defor-
mation of the film and can be easily plotted as a two-dimensional surface. The matrix (Vy|b) € R3*3
is an argument of the free energy density ¢ and therefore provides information about whether the film
is closer to the austenitic well or any of the martensitic ones. We follow the ideas of [21] to visualize
this phenomenon. We choose grey color to correspond to the austenitic phase, red to the martensitic
well corresponding to the deformation matrix U;, blue to the martensitic well corresponding to Us,
and green to the martensitic well corresponding to Us (see (6.4) for the definitions of U;). The darker
each color, the closer is the Cauchy-Green strain (Vy|b)” (Vy|b) to the corresponding U?2. To deter-
mine which color to choose when coloring the surface of the film, recall the definition (6.6) of the
energy density ¢. The choice of the minimum function there makes it easy to determine whether the
deformation gradient (Vy|b) resides in the austenitic well (that is, ¢(Vy|b,8) = ¢ do(Vy|b) — T'(0))
or in one of the martensitic ones (that is, ¢(Vyl|b,8) = ¢ ¢,(Vy|b) + T'(#)). In the former case, we
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FI1GURE 3. The finite element triangular mesh used for modeling the valve.

easily determine the shade of grey by measuring the distance |(Vy|b)T (Vy|b) — I|, while in the latter
case, we first measure the distance |(Vy|b)T(Vy|b) — U2| for each i to determine the variant the
Cauchy-Green strain is closest to and then use the distance |(Vy|b)T (Vy|b) — U2| corresponding to
this variant to choose the shade of red, blue or green correspondingly.

Since it is impossible to perform this at each point z € 2, we only use certain significant points
in the plotting algorithm. First, on each element we plot the resulting deformation as a piecewise
linear function, using the values at the mesh points. Given that the mesh parameter h is small
enough, we do not lose much information this way. On each element, we choose a constant color
to represent the deformation gradient by evaluating the matrix (Vy|b) at the quadrature points
used in the minimization algorithm and forming the weighted average of the obtained values with
the weights from the quadrature rule. Again, as h becomes small, this gives a reasonably good
approximation.

We performed temperature and pressure continuations, thus obtaining sequences of images. For
better visualization purposes we created animated files in the GIF and MPEG formats. These are
publicly available at the website [10].

We now give a complete description of an individual frame of these animated files (see Figure 4
below, for an example of these frames). The reference configuration is taken to be (0,1) x (0,1).
We use a mesh (Figure 3) that fits the symmetry of the “tent” configuration [7]. In the upper left
corner, we display the following three parameters: pressure P, temperature 8, and the height of the
deformed film at the center of €, that is, the value y3(0.5,0.5). The letter A in the parentheses
after the word TEMP indicates that the temperature is above the transformation temperature and
austenite is the global minimizer of the free energy density ¢. Similarly, M indicates the temperature
is below the transformation temperature and martensite is the global minimizer of ¢. Since the film
resides in a local minimum of the total energy (2.1) for a certain temperature range in our model
and the deformation does not change with the temperature, we include a schematic thermometer
on the left-hand side of the frame, displaying the temperature. In the animated files, this shows the
change in the temperature while the deformation stays constant. The transformation temperature
is indicated by the mark on the thermometer.

In the upper right corner of the frame, we schematically show the colors corresponding to each
variant. Here, A stands for the austenite and Mi for the i-th variant of the martensite. Finally, note
that each frame is displayed with the corresponding finite element mesh.

The Morley triangle is the simplest triangular element one could use to solve fourth order prob-
lems. It is known that the smallest polynomial space that needs to be included in the function
space P for the method to converge is P» [17], which is exactly the space of functions of the Morley
element. However, the functions in the Morley finite element space are not continuous across the
inter-element edges, hence the Dirichlet boundary conditions for y are not imposed everywhere along
the boundary. This means that at the corners of the square domain that we use in the numerical
simulations, the imposed boundary conditions do not force the deformation gradient (Vy|b) to be
the identity, which is a required compatibility condition (recall that outside the square the film is
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FIGURE 4. The film at a high temperature austenitic phase (a) and a low temper-
ature martensitic phase (b). At a high temperature, the film is in the austenite (a).
Upon cooling, it transforms to the martensite and pops up (b). The grey color corre-
sponds to the austenite (the deformation gradient (Vy|b) is in the austenitic energy
well), while the red, blue and green colors correspond to the individual variants of
martensite (the transformation matrices Uy, Uz and Us of (6.4), respectively). The
results shown were obtained using the reduced HCT triangle.
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attached to a substrate and hence remains in the austenite). Since the corners should then, quite
reasonably, provide a mechanism for the film to transform back to austenite upon heating, we do
not feel that the Morley element is a good choice for our problem. In fact, numerical simulations
using this element showed great instability of the temperature for which the film changes phase.

Hence, in the remainder of this paper, we give results corresponding to the Zienkiewicz triangle
and the reduced Hsieh-Clough-Tocher triangle. Note that these two elements have exactly the same
degrees of freedom. That means that with no additional work at all, the results from the (conceivably
faster) Zienkiewicz method can be used as an initial guess (or preconditioner) for the (conceivably
slower) HCT method.

The numerical experiment itself proceeds as follows. We fix the pressure P = 0, a temperature
above the transformation temperature, and take as the initial guess

(1 (w1, 22),y2(71, 22), y3(x1,22)) = (21, 22,0)
(b1 (1, 72), ba (21, 72), b3(21,22)) = (0,0,1)

This is clearly a (unique) global minimizer of the total energy when P = 0. We then use a zero-
order continuation in the pressure to obtain an energy minimizer for P > 0, that is, we increase
the pressure in small steps, taking the minimizing deformation for the previous smaller value of
the pressure as the initial guess for the current value of the pressure, and apply the minimization
technique described in Section 4. When the desired value for the pressure is reached, we fix the
pressure and perform the same kind of continuation on the temperature. We note that the final
pressure (P = 0.15) has been chosen large enough so that the film transforms to martensite easily
as the temperature is increased, but is small enough so that the film remains in austenite at lower
temperatures.

First, the temperature is lowered below the transformation temperature until the film fully trans-
forms into martensite and pops up, and then the temperature is increased above the transformation
temperature until the film transforms into austenite. The two resulting states for the reduced HCT
triangle are shown in Figure 4. We do not show the deformation for the Zienkiewicz element since
the differences between the obtained deformations are almost indiscernible. Starting at a tempera-
ture above the transformation temperature, the film is in the austenite (Figure 4(a)). In a certain
temperature range below this temperature, the deformation of the film remains constant. This is
because in the energy density function (6.6) only the function é¢@o(F) — T'(d) is active. When the
temperature is lowered enough so that the function é¢,(F) + T'(8) becomes active, the film trans-
forms into martensite and pops up (Figure 4(b)). Similarly, if, after this point, the temperature is
increased, the film remains in the martensite until the temperature reaches a critical temperature
above the transformation temperature and the film transforms back to austenite and the deforma-
tion comes back to the one with which the temperature continuation was started. This leads to a
nearly rectangular hysteresis loop in the height of the deformed film.

For all of the finite elements used and for all mesh sizes, we have obtained the nearly rectangular
hysteresis loop such as the one shown in Figure 5 for the reduced HCT triangle with mesh 64 x 64
and pressure P = 0.15. That is, the height of the film changes abruptly during one temperature
step. Thus, we see that for each temperature included in the hysteresis loop we obtain two isolated
local minima, for the energy.

While the energy, the heights of the film in the austenite and the martensite, and the temperature
at which the film transforms from the martensite to the austenite converge or remain stable as the
mesh gets refined, the temperature at which the film transforms from the austenite to the martensite
seems sensitive to the mesh size and the finite element (and possibly the quadrature rule) used. We
demonstrate these phenomena in Figures 6-9.

For the micro-valve, it would be desirable to make the width of the hysteresis loop as small as
possible, that is, to make the two temperatures for which the film changes phase as close to each
other as possible. This might be accomplished by choosing a larger value for the pressure or by
choosing a softer alloy (one with smaller elastic moduli) or by having shallower energetic wells.

} for (z1,z2) € Q.
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FI1GURE 5. Hysteresis in the height of the deformed film as the temperature changes.

The results shown are for the reduced HCT triangle on a 64 x 64 mesh, for pressure

P =0.15, and the temperature continuation step 0.2.
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FIGURE 6. The computed energy of the film for the reduced HCT triangle in the
austenite (at the transformation temperature § = 0) plotted as a function of the
grid size. The approximation of the computed energy by the dashed line given by
—6.758 x 1073 + 1.2 % 10 "' N2 where h = 1/N shows the quadratic convergence of
Theorem 5.3.
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