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Abstract 
 

Many numerical models of magnetospheric dynamics treat the ionosphere as an inner 
boundary condition.  These models have traditionally used the current continuity condition, 
treating the ionosphere as a sheet current in which the electric field is electrostatic.  A more 
general boundary condition is suggested that not only is more complete, but also straightforward 
to implement.  Results from a model using this boundary condition applied to the excitation of 
field line resonances in the magnetosphere are presented. 

 
1.  Introduction 
 

Numerical modeling of the magnetosphere has proven to be a useful technique for the 
description of magnetospheric dynamics.  Most such models on the global scale are based on the 
ideal MHD equations, using various numerical methods for their implementation (e.g., Fedder 
and Lyon, 1987; Fedder et al., 1998; Raeder et al., 1998, 2001; Groth et al., 2000; Slinker et al., 
2001).  The inner boundary condition of such models is generally at rather large distances from 
the Earth, for example, 3.5 RE radial distance in the Raeder et al. (2001) model.  This large 
distance is dictated by the geometry of the magnetic field lines and the fact that the Alfvén speed 
becomes very large below this altitude.  For example, the Alfvén speed is 105 km/s for a 
magnetic field of 0.05 G and a density of 1 cm–3, typical parameters in the auroral acceleration 
region at about 2 RE radial distance.  This large wave speed puts strong constraints on the time 
step that can be used, since the Courant stability condition states that the time step must be small 
enough that waves travel less than one grid point in a time step.  

As a result, these global models simplify the inner boundary using an electrostatic condition 
for the ionosphere.  The magnetic fields at this inner boundary will generally have a curl, 
corresponding to a field-aligned current according to Ampere’s Law.  This current is assumed to 
propagate along field lines to the ionosphere, where it is closed by means of ionospheric 
currents.  If the ionosphere is modeled as a thin slab, these currents can be represented by height-
integrated conductances corresponding to the Pedersen and Hall conductivities of the ionosphere.  
Then, current continuity in the ionosphere leads to the relation 
 cos h hj α = ∇ ⋅ ⋅∇ ΦΣ  (1) 
Here the angle α represents the angle between the vertical and the magnetic field direction 
(hence, α < 90° in the southern hemisphere and α > 90° in the northern hemisphere) and the 
subscript h emphasizes that the horizontal components of the gradient are being taken.  This 
relation is then solved for the electrostatic potential Φ, which is then mapped back up to the inner 
boundary of the simulation, where it is used as a velocity boundary condition by invoking the 



E×B drift, 2/ B= −∇Φ×v B .  Note that various models can be used for the conductances, 
depending on solar zenith angle and precipitating energy fluxes (e.g., Raeder et al., 2001). 

On the other hand, more local models of the interaction of the ionosphere with ULF waves 
indicate that this model is inadequate to describe fluctuations at small spatial scales and/or higher 
frequencies.  For example, it has long been known that fluctuations in the Pc1 frequency range 
(0.2-5.0 Hz) can propagate in the so-called Pc1 waveguide (Greifinger and Greifinger, 1968, 
1973; Fraser, 1975; Fujita and Tamao, 1988).  These fluctuations propagate in the fast 
compressional mode, in which the electric field perturbations are not electrostatic.  More 
recently, Yoshikawa and Itonaga (1996, 2000) investigated the properties of an inductive (i.e., 
non-electrostatic) ionosphere and showed that inductive effects can modify the reflection of 
shear mode Alfvén waves from the ionosphere, even at lower frequencies.  In these models, the 
Hall conductivity plays the role of coupling the shear Alfvén wave and the fast compressional 
wave, which cannot be described using the electrostatic model.  Sciffer and Waters (2002) and 
Sciffer et al. (2004) have considered this inductive model in the presence of dipole tilt, noting 
that the inductive effect is enhanced by a tilted dipole field. 

Based on these considerations, Lysak (2004) has developed a three-dimensional numerical 
model including dipole tilt effects that uses a boundary condition that can take all of these effects 
into account.  The purpose of this report is to focus on the ionospheric boundary condition in this 
model and describe its potential for inclusion in global models of magnetospheric dynamics. 
 
2.  Ionospheric Jump Conditions 
 

A boundary condition for the ionosphere can be found by treating the current-carrying region 
of the ionosphere as a thin slab at a constant radial distance r, within which the current can be 
written as: 
 0

ˆ ˆ
P H E⊥= σ −σ × +σj E E b b  (2) 

Note that here b̂  is a unit vector in the direction of the background magnetic field, which can be 
in any direction with respect to the radial direction r̂ .  With these definitions, the angle α given 
in Eq. (1) can be written as ˆ ˆcosα = ⋅b r .  Note also that the minus sign in the Hall term is 
included so that the Hall conductivity is positive when the electrons carry the Hall current.  If we 
then integrate Eq. (2) over the thickness of the ionosphere, we can write the height-integrated 
current as (e.g., Sciffer and Waters, 2002) 
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Here Eθ and Eφ are the horizontal spherical components of the electric field, which are assumed 
to be constant across the slab, and it has been assumed that the radial component of the current 
vanishes.  In this equation, Σ0, ΣP, and ΣH are the height-integrated parallel, Pedersen, and Hall 
conductivities, respectively, and we define 2 2

0 cos sinzz PΣ = Σ α +Σ α , which enters the 
conductivity tensor due to the condition that the radial current in the slab vanishes.  Note that the 
parallel conductance Σ0 is usually orders of magnitude greater than the perpendicular 
conductances, and making this assumption the conductivity tensor can be written 
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Note that these forms are valid in both hemispheres; since cos α changes sign across the equator, 
the off-diagonal terms also change sign. 

The boundary condition for electric and magnetic fields can be given by the usual 
electromagnetic jump conditions (e.g., Jackson, 1999): 
 0 ˆ ˆ ˆ0 0µ = ×∆ ⋅∆ = ×∆ =I r B r B r E  (5) 
In these relations the ∆ denotes the change of the variable above and below the slab, e.g.,  

above below∆ = −B B B .  Note that the last of these conditions states that the horizontal electric field 
is continuous across the slab, as assumed in the derivation of Eq. (3).  It may be noted that the 
standard current continuity condition Eq. (1) can be found by taking the horizontal divergence of 
the first relation in Eq. (5): 
 ( ) ( ) ( )0 0ˆ ˆh h h rjµ ∇ ⋅ ⋅ = ∇ ⋅ ×∆ = − ⋅ ∇ ×∆ = −µE r B r BΣ  (6) 
In the last step of this expression it has been assumed that the atmosphere (the region below the 
ionospheric slab) is a perfect insulator, implying that no current can flow in this region.  Note 
that writing cosrj j= α  and assuming an electrostatic ionosphere, = −∇ΦE  leads to Eq. (1).   

However, the boundary conditions given by (5) are more general than Eq. (1).  In particular, 
we can take the radial component of the curl of Eq. (5) to yield a new condition 
 ( ) ( ) ( )0 ˆ ˆ ˆ /h rB r   µ ⋅ ∇× ⋅ = ⋅ ∇× ×∆ = ∇ ⋅∆ = −∆ ∂ ∂  r E r r B BΣ  (7) 

Here in the last step we have used the divergence-free condition, 0∇⋅ =B , and we note that 
while the radial component of B does not change across the slab according to the second relation 
in Eq. (5), the derivative of this component can in fact change (In general, Br as a function of r 
would have a cusp-like behavior across the slab).  The physical significance of Eq. (6) and (7) 
can be most easily seen by considering the case of a vertical background field and assuming a 
uniform conductivity, in which case these equations become 
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Thus, these equations decouple when the Hall conductivity vanishes, with the first equation 
giving the current closure due to the shear Alfvén wave and the second equation describes the 
fast compressional wave.  Note that in the absence of the inductive (i.e., ⊥∇×E ) term, the first 
condition gives the usual current continuity while the second condition relates to the production 
of the ground signature of the wave (see next section).   

Note that to be useful as a boundary condition, Eq. (5) requires knowledge of the magnetic 
fields above and below the ionosphere.  The fields above the ionosphere would be supplied by 
the magnetospheric simulation; however, that simulation would not have knowledge of the fields 
below the ionosphere.  Finding an atmospheric solution is the subject of the next section. 
 
3.  The atmospheric solution 
 



To find the magnetic fields in the atmosphere, we must note the conditions that prevail in this 
region.  First of all, the atmosphere is assumed to be perfectly insulating, i.e., no currents can 
flow in this region.  Therefore, the curl of the magnetic field must be zero.  As is well known 
from the theory of electromagnetism, a curl-free field can be written as the gradient of a scalar, 
e.g., δ = ∇ΨB , where Ψ is referred to as the magnetic scalar potential.  Note that here we are 
considering just perturbations of the magnetic field; the background geomagnetic field can be 
superposed on this solution.  Furthermore, since the magnetic field is always divergence free, 

2 0∇⋅δ = ∇ Ψ =B ; thus, the magnetic scalar potential satisfies Laplace’s equation, and can thus 
be solved if appropriate boundary conditions are taken.  At the ground, the Earth can be 
considered to be a perfect conductor to lowest approximation; thus, the electric fields are zero 
and the magnetic field can be considered to be frozen-in to the Earth.  Thus, the vertical 
component of the magnetic field must vanish at the ground, or / 0rB rδ = ∂Ψ ∂ = . 

At the top of the atmosphere, the ionosphere, we can take a boundary condition from the 
second relation of Eq. (5), i.e., the radial component of the magnetic field perturbation at the 
ionosphere is given, since it is continuous with the corresponding component above the 
ionosphere.  Taking r = RE  to be the radius of the Earth and r = RI  to be the ionosphere, we 
therefore have the boundary conditions 

 0
E I

rI
r R r R

B
r r= =

∂Ψ ∂Ψ= =
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where BrI is the radial component of the ionospheric magnetic field.   
It is instructive to first consider this relation in a slab geometry, where we will take the 

ground to be z = 0 and the ionosphere to be z = H.  Let the ionospheric radial field be a sinusoidal 
wave, 0

ik x
zI zB B e ⊥= .  Assuming Ψ also has this perpendicular variation, Laplace’s equation can 

be written as 
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which has solutions cosh sinhA k z B k z⊥ ⊥Ψ = + .  Applying the boundary condition at the ground 
implies that B = 0, and applying the ionospheric condition gives the solution 
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Note that in the short wavelength limit, 1k H⊥ , this solution is exponentially decreasing from 
the ionosphere as exp[k⊥(z–H)].   

The solution becomes more complex when considering the spherical geometry of the Earth.  
In the general case, it is desired to model the ionosphere between two latitudes, 0 1θ < θ < θ .  For 
a perturbation that has an azimuthal dependence of exp imφ, the latitudinal part of Laplace’s 
equation takes the form of Legendre’s equation 

 ( ) ( )
2

2
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  − + ν ν + − =   −   
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where x = cos θ.  The solutions to this equation are the associated Legendre functions of the first 
and second kinds, ( )mP xν  and ( )mQ xν .  Applying boundary conditions at the bounding latitudes 
(either Dirichlet or Neumann conditions may be used), the general solution for Laplace’s 
equation takes the form 
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where we define a modified spherical harmonic as 
 ( ) ( ) ( ),

lm lm

m m im
lm lm lmy x C P x D Q x e ϕ

ν ν ϕ = +   (14) 

Note here l is an integer that denotes the mode number, not the degree of the Legendre functions.  
The degree of the Legendre functions νlm and the ratio Dlm / Clm are determined from the 
boundary conditions, with the constant Clm being determined by the normalization condition.  In 
practice, it is difficult to generate these functions for non-integer degree, and so Eq. (12) is 
integrated numerically and the degree νlm is determined by a root finding method.  Figure 1 
shows the first 5 solutions to Eq. (12) for m = 2 and m = 10 for a run in which Dirichlet boundary 
conditions were applied at latitudes of 54.2° and 71.4° (roughly L = 3 and L = 10 field lines).   

Once these eigenfunctions are obtained, they can be used in Eq. (13) to get a full solution.  
The boundary condition at the ground, / 0r∂Ψ ∂ = , leads to the condition 
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Similarly, the ionospheric boundary condition gives the other coefficient 
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In practice, these coefficients are found by least squares fit to the values of Br at the ionosphere 
using singular value decomposition.  It should be noted that the coefficients of this 
decomposition need only to be computed at the beginning of the simulation, and can then be 
used repeatedly during the simulation as the system evolves. 
 
4.  Coupling to a numerical model 
 

The boundary condition described above is suitable to be used in a wide range of numerical 
models that describe the dynamics of the magnetosphere.  As one example, this boundary 
condition has been applied to a linear MHD wave model that uses non-orthogonal coordinates 
(Lysak, 2004).  These coordinates are useful since the dynamics of the MHD equations suggests 
a magnetic-field-aligned coordinate system, while the structure of the ionosphere, as discussed 
above, suggests the usefulness of a spherical coordinate system.  In non-orthogonal coordinates 
there is a distinction between contravariant and covariant basis vectors, with the contravariant 
basis vectors being perpendicular to the coordinate planes (i.e., the planes defined by one of the 
coordinates being constant), and thus also are called normal basis vectors, and the covariant basis 
vectors being parallel to the coordinate lines (the lines defined by two of the coordinates being 
constant), and being called tangent basis vectors (d’Haeseleer et al., 1991).  For a coordinate 
system in which the magnetic field lines are defined by the first two coordinates being constant, 
the first two contravariant basis vectors are perpendicular to the magnetic field while the third 
covariant vector is parallel to the magnetic field.  The third coordinate is constant in the 
ionosphere at constant radial distance; therefore the third contravariant coordinate is radial while 
the first two covariant coordinates are horizontal.  The two coordinate systems are related by the 
metric tensor, which essentially provides the rotation from one set of coordinates to another. 

Thus in this code, the boundary condition is implemented as follows.  The simulated fields 
are rotated into their spherical components.  These components of the magnetic field can then be 



used in the boundary conditions given by Eq. (5).  Noting that the radial component of the 
magnetic field is continuous across the ionospheric layer, it can be used as a boundary condition 
for the atmospheric solution given by Eq. (16).  This solution then gives the horizontal 
components of the magnetic field below the ionosphere.  Then the first formula in Eq. (5) can be 
solved for the current in the ionosphere, and the ionospheric Ohm’s law, Eq. (3) can be inverted 
to give the electric field in the ionosphere (which is continuous as seen by the third formula in 
Eq. (5).  A similar procedure could be used in any numerical model, provided appropriate 
mappings from the inner boundary of the model to the spherical components of the fields at the 
ionosphere are developed. 

As an example of such a run, we consider a case in which a field line resonance has been 
excited with a compressional wave at the magnetopause.  Parameters for such a run have been 
taken from the observations of Ponomarenko et al. (2004), who observed a 40-second period 
field line resonance with radar and ground observations near 65° south geomagnetic latitude.  A 
compressional pulse with a width of 1000 km in longitude (mapped to the ionosphere) and 
centered at 90° longitude is introduced (note that longitude is arbitrary in this model, which 
assumes cylindrical symmetry.)  The height-integrated Pedersen conductivity was 4 mho in this 
run, and the Hall conductance was 10 mho.  Figure 2a shows a gray scale plot of the poleward 
electric field component in this run, with darker shades indicating negative values and lighter 
shades positive values.  Figure 2b shows a cut at r = 2 RE through this figure, giving a more 
quantitative view.  It can be seen that enhancements occur at approximately 65.4° and 68.0° 
latitude.  The 40-second driver wave corresponds to the 3rd and 5th harmonics on these resonant 
field lines.  Figure 3 shows the electric and magnetic field profiles along these field lines, 
demonstrating the 3rd and 5th harmonic structure of the wave (note that only half the field line is 
shown). 

Figure 4 shows a comparison of magnetic fields above and below the ionosphere.  Figure 4a 
shows a vector plot of the perpendicular components of the magnetic field at 600 km altitude, 
while Figure 4b shows the corresponding plots of the ground magnetic field.  It can be seen that 
the ground fields are rotated by 90° from the fields above the ionosphere, as expected, and that 
the smaller scale structures in the magnetic field are smoothed out in the ground signature.  For 
another view of the ground signature, Figure 5 shows stacked plots of the time history of the 
latitudinal component of the magnetic field from 4 points at 120° longitude on L-shells of 4.5, 
5.6, 6.7, 7.8, and 9.0, corresponding to latitudes of 61.9, 65.0, 67.3, 69.0 and 70.5 degrees.  Each 
curve is displaced upward by 20 nT, with the most poleward location on top.  This figure clearly 
shows the poleward phase progression of the wave signal.  A strong field line resonance 
signature is not so well seen however (note that the second and fourth of these curves from the 
top represent the 5th and 3rd harmonic field lines).   
 
5. Conclusions 
 

The calculations presented here show the usefulness of adopting a more general boundary 
condition for the ionosphere, based on the electromagnetic jump conditions across the boundary 
rather than on current continuity.   This model gives the ground magnetic fields directly, rather 
than requiring a solution of the Biot-Savart Law as described Raeder et al. (2001).  The 
traditional solution requires a solution of Poisson’s equation with variable coefficients as 
described by Eq. (1).  In this new model, Laplace’s equation is solved with the compressional 
magnetic field as a boundary condition, which is generally simpler to solve.  Note that while our 



simple solution assumed a perfectly insulating atmosphere and a perfectly conducting 
ionosphere, these conditions can be relaxed without excessive difficulty (see, e.g., a two-
dimensional solution with a finite atmospheric conductivity in Lysak, 1997).   

While this model provides a more complete description of magnetosphere-ionosphere-
atmosphere-ground coupling, it should be noted that the inductive effect is most important when 
dealing with long perpendicular wavelength and higher frequency (e.g., Yoshikawa et al., 1996, 
2000).  Thus, auroral zone models with short perpendicular wavelength and global models that 
consider only low frequency are described by the current continuity model to a reasonable 
accuracy.  Dipole tilt effects, however, should certainly be included in such models, as is done in 
most global simulations using equations (1) and (4) (e.g., Raeder et al., 2001).  In such models, 
however, the inner boundary is at 3.5 RE, or an invariant latitude of about 58°.  This latitude 
corresponds to cos α = 0.980, so the tilt angle not too significant at such angles. 

However, at lower latitudes, the work of Sciffer and Waters (2002) and Sciffer et al. (2004) 
shows that dipole tilt effects enhance the importance of the inductive term that is not included in 
the current continuity description.  In addition, fields close to the ionospheric boundary, such as 
those measured by ionospheric radar, may be more strongly affected by this boundary condition.  
Waters (personal communication) has compared a version of his model with a fully resolved 
boundary condition to one with the boundary condition suggested here, and notes that the fields 
are indistinguishable except in the immediate vicinity of the boundary.  Thus, while further work 
needs to be done to ascertain how important this generalized boundary condition is in practice, it 
is certainly no more difficult to implement and may give a better description of the ionospheric 
boundary for models of magnetospheric dynamics. 
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Figure Captions 
 
Figure 1.  Plots of the first 5 eigenfunctions for Legendre’s equation between the latitudes of 54° 
and 71° (roughly L=3 and L=10) with Dirichlet boundary conditions assumed at the boundaries.  
Top panel gives the eigenfunctions for m = 2, and the bottom panel for m = 10. 
 
Figure 2.  (a) Color plots of the poleward perpendicular component of the electric field at a 
longitude of 60° and time of 300 s into the run described in the text.  Blue shades indicate 
negative values and green shades positive values.  (b) Value of this component as a function of 
latitude at r = 2 RE radial distance. 
 
Figure 3.  Plots of the (a) poleward perpendicular electric field and (b) eastward magnetic field 
components at the same time as the plot of Figure 2 at invariant latitudes of 65.4° (solid curves) 
and 68.0° (dotted curves), indicating 3rd and 5th harmonic structure, respectively. 
 
Figure 4.  Vector plots of the perpendicular magnetic field at (a) 600 km altitude and (b) the 
ground at the same time as the plots of Figures 2 and 3.  Note the rotation of the magnetic field, 
the smoothing of the fine scale structure and the general reduction in magnitude from the 
ionosphere to the ground. 
 
Figure 5.  Stacked plots of the time history of the equatorward ground magnetic field at 120° 
longitude and L values of 4.5, 5.6, 6.7, 7.8, and 9.0, corresponding to latitudes of 61.9, 65.0, 
67.3, 69.0 and 70.5 degrees, with the more poleward locations on the top.  Note the general 
poleward phase progressions of the magnetic signals. 



Figure 1.  Plots of the first 5 eigenfunctions for Legendre’s equation between the latitudes of 54° 
and 71° (roughly L=3 and L=10) with Dirichlet boundary conditions assumed at the boundaries.  
Top panel gives the eigenfunctions for m = 2, and the bottom panel for m = 10. 
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Figure 2.  (a) Color plots of the poleward perpendicular component of the electric field at a 
longitude of 60° and time of 300 s into the run described in the text.  Blue shades indicate 
negative values and green shades positive values.  (b) Value of this component as a function of 
latitude at r = 2 RE radial distance. 
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Figure 3.  Plots of the (a) poleward perpendicular electric field and (b) eastward magnetic field 
components at the same time as the plot of Figure 2 at invariant latitudes of 65.4° (solid curves) 
and 68.0° (dotted curves), indicating 3rd and 5th harmonic structure, respectively. 
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Figure 4.  Vector plots of the perpendicular magnetic field at (a) 600 km altitude and (b) the 
ground at the same time as the plots of Figures 2 and 3.  Note the rotation of the magnetic field, 
the smoothing of the fine scale structure and the general reduction in magnitude from the 
ionosphere to the ground. 
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Figure 5.  Stacked plots of the time history of the equatorward ground magnetic field at 120° 
longitude and L values of 4.5, 5.6, 6.7, 7.8, and 9.0, corresponding to latitudes of 61.9, 65.0, 
67.3, 69.0 and 70.5 degrees, with the more poleward locations on the top.  Note the general 
poleward phase progressions of the magnetic signals. 
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