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Abstract 

 

The strong inhomogeneities in plasma parameters in the ionosphere and adjacent regions can trap 
waves in the upper end of the ULF range (Pc1/Pi1).  The topside ionosphere is characterized by a 
rapidly increasing Alfvén speed with a scale height the order of 1000 km.  Shear mode Alfvén 
waves in this region can be partially trapped at frequencies in the 0.1-1.0 Hz range.  The same 
structure can trap fast mode compressional waves in this frequency band.  Since these waves can 
propagate across magnetic field lines, this structure constitutes a waveguide in which energy can 
propagate at speeds comparable to the Alfvén speed, typically the order of 1000 km/s.  Hall 
effects in the ionosphere couple these two wave modes, so that the introduction of a field-aligned 
current by means of a shear mode Alfvén wave can excite compressional waves that can 
propagate in the waveguide.  In the limit of infinite ionospheric conductivity, these waves are 
isolated from the atmospheric fields; however, for finite conductivity, ionospheric and 
atmospheric waves are coupled.  TM modes in the atmosphere can propagate at ULF 
frequencies, and form global Schumann resonances, with the fundamental at 8 Hz.  It has been 
suggested that signals that propagate at the speed of light through this atmospheric waveguide 
can rapidly transmit signals from the polar region to lower latitudes during storm sudden 
commencements.  
 

1.  Introduction 
 
 ULF waves, at approximately 1 mHz to 1 Hz, play a major role in propagating energy 
throughout the magnetospheric system.  At the lowest end of this frequency band, the 
wavelength of ULF waves is comparable to the entire magnetosphere.  In this frequency range, 
the global structure of the magnetosphere can lead to global cavity resonances and waveguide 
modes (see articles by Wright and Mann, Lee and Takahashi, and Rankin et al., this volume).  
The structure of these modes is determined by the gradients in the Alfvén and fast mode speeds 
in the magnetospheric system. 
 These gradients are particularly strong in the region up to about 1 RE altitude, since the 
mass density decreases exponentially with increasing altitude while the magnetic field falls off 
less rapidly.  Thus, the Alfvén speed increases rapidly, reaching a peak at an altitude of about 1 
RE that can be comparable to the speed of light.  The behavior in the wave speed for typical 
parameters based on the MSIS and IRI models is shown in Figure 1, with the top panel giving 
the wave speed up to 10,000 km, while the lower panel focuses in the lowest 1000 km of the 
field line.  The deep minimum in the wave speed in the ionosphere forms a resonant cavity, 
termed the ionospheric Alfvén resonator by Polyakov and Rapaport (1981) and studied 
extensively by Trakhtengertz and Feldstein (1984, 1991) and Lysak (1986, 1988, 1991, 1993).  
This cavity has resonant frequencies in the range of 0.1-1.0 Hz.  
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 It has long been known from ground observations that Pc1 waves in this band are 
common in the ionosphere (e.g., Jacobs and Watanabe, 1962; Manchester, 1968; Fraser, 1975; 
Hansen et al., 1992; Popecki et al., 1993; Neudegg et al., 1995). Simultaneous observations of 
Pc1 waves by ground magnetometers and the Viking satellite have been reported by Arnoldy et 
al. (1988, 1996) and Potemra et al. (1992).  Less structured waves in this band are the PiB bursts 
observed in the midnight sector associated with substorms (e.g., Heacock, 1967; Bösinger et al., 
1981; Koskinen et al., 1993).  These PiB bursts are typically associated with the arrival of the 
substorm current wedge at the ionosphere, and may be associated with conductivity 
enhancements due to localized precipitation (Grant and Burns, 1995). 
 Waves in this frequency range have frequently been observed by satellites and sounding 
rockets.  Temerin et al. (1981) noted that S3-3 satellite observations of large quasi-static electric 
fields are consistent with being electrostatic structures at high altitudes; at altitudes below 5000 
km; however, the observed electric fields were more consistent with being large amplitude 
Alfvén waves.  Dynamics Explorer observations (Gurnett et al., 1984) have also indicated that 
low frequency electric and magnetic field observations are consistent with an Alfvén wave 
interpretation.  Similar results have been obtained by the ICB-1300 satellite (Chmyrev et al., 
1985), Aureol-3 (Berthelier et al., 1989), Magsat (Iyemori and Hayashi, 1989), HILAT 
(Knudsen et al., 1990, 1992), Freja (Grzesiak, 2000), FAST (Chaston et al., 2002b), Akebono 
(Hirano et al., 2005) and sounding rockets (Boehm et al., 1990). Viking observations have 
shown that the peak power of electric and magnetic fluctuations occurs in this same frequency 
range (Marklund et al., 1990; Block and Fälthammar, 1990; Erlandson et al., 1990).  It is 
interesting to note that Volwerk et al. (1996) report a small compressional component in 
association with the Alfvén wave, consistent with a coupling between these two wave modes.  
Arnoldy et al. (1998) observed Pi1 waves simultaneously at the GOES spacecraft and on the 
ground.  These observations indicated that although the general frequency response at the 
satellites and the ground were similar, there were significant differences both in the spectral 
width of the emissions and in the timing of the event, indicating that the wave signature was 
modified by wave propagation through the ionosphere.   
 While the density structure above the ionosphere leads to a resonance cavity for shear 
Alfvén waves, it provides a waveguide for compressional waves that can propagate across field 
lines (e.g., Greifinger and Greifinger, 1968).  Therefore, a signal observed on the ground may 
not be on the same field line as the field-aligned current structure that produced it.  Neudegg et 
al. (1995) have shown from an array of ground magnetometers that Pc1 signals propagate with a 
typical speed of 450 km/s over distances of a few hundred kilometers, consistent with 
propagation in this ionospheric waveguide.  Yahnina et al. (2000) have noted that Pc1 
oscillations can be seen a few hours of magnetic local time away from their source.  These 
observations indicate that these waves can propagate over large distances through the 
ionosphere.  Over such long distances, the magnetic field dip angle will change and so models 
that assume a vertical field will have to be modified.  The early work of Greifinger and 
Greifinger (1968, 1973) indicates that waves polarized in the poloidal or toroidal directions will 
interact with the ionosphere differently due to dip angle effects.  Fujita and Tamao (1988) 
studied the propagation of Pc1 waves in a simplified model, and also found changes in the 
polarization as the wave propagated.   
 The shear waves trapped in the ionospheric Alfvén resonator and the compressional 
waves propagating in the waveguide can be coupled by means of Hall currents in the ionosphere.  
Yoshikawa and Itonaga (1996, 2000) have recently analyzed this coupling and noted that the 
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reflection characteristics of Alfvén waves from the ionosphere is modified by including inductive 
(i.e., non-electrostatic) effects at the ionospheric boundary.  This work has noted that the 
electrostatic ionospheric boundary condition often used in descriptions of magnetosphere-
ionosphere coupling must be modified to take into account the inductive effects. 
 In addition, electromagnetic waves can also propagate through the atmosphere in a 
waveguide bounded by the conducting ionosphere and the ground.  These modes can be 
classified as TE (transverse electric) or TM (transverse magnetic), for which the component of 
the electric or magnetic field (respectively) in the direction of propagation vanishes.  It can be 
shown (see below) that the TE modes have a minimum frequency that is the order of the speed of 
light divided by the ionospheric height, or about 3 kHz, and thus fall out of the ULF range.  
However, the TM mode can in principle have much lower frequencies.  The most prominent 
features in the spectrum of these modes are the Schumann resonances (Schumann, 1952), with 
the fundamental frequency at about 8 Hz.  These resonances can be excited by any 
electromagnetic disturbance in the atmosphere, most notably by lightning strikes.  Moreover, 
Kikuchi and Araki (1979a,b) have proposed that waves at even lower frequencies can propagate 
in this mode.  They suggest that this propagation may be responsible for the rapid transmission 
of perturbations from storm sudden commencements over the entire globe. 
 Although these ionospheric and atmospheric modes can be treated separately in the limit 
of infinite ionospheric conductivity, they are coupled in the general case of finite conductivity.  
Indeed, this coupling is responsible for the fact that magnetic perturbations of magnetospheric 
origin can be observed from the ground at all.  This coupling has recently been invoked by 
Surkov et al. (2005), who suggested that thunderstorms could excite modes of the ionospheric 
Alfvén resonator. 
 The purpose of this paper is to review the theory of these various resonant cavities and 
waveguides and their couplings.  The following section will discuss the ionospheric Alfvén 
resonator, treating it in isolation from the other modes.  We will treat the ionospheric waveguide 
in a similar manner in section 3, while section 4 will discuss the role of the Hall conductivity in 
coupling these modes.  We will consider the modes in the atmosphere in section 5 and their 
coupling to the magnetospheric waves in section 6.  This will be followed by some general 
conclusions. 
 

2.  Theory of the Ionospheric Alfvén Resonator 
 
 In order to understand these various cavities and waveguides, we will adopt the simplest 
possible model that contains the important features of the problem.  First of all, we will consider 
a cold plasma with straight, vertical magnetic field lines.  We will assume ideal MHD, so that the 
parallel electric field is set to zero.  These assumptions are reasonable, particularly for high 
latitudes, since the magnetic zenith angle is small at the poles, and the magnetic field is so strong 
that plasmas pressure effects can be ignored (in other words, the β of the plasma is very low, 
which is generally true in the ionosphere and low-altitude magnetosphere).  We are interested 
here in fields with large perpendicular scale, and for such fields the effects of parallel electric 
fields can be ignored (e.g., Lysak and Song, 2001).  The model used is based on the linearized 
MHD equations, which can be conveniently written in terms of Maxwell’s equations: 

 
t

∂ = −∇×
∂
B E  (1) 
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where 2 2
0 (1 / )Ac V⊥ε = ε +  is the low-frequency dielectric constant for a plasma.  Note that in the 

ionosphere and much of the magnetosphere, the Alfvén speed is much less than the speed of 
light; however, it can approach c in the auroral acceleration region as well as in the neutral 
atmosphere and so in this case the displacement current term must be included.  Effects of 
relaxing these assumptions will be discussed at the end of the section. 
 If we consider a plane wave variation in the perpendicular direction exp(ik⊥x) and 
consider oscillations at a frequency ω, an ideal shear mode Alfvén wave will consist of Ex and by 
components, where z is the vertical direction, parallel or anti-parallel to the magnetic field in the 
southern and northern ionospheres, respectively.  Here we use a lower case b for the perturbation 
field in order to distinguish it from the background field.  In this case, equations (1) and (2) can 
be combined into a wave equation 

 ( )
2 2

2 2 0x
x

A

E E
z V z

∂ ω+ =
∂

 (3) 

The next step is to choose a profile for the Alfvén speed along the field line.  Some authors (e.g., 
Trakhtengertz and Feldstein, 1984; Fedorov et al., 2001; Pilipenko et al., 2002; Surkov et al., 
2005) have used a step-wise Alfvén speed profile, but it is more realistic and not much more 
difficult to introduce a modified exponential profile, as suggested by Greifinger and Greifinger 
(1968), and used extensively in models of the ionospheric Alfvén resonator (e.g., Polyakov and 
Rapoport, 1981; Trakhtengertz and Feldstein, 1991; Lysak, 1991, 1999; Pokhotelov et el., 2000; 
Grzesiak, 2000): 

 ( )
2

2
2 /

AI
A z h

VV z
e−=

ε +
 (4) 

Notice that for this profile, the Alfvén speed approaches VAM = VAI / ε as z→∞, and VAI is the 
Alfvén speed at the ionosphere for ε << 1.  Note that while this profile accurately models the 
increase of the Alfvén speed above the ionosphere, it assumes that the Alfvén speed becomes 
constant at high altitude rather than the slow decrease above the Alfvén speed peak seen in 
Figure 1.  It was noted by Lysak (1993) that use of a more realistic profile does not change mode 
structure qualitatively.  Inserting the profile (4) into the wave equation (3) gives 

 ( )
2 2

2 /
2 2 0z hx

x
AI

E e E
z V

−∂ ω+ ε + =
∂

 (5) 

Although this equation looks complicated, it can be simplified by a substitution / 2
0

z hx x e−= , 
where 0 2 / AIx h V= ω , in which case it turns into a form of Bessel’s equation 

 ( )
2

2 2 2 2
02 0x x

x
E Ex x x x E
x x

∂ ∂+ + ε + =
∂ ∂

 (6) 

which has solutions that are Bessel functions of order 2 2 2
0xν = − ε : 

 ( ) ( )
0 01 2x ix ixE E J x E J xε − ε= +  (7) 

Note that in these solutions, x = x0 is the ionosphere and x = 0 is the magnetosphere.  Note that 
for small values of x, the Taylor expansion of the Bessel function gives the approximation 
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This solution indicates that the solutions become plane waves propagating in the z∓  direction.  
Since we are concerned with solutions that do not require the input of energy from above, we 
will take the – solution in what follows. 

To find the normal modes of this resonator, we must apply an ionospheric boundary 
condition.  For the time being, we will neglect the Hall conductance and consider a slab model 
for the ionosphere, characterized by a Pedersen conductance ΣP.  Assuming no field 
perturbations or currents exist below the ionosphere, the electromagnetic jump condition over the 
ionospheric slab can be written as 
 0 0ˆ 0P P x yE bµ Σ = × ⇒ µ Σ + =E z b  (9) 
where the last form applies in the current situation.  Here we have introduced the lower case b to 
denote the magnetic perturbation.  Noting from equation (1) that ( / ) /y xb i E z= − ω ∂ ∂ , we find 
that the boundary condition can be written as 

  0 0 (at 0)x
P x

E i E z
z

∂ + ωµ Σ = =
∂

 (10)  

Transforming to the variable x and defining 0P AI PVα = µ Σ , equation (10) can be written as 

 
0

0x
P x

Ex i E
x x

∂ − α =
∂

 (11) 

At the ionosphere, x = x0, and so the dispersion relation takes the form (e.g., Lysak, 1991). 
 ( ) ( )

0 00 0 0ix P ixJ x i J x− ε − ε′ − α =  (12) 
This dispersion relation can be solved numerically for x0.  The solutions can be seen 
approximately in the limit 0 1x ε , which is typically the case.  In this limit, the Bessel function 
can be written as 

 ( ) ( ) ( )
0 0 0 02ixJ x J x ix Y x− ε

π= − ε  (13) 

In this case, the solution for a poor conductor, 1Pα , is given by the zeroes of the derivative of 
J0, which is equal to –J1.  Thus the first three roots are given by x0 = 3.83, 7.02, 10.17.  The 
growth rate γ can be given by expanding equation (13) to first order in αP and ε, resulting in 

 ( )
( )

1

02 2
AI YV
h J

ξ ξπγ = ε
ξ

 (14) 

where ξ is a zero of J1.  The Bessel functions satisfy the Wronskian condition 

 ( ) ( ) ( ) ( )1 0 0 1
2J x Y x J x Y x
x

− =
π

 (15) 

Therefore, Y1 and J0 always have opposite sign when J1 = 0, so the growth rate is always 
negative, indicating damping. 

On the other hand, in the good conductivity limit, Pα →∞ , the solutions are the zeroes 
of J0, with the first three being 2.40, 5.52 and 8.65.  (Note that for a more realistic profile such as 
in Figure 1, Lysak (1993) showed that these coefficients were reduced to 2.1, 4.8 and 7.4.)  In 
this case the growth rate can be found by expanding in 1/αP and ε, yielding 
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where now ξ is a zero of J0.  Equation (15) indicates that Y0 and J1 always have the same sign 
when J0 = 0; thus, both terms of equation (16) contribute damping.  Note that corresponding 
results for the stepwise Alfvén speed profile are discussed in the Appendix. 

It should be noted that for a typical Alfvén speed at the ionosphere of 1000 km/s range 
(corresponding to a density of 3.0×105 cm–3 if O+ is the dominant ion), and the scale height of the 
ionosphere is the order of  500 km.  Thus, for these parameters the base angular frequency of 
VAI/2h is 1.0 s–1 or a frequency of 0.16 Hz.  Thus the fundamental eigenmode of the ionospheric 
resonator is 0.38 to 0.61 Hz for the good conductivity and poor conductivity cases, respectively. 

Recent observations have verified that waves in this frequency range are common, not 
only at auroral latitudes but also at lower latitudes.  Belyaev et al. (1999) have observed the 
spectral signatures of the resonator from ground magnetometer observations, and have shown 
that the frequency structure was consistent with the resonator, and varied during the day 
consistent with ionospheric density measurements from the EISCAT radar.  Grzesiak (2000) 
showed using Freja data that the phase relationships predicted by the theory of the resonator 
(Lysak, 1991) were consistent with the data.  Recent observations from Akebono (Hirano et al., 
2005) and from a sounding rocket (Tanaka et al., 2005) have shown IAR signatures in the cusp 
and the related modulation of precipitating electrons. 

New theoretical developments beyond the basic theory presented above have 
concentrated on the interaction of the resonator with parallel electric fields and the acceleration 
of auroral particles.  Lysak (1993) included electron inertia and a more realistic Alfvén speed 
profile based on a dipole magnetic field to show that effects from the resonator persisted when 
parallel electric fields were present.  This model was used to investigate electron acceleration 
through test particle models (Thompson and Lysak, 1996; Chaston et al., 2000, 2002a), 
indicating that field-aligned beams of electrons as observed from the FAST satellite were 
consistent with acceleration due to parallel electric fields in the resonator.  The role of parallel 
electric fields at strengthening the reflection of Alfvén waves near the Alfvén speed peak has 
been emphasized by Pilipenko et al. (2002, 2004).  Although these authors consider the 
reflection from the parallel electric field region as defining a different resonator, the same low 
densities that produce the Alfvén speed peak also favor the formation of parallel electric fields, 
thus it seems that parallel electric fields really modify the ionospheric Alfvén resonator rather 
than represent a new resonator. 

Another role of the ionospheric Alfvén resonator is to modify the ionospheric feedback 
instability (e.g., Atkinson, 1970; Sato, 1978; Lysak, 1991).  This instability can be caused when 
the ionospheric conductivity changes produced by electron precipitation modify the field-aligned 
current system.  When the newly produced currents reinforce the conductivity changes, a strong 
structuring of both can occur.  Simulations of the feedback instability (Pokhotelov et al., 2002a,b; 
Lysak and Song, 2002) show that this instability, which was originally formulated based on the 
field line resonance, operates much more quickly when coupled to the ionospheric resonator.  
The structuring of auroral currents produced by this instability operates more readily in a low-
conductivity ionosphere (Pokhotelov et al., 2002b), possibly explaining observations showing 
that discrete electron precipitation occurs primarily in the dark ionosphere (Newell et al., 1996). 
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3.  Theory of the Ionospheric Waveguide 
 
 A similar description as that given in section 2 can be developed for the compressional 
mode in the ionospheric waveguide.  If, as before, we assume a vertical background magnetic 
field in the z direction and a wave vector in the x direction, the fast mode consists of the Ey, bx, 
and bz components.  Applying Faraday’s Law, equation (1), we can relate the magnetic 
components to the electric field as 

 y
x z y

E kib b E
z

⊥
∂

= =
ω ∂ ω

 (17) 

These relations can be inserted into Ampere’s Law, equation (2) to find 

 ( )
2 2

2
2 2 0y

y
A

E
k E

z V z ⊥

 ∂ ω+ − =  ∂  
 (18) 

Note that the only difference from equation (3) is the presence of k⊥, which enters since this 
mode can propagate perpendicular to the magnetic field.  If the exponential Alfvén speed profile 
given by equation (4) is used, then equation (18) becomes 

 ( )
2 2

2 / 2
2 2 0y z h

y
AI

E
e k E

z V
−

⊥

∂  ω+ ε + − = ∂  
 (19) 

If we now use the same substitution as above, / 2
0

z hx x e−= , then equation (19) can be written in 
terms of Bessel’s equation  

 ( )
2

2 2 2 2 2 2
02 4 0y y

y

E E
x x k h x x E

x x ⊥

∂ ∂
+ − − ε − =

∂ ∂
 (20) 

This equation can be written in terms of Bessel functions of order 2 2 2 2
04k h x⊥ν = − ε  

 ( ) ( )yE AJ x BJ xν −ν= +  (21) 
Note that for this case there are two possible outcomes:  (1) if 02k h x⊥ > ε , or in other words, if 

/ AMk V⊥ > ω , the order ν is real and the positive solution should be chosen so that the solution is 
finite at x = 0 (recall that this corresponds to z→∞); (2) if 02k h x⊥ < ε , the order is purely 
imaginary and the negative solution corresponds to upward propagating waves, as in the shear 
mode case (see equation (8)).  Both cases can be included if we write the solution as 
 ( )0 (Re 0; Im 0)yE E J xν= ν ≥ ν ≤  (22) 
 Next, as before, we should apply the appropriate boundary conditions at the ionosphere. 
We can use the jump conditions over the ionospheric slab as in equation (9); however, in this 
case, we cannot in general assume that the fields below the ionosphere are equal to zero.  In this 
case we should write 
 [ ] 0 0ˆ mag atm

P x x P yb b E× = µ Σ ⇒ − = µ Σz b E  (23) 
Note that in addition the tangential component of E must be continuous across this boundary. 
Here  and mag atm

x xb b  represent the magnetic perturbations just above (magnetosphere) and just 
below (atmosphere) the ionosphere, respectively.  The magnetospheric magnetic field can be 
written using equation (17), which translated into the variable x becomes 

 ( )0
0

mag
x

AI

i xb E J x
V x ν′=  (24) 
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 Unlike in the shear mode case, we must consider the perturbations in the atmosphere for 
this mode.  Indeed, it is mainly the contribution from this mode that gives rise to the magnetic 
signal seen on the ground.  The simplest possible model for the atmosphere is a perfectly 
insulating slab, terminated by the perfectly conducting ground (a more complete model will be 
discussed in section 6).  In this case, the permittivity in equation (2) is simply ε0, and so waves 
propagate at the speed of light.  In this case the wave equation (18) is replaced by 

 
2 2

2
2 2 0y

y

E
k E

z c ⊥

∂  ω+ − = ∂  
 (25) 

Note that in this expression c/ω = 47,000 km for ω/2π = 1 Hz, greater than the circumference of 
the Earth.  In this case, the solutions are upgoing and downgoing attenuated waves 
 1 2

a az z
yE E e E eκ −κ= +  (26) 

where 2 2 2/a k c⊥κ = −ω , and the subscript a indicates the atmosphere.  For wavelengths much 
less than c/ω , κa ≈ k⊥.  Using equation (17), we can then write the magnetic perturbation as 

 ( )1 2
a az zatm a

x
ib E e E eκ −κκ= −
ω

 (27) 

If we let the ionosphere be at z = 0, the surface of the Earth will be at z = –d, where d ~ 80 km is 
the thickness of the atmosphere.  For a perfectly conducting Earth, the electric field must vanish 
at z = –d, and so equations (26) and (27) can be written as 

 ( ) ( )sinh coshatm atm a
y a a x a a

iE E z d b E z dκ= κ + = κ +
ω

 (28) 

Now we can apply the boundary conditions (23) at the ionosphere, z = 0: 

 
( )

( ) ( )
0 0

0 0 0 0 0

sinh

cosh

a a

a
a a P

AI

E d E J x
ii E J x E d E J x

V

ν

ν ν

κ =
κ′− − κ = µ Σ
ω

 (29) 

Combining these relations gives the dispersion relation for the fast mode 

 ( ) ( )0 0coth 0a AI
P a

VJ x i d J xν ν
κ ′ − α + κ = ω 

 (30) 

where 0P AI PVα = µ Σ  as before.  For typical parameters, the atmospheric correction term is of 
order unity, and so cannot be neglected except in the high conductivity case, αP →∞.  Numerical 
solutions of this equation are shown in Figures 2 and 3.  This figure shows the wave frequency, 
polarization (defined as Ea/E0) and the perpendicular group velocity of these waves.  This plot 
assumes VAI = 1000 km/s, ε = 0.01, h = 1000 km, d = 80 km and ΣP = 10.0 mho (Figure 2) and 
0.1 mho (Figure 3).  In the high conductivity case, there is very little electric field in the 
atmosphere, as indicated by the low polarization values.  For large αP, the first term in the 
brackets of equation (30) is dominant and the dispersion relation is basically 0( ) 0J xν = .  As 
k⊥→0, the solutions then become the zeroes of J0.  Note that the group velocity in this case is 
about 1.5 times the ionospheric Alfvén speed.  On the other hand, for low conductivity, the two 
terms in the brackets are both small as k⊥→0, and the solutions become approximately 

0( ) 0J xν′ = , going to roots of 0 1J J′ = −  for small k⊥.  Note that the zero root, which did not enter 
in the case of the ionospheric resonator, is present in this case and has finite frequency for finite 
k⊥.  In this case, there is a more significant coupling to the atmospheric wave. 
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 The propagation of signals in the Pc1 range through the ionospheric waveguide is well 
documented.  Multi-station observations of Pc1 waves by Fraser (1975) and Althouse and Davis 
(1978) showed that the waves propagated at speeds in the range 500-2000 km/s, consistent with 
the model presented above.  More recently, Neudegg et al., (1995) used an array of ground 
magnetometers to show that high-latitude Pc1 signals propagated at speeds of 450 km/s over 
distances of up to 1000 km.  Yahnina et al. (2000) have noted that Pc1 oscillations can be seen a 
few hours of magnetic local time away from their source.  A numerical model of ULF wave 
propagation in a dipole magnetosphere (Lysak, 2004; Lysak and Song, 2005) has shown that 
signals in this frequency range can readily propagate world-wide over periods of tens of seconds.  
This model also serves to verify that the Pc1 waveguide is still operative at high and mid-
latitudes even when dip angle effects are taken into account. 
 

4.  Hall currents and the inductive ionosphere 
 
 The preceding two sections have considered the ionospheric Alfvén resonator for shear 
mode waves and the ionospheric waveguide for compressional waves as separate entities, 
neglecting the effects of the Hall current.  However, it has long been recognized that the Hall 
conductance is necessary to produce the signatures of ULF waves as seen on the ground (e.g., 
Hughes, 1974).  Recently, Yoshikawa and co-workers (Yoshikawa and Itonaga, 1996, 2000; 
Yoshikawa et al., 1999, 2002; Yoshikawa, 2002) have emphasized the role of the Hall 
conductivity in coupling the wave modes in the ionosphere.  This section will summarize this 
coupling process. 
 The Hall effect can be included by introducing the Hall current into equation (23): 
 [ ] ( )0

ˆˆ P H⊥× = µ Σ −Σ ×z b E E B  (31) 

where the brackets denote the jump across the ionospheric layer as above.  Note here that we 
distinguish between the upward vertical unit vector ẑ  and the unit vector in the direction of the 
background magnetic field B̂ .  These two unit vectors are in the same direction at the south pole 
and opposite directions at the north pole, varying with the inclination angle of the magnetic field.  
For simplicity, in the following we will assume southern hemisphere conditions and set ˆ ˆ=B z .  
It should be noted that equation (31) is more general than the ionospheric boundary condition 
based on current continuity used in many numerical models (Lysak and Song, 2005).  This can be 
seen by first taking the divergence of equation (31), assuming that the conductances are constant 
 [ ]( ) ( ) ( )( )0ˆ ˆ ˆz P Hj ⊥∇ ⋅ × = − ⋅ ∇× = − = µ Σ ∇⋅ −Σ ⋅ ∇×z b z b E z E  (32) 
Note here we have assumed that the atmosphere is a perfect insulator so that there are no currents 
below the ionosphere.  However, the condition (31) also includes a condition on the 
compressional magnetic field, as can be found from taking the vertical curl of equation (31) and 
using 0∇⋅ =b : 

 ( )( )0 ˆz
P H

b
z ⊥

∂  = µ Σ ⋅ ∇× +Σ ∇⋅ ∂ 
z E E  (33) 

Note that while the jump in bz is zero due to the divergence-free condition, the jump in its 
derivative can be non-zero.  Recalling that the shear mode is characterized by a non-zero 
divergence of E⊥ and the compressional mode by a non-zero curl of E⊥, equations (32) and (33) 
indicate the role that the Hall conductance plays in coupling these two modes. 
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 This model has been used by Yoshikawa and Itonaga (1996) to calculate the reflection 
and mode conversion coefficients at the ionosphere.  If it is assumed that the Alfvén speed 
remains constant above the ionosphere for simplicity, the equations for the shear and fast modes, 
respectively, can be written as 

 
( )

0 0

0 0ˆ

A A

F F

i z i zi r

i z i zi r

e e

e e

ωµ Σ − ωµ Σ
⊥

ωµ Σ − ωµ Σ

∇ ⋅ = α +α

⋅ ∇× = β +β

E
z E

 (34) 

where the Alfvén conductance is 01/A AVΣ = µ  and the fast mode conductance is 

 
2

1A
F A

k Vi ⊥ Σ = − Σ − ω 
 (35) 

Note that the sign in equation (35) is chosen for a fast mode wave evanescent in the 
magnetosphere, Ak V⊥ > ω .  Furthermore, as noted in the previous section, we should include the 
wave transmitted into the ionosphere 

 ( ) ( )
[ ]

0

0

sinh
ˆ

sinh
atm atm

atm

i z d
i d

 ωµ Σ + ⋅ ∇× = γ
ωµ Σ

z E  (36) 

where we can write 

 
( )2 2

0 0

/
atm

c k ki⊥ ⊥
ω −

Σ = ≈
µ ω µ ω

 (37) 

where the last form holds in the typical limit, /k c⊥ ω .  Matching the boundary conditions 
across the ionospheric slab allows one to calculate the reflection matrix 

 
r i

AA FA
r i

AF FF

R R
R R

    α α
=    β β    

 (38) 

where we have 

 A P AF F P FA
AA FF

A P AF F P FA

R RΣ −Σ −Σ Σ −Σ −Σ= =
Σ +Σ +Σ Σ +Σ +Σ

 (39) 

In these expressions, the additional terms represent the mode coupling: 

 
2

coth
H

AF
P F atm k d⊥

ΣΣ =
Σ −Σ −Σ

 (40) 

 
2

coth H
FA atm

A P

k d⊥
ΣΣ = Σ −

Σ +Σ
 (41) 

The off-diagonal terms in this expression, representing the coupling of the fast and shear Alfvén 
branches, can then be written as 

 ( ) ( )1 1AF H
AF AA FA FF

H A P

R R R RΣ Σ= + = +
Σ Σ +Σ

 (42) 

 It should be noted that the additional terms associated with the mode coupling become 
more important for large scale (small k⊥) and high frequency perturbations.  This follows since 
both ΣF and Σatm are large for small k⊥/ω, and so the coupling terms represented by ΣAF and ΣFA 
become small in this limit.  The condition for the importance of the inductive coupling term can 
roughly be written as 0/ 1/ critk⊥ω µ Σ , where Σcrit is the smaller of ΣP and 2 /H pΣ Σ .  Note that 
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the right-hand side of this expression is 800 km/s for Σcrit = 1 mho.  These considerations suggest 
that the mode coupling is most efficient for Pc1 waves that have large perpendicular scales, 
which are the waves that can be seen on the ground.  This point was emphasized by Pokhotelov 
et al. (2000) who analyzed the ionospheric feedback instability with an inductive ionosphere.  
Since the feedback instability tends to produce small perpendicular scales, the mode coupling is 
a small effect on feedback models.  On the other hand, Yoshikawa et al. (1999) have shown that 
inductive effects also can modify the mode structure and damping of field-line resonances, even 
when they are not dominant.  In particular, these effects can resolve the singularity that occurs at 
the resonance. 
 At this point, it would be useful to examine the limitations of the height-integrated 
ionosphere assumption.  Treating the ionosphere as a thin slab requires that the electromagnetic 
fields can indeed penetrate through the entire ionospheric layer.  To assess this effect, note that in 
an isotropic conductor, basic electromagnetic theory (e.g., Jackson, 1999) shows that a wave will 
be evanescent with a scale length given by the collisional skin depth, 02 /P Pδ = ωµ σ .  At a 
frequency of ω/2π = 1 Hz and a conductivity of 10–4 mho/m, a typical value of the ionospheric 
Pedersen conductivity, this skin depth is 50 km, comparable to the Pedersen current-carrying 
region of the ionosphere.  Thus, while the thickness of the ionosphere is negligible for very low 
frequency waves such as field line resonances, this may not be applicable for waves in the Pc1 
range.   
 Another limiting effect comes as a result of the parallel conductivity of the ionosphere.  
While this conductivity is very large in the magnetosphere, it is reduced to values of the order of 
1 mho/m in the E-layer of the ionosphere (e.g., Kelley, 1989).  At this point there is a skin depth 
associated with this conductivity that can be written as (1/ ) / Pk⊥δ = σ σ .  For a perpendicular 
wavelength of 100 km, this scale length is quite large, ~ 1600 km.  However, for small 
perpendicular wavelengths ~ 1 km such as might be associated with auroral arcs, this effect can 
be significant.  However, for waves that will propagate in the ionospheric waveguide and be seen 
on the ground, this effect is not important.   
 Note that a complete theory of the thick ionosphere requires the consideration of both fast 
and Alfvén modes, which are coupled by the Hall conductivity.  By writing Faraday’s and 
Ampere’s Law with an assumed exp( )ik x i t⊥ − ω  dependence, we find 

 

0 02

0 02

02

y y
x x P x H y

x x
y z y z P y H x

z y z y z

E bii b E E E
z V z
E bii b ik E E ikb E E
z V z

ii b ik E E ikb E
c

⊥

⊥

∂ ∂ω− ω = − = − +µ σ −µ σ
∂ ∂
∂ ∂ω− ω = − + − = − +µ σ +µ σ
∂ ∂

ω− ω = − − = +µ σ

 (43) 

These equations illustrate that in the absence of Hall conductivity, bx, bz, and Ey give the fast 
mode and Ex, Ez, and by give the shear Alfvén mode.  If we assume that the conductivities and 
the wave velocity V (which is the Alfvén speed at higher altitudes but becomes the speed of light 
in the lower E-layer) are constant in a slab, we can rewrite these equations as  

 
2 22

2
0 02 2

0

x
P x H y

b kk i b i b
z V

⊥
⊥

  ∂ ω= − + ωµ σ −µ σ ω+    ∂ µ σ   
 (44) 

and 
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2 22

2
0 02 2 2

0

y P
P y H x

b kk i b i b
z V V

⊥
⊥

  ∂ σ ω= − + ω µ σ + + ωµ σ    ∂ σ µ σ  
 (45) 

Note that the classical skin depth formulas follow from neglecting the terms with V 2 in the 
denominator, which is justified when the velocity becomes c, but may not be when it is the 
Alfvén speed.  Setting the spatial derivative / z∂ ∂ → κ  and dropping the parallel conductivity 
terms, one can find the general expressions for the scale lengths  

 
2 2

2 4 2 2 2
0 02

1 4
2 2P H
k i k

V
⊥

⊥
ωκ = − + ωµ σ ± + ω µ σ  (46) 

where the top sign is the fast mode and the bottom is the Alfvén mode for zero Hall conductivity.  
Note that the effective skin depth in each case is given by the positive real part of κ. 
 The important point is that for high conductivity and high frequency, the finite skin depth 
will shield the magnetospheric and atmospheric fields from one another.  However, under less 
extreme conditions, the fields can penetrate and these fields are coupled.  Analysis of this 
coupled magnetosphere-ionosphere-atmosphere system will be discussed in the next sections. 
 

5.  Atmospheric Waveguide Modes 
 
 Electromagnetic waves can also propagate in an atmospheric waveguide bounded by the 
conducting ionosphere and the conducting ground.  As a first approximation, the atmosphere can 
be considered to be a perfect insulator compared with these conducting boundaries, and then 
Maxwell’s equations in a vacuum can be used.  In the same geometry as we discussed above 
with the x direction assumed to be the direction of horizontal variations, the wave equations 
break up into TE and TM modes, with the TE mode containing bx, bz, and Ey and the TM mode 
containing Ex, Ez, and by.  By comparison with the description above it is clear that the TE mode 
corresponds to the fast MHD mode and the TM mode to the shear Alfvén mode in the plasma. 
The basic wave equations then are the following: 

 

2

2

2

y y
x x

z y z y

x x
y z y z

E bii b E
z c z

ii b ik E E ik b
c

b Ei E ik b i b ik E
c z z

⊥ ⊥

⊥ ⊥

∂ ∂ω− ω = − = −
∂ ∂

ω− ω = − − =

∂ ∂ω− = − − ω = − +
∂ ∂

 (47) 

These are now arranged with the TE mode in the left column and the TM mode in the right 
column.  Reducing these to a single wave equation leads to similar equations for both modes: 

 
2 22 2

2 2
2 2 2 2

y y
y y

E b
k E k b

z c z c⊥ ⊥

∂ ∂   ω ω= − = −   ∂ ∂   
 (48) 

The solutions to these equations takes the form 
 1 2

A Aik z ik z
yE E e E e−= +  (49) 

and similarly for by, where 2 2 2/Ak c k⊥= ω − , which could of course be imaginary. 
The distinction between these two modes lies in the boundary conditions.  If the 

ionosphere and atmosphere are both assumed to be perfect conductors, then the horizontal 
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electric fields must vanish at these boundaries.  For the TE mode, this implies that Ey = 0 at those 
boundaries, but for the TM mode, requiring Ex = 0 implies that ∂by/∂z = 0.  Applying these 
boundary conditions to the TE mode gives the solution 0 siny AE E k z= , where /Ak n d= π , 
where d is the altitude of the ionosphere.  It can be clearly seen that the n = 0 solution gives a 
null result, so the lowest possible TE mode is given by n = 1, which implies the dispersion 
relation 2 2

,1 ( / )TE c k d⊥ω = + π , or a lower cutoff frequency of πc/d.  For a nominal ionospheric 
height of 100 km, this cutoff frequency is about 1.5 kHz, well above the ULF range.  Thus the 
ULF TE mode is always evanescent.  At ULF frequencies, this implies that the electromagnetic 
fields on the ground are smaller than those at the ionosphere by a factor of k de ⊥− ; thus, waves 
with perpendicular wavelengths much less than the ionospheric height are not seen on the 
ground. 

On the other hand, the TM mode would give the solution 0 cosy Ab b k z= , and in this case 
the n = 0 solution gives finite fields by and Ez, with a dispersion relation ,0TM k c⊥ω = , with a zero 
frequency cutoff and kA = 0, implying that these fields are constant in z.  Note that this mode 
might properly be called the transverse electromagnetic (TEM) mode since both the electric and 
magnetic fields are perpendicular to the propagation direction.  The zero frequency cutoff of this 
mode led Kikuchi and Araki (1979a,b) to assert that energy could be transmitted in this mode 
through the atmosphere, providing a means for the rapid communication of signals such as the 
preliminary reverse impulse (PRI) of a storm sudden commencement globally, although this idea 
remains controversial (e.g., Chi et al., 2001, 2002; Kikuchi and Araki, 2002). 

While the existence of this mode in a planar waveguide filled with a perfect insulator, 
there are a number of issues in applying this mode to the atmosphere.  First of all, the atmosphere 
is not planar, but rather a spherical shell.  This suggests that it acts more like a resonant cavity 
than a waveguide.  Indeed, it is well known (e.g., Galejs, 1972; Jackson, 1999) that this cavity 
supports the so-called Schumann resonances, with a fundamental frequency of about 8 Hz.  The 
resonant frequencies of these modes for perfectly conducting boundaries is given by  

 ( )1l
cl l
a

ω = +  (50) 

where a is the radial distance in the center of the cavity (essentially the radius of the Earth).  This 
expression gives a fundamental frequency (l = 1) of about 10 Hz; the reduction to the observed 8 
Hz value can be associated with the fact that the ionosphere and upper atmosphere are not perfect 
conductors (e.g., Galejs, 1972, Table 7.1).  Note that the fundamental mode roughly corresponds 
to a wave with a wavelength equal to the circumference of the Earth. 
 These considerations imply that waves in the ULF range (i.e., below the first Schumann 
resonance) will have wavelengths much larger than the circumference of the Earth.  Under these 
conditions, it is difficult to think of these waves as truly being normal modes of a waveguide.  
Nevertheless, signals generated in this mode can propagate without being attenuated even at low 
frequency.  For frequencies lower than the frequency of the fundamental Schumann resonance, 
the model of Kikuchi and Araki (1979a,b) can be used to determine the impulse response of the 
atmosphere.  They have considered the response of this waveguide to a step-function impulse in 
time, and noted that the Laplace transform of this impulse is then proportional to 1/s, where s is 
the Laplace transform parameter that can be thought of as the inverse time scale of the impulse.  
They found that while the TE mode is evanescent, the TM mode can propagate without very 
much attenuation even in the presence of ionospheric dissipation.  This conclusion essentially 
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follows since the damping due to the finite ionospheric conductivity goes to zero when s goes to 
zero (i.e., at zero frequency). 
 Recently, Chi et al. (2001) have questioned whether the transmission at the speed of light 
in this waveguide is in fact essential for the observed timing of the PRI.  Based on data from an 
array of ground magnetometers, they showed time differences of 10’s of seconds between high 
and low latitude stations.  They argues that such differences could be easily accounted for by 
wave propagation along the path proposed by Tamao (1964), in which a compressional wave 
propagates along the equator until it is mode converted to a shear Alfvén wave, which then 
propagates along the field line to the ionosphere.  This conclusion was challenged by Kikuchi 
and Araki (2002), who argued that Chi et al. (2001) considered the maximum amplitude of the 
signal rather than the first impulse observed.  Indeed, both mechanisms may thus be operating: 
the initial impulse may travel through the atmospheric waveguide, while most of the energy of 
the main signal propagates through the magnetosphere along the Tamao (1964) path. 
 

6.  Coupled Solutions for the wave modes 
 
 The finite conductivity of the ionosphere leads to a coupling between all of these wave 
modes.  The first step in a fully coupled solution is to consider the coupling between the shear 
Alfvén mode discussed in section 2 with the atmospheric solution discussed in the previous 
section.  If we place the ionospheric boundary at z = 0 and the ground at z = –d, the atmospheric 
solution for a perfectly conducting ground can be written as 

 ( ) ( )
22

cosh sinhy a
y a a x a a

b i cicb b z d E b z d
z

∂ − κ= κ + = − = κ +
ω ∂ ω

 (51) 

Note also that in the ionospheric Alfvén resonator, we found earlier (equation (7)) that for 
outgoing wave solutions we could write: 

 ( ) ( )
0 00 0

02
x x

x ix y ix
AI

E Ei x ixE E J x b i E J x
z h x V x− ε − ε

∂ ∂ω ′= = − ω = =
∂ ∂

 (52) 

Recall in this form that / 2
0

z hx x e−=  and 0 2 / AIx h V= ω .  We can couple these fields by means of 
the boundary conditions at the ionosphere (z = 0 or x = x0) as in equations (9) and (23), which in 
this case implies: 

 [ ] ( )
0

2

0 00 sinha
x ix a a

i cE E J x b d− ε
κ= ⇒ = − κ
ω

 (53) 

 ( ) ( )
0 0

2

0 0 0 0 0 0ˆ sinha
y P x ix a a P ix

AI

i cib E E J x b d E J x
V − ε − ε

κ′ × = µ Σ ⇒ + κ = µ Σ  ω
z  (54) 

Re-arranging these equations to eliminate the amplitudes gives the coupled solution 

 
( )
( )

0

0

0
2

0

cothix AI
P a

ix a

J x Vi d
J x c
− ε

− ε

 ′ ω− α = κ   κ 
 (55) 

where again we have used 0P P AIVα = µ Σ .  Note that neglecting the right-hand side of this 
expression returns us to the expression we found in section 2, equation (12), where we neglected 
the atmospheric fields.  Here we can see that this expression is justified, except near the point 
where κa → 0, which is the condition for the atmospheric waveguide modes, 2 2 2/ 0k c⊥ −ω = .  



 15

Figure 4 shows the dispersion relation for the waveguide modes coupled to the ionosphere and 
magnetosphere according to equation (55).  First of all, it can be seen that very long wavelengths 
are required for the wave modes to be in the ULF range.  Secondly, note that this mode appears 
to be rather strongly damped.  The wavy nature of the damping results from the coupling to the 
IAR; the resonant frequencies, which are at 0.19, 0.44, 0.69 and 0.54 Hz for this case, correspond 
to enhancements in the damping and a slight lowering of the ratio of atmospheric and 
ionospheric fields, as seen in the bottom figure.  Figure 5 shows the corresponding range for the 
IAR modes.  It can be seen that these modes are essentially at constant frequencies; however, the 
damping rate is reduced at the points where the IAR modes cross the atmospheric waveguide 
modes.  This can also be seen in the enhancements of the atmospheric fields in the bottom panel.  
It should be realized, however, that these effects are at very long wavelengths.  Waves with more 
typical wavelengths of a few thousand kilometers will not be affected by the presence of the 
atmospheric waveguide. 

For comparison, note the corresponding equation for the fast/TE mode as in equation (30), 
but with a correction for the finite conductivity of the ground (e.g., Surkov et al., 2005): 

 
( )
( )

0

0

cosh sinh
sinh cosh

g a a aa AI
P

g a a a

d dJ x Vi
J x d d
ν

ν

 ′ κ κ + κ κκ− α = −   ω κ κ + κ κ 
 (56) 

where now 2
0g gk i⊥κ = − ωµ σ  with Re κg > 0, where σg is the ground conductivity.  It can be 

seen here that equation (30) is restored for infinite ground conductivity.  For a typical ground 
conductivity of 10–3 mho/m (e.g., Roble and Tzur, 1986) and a frequency of 1 Hz, the magnitude 
of κg is about 0.1 km–1, much larger than κa for wavelengths the order of a thousand kilometer or 
more, so the analysis in section 3 is sufficient. 
 As we noted in section 4, the Hall conductivity of the ionosphere will couple these two 
modes.  Using the full ionospheric jump condition given by equation (31), we can write this as 
 [ ] 0 0 0 0x P y H x y P x H yb E E b E E = µ Σ +µ Σ = −µ Σ +µ Σ   (57) 
Note here that we have chosen signs so that the Hall conductance is positive in the northern 
hemisphere ( ˆ ˆ= −b z ).  Using equation (52) for the shear/TM mode fields and equations (22), 
(24), and (28) for the fast/TE mode fields, these two conditions become 

 ( ) ( ) ( )
00 0 0 0 0 0 0 0cosha

y ya a P y H x ix
AI

ii J x E E d E J x E J x
V ν ν − ε

κ′− − κ = µ Σ +µ Σ
ω

 (58) 

 ( ) ( ) ( )
0 00 0 0 0 0 0 0 0coshix x ya a P ix x H y

AI

i J x E b d J x E J x E
V − ε − ε ν′ − κ = −µ Σ +µ Σ  (59) 

Repeating the conditions for continuity of the electric field from equations (29) and (53) 

 ( ) ( )
0

2

0 0 0 0sinh sinha
ya a y x ix ya a

i cE d E J x E J x b dν − ε
κκ = = − κ
ω

 (60) 

we can write the full, coupled dispersion relation for these modes: 
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V VJ x i d J x J x i d J x
c

J x J x

ν ν − ε − ε
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   κ ω ′ ′− α + κ − α − κ    ω κ       
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 (61) 

Note that the hyperbolic cotangent factor in the first factor should be replaced by the right-hand 
side of equation (56) if the finite ground conductivity is included.  Clearly, in the absence of Hall 
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conductance ( 0 0H H AIVα = µ Σ → ), the two factors give the fast/TE mode and the shear/TM 
mode, respectively.  These modes are coupled by the Hall term in general.  However, note that in 
the high conductivity limit ( , 1P Hα α ), the dispersion relation simply becomes 

( ) ( ) ( )
0

2 2
0 0 0P H ixJ x J xν − εα + α = , and the modes decouple. 

 Figure 6 shows the effects of the coupling of these two modes.  It can be seen that there is 
a crossover between the dispersive fast/TE mode and the constant frequency shear/TM mode at a 
wavenumber near 10–3 km–1.  Thus the lowest frequency mode, for example, starts as the TE 
mode at long wavelength and crosses over to the IAR mode at smaller wavelength, with the 
opposite being true of the second lowest mode.  The lower panel of the figure shows the damping 
rates for the first two modes.  Note that the TE mode is somewhat lower in damping, and the 
damping increases as the lowest mode crosses over to the IAR mode.  This coupling between the 
modes gives rise to the excitation of the waveguide mode when the IAR mode is initially excited, 
as seen in the simulations of Lysak and Song (2001) and Lysak (2004). 
 It should be noted that the coupled dispersion relation, equation (61), although already 
rather complicated, is not complete.  One major approximation was the neglect of the finite 
conductivity in the atmosphere.  In this case, the scale length κa should be re-defined as 

2 2 2
0/a ak c i⊥κ = −ω + ωµ σ .  An approximate model for σa would be as an exponential with a 

value of about 10–14 mho/m just above the ground to about 10–6 mho/m at the base of the 
ionosphere, taken as 80 km (e.g., Roble and Tzur, 1986).  These values imply an exponential 
scale height of about 4.3 km in the atmosphere.  These values imply that the conductivity term in 
the expression is 8×10–14-8×10–6 km–2 for ω = 2π s–1, compared to 4×10–5 km–2 for a wavelength 
of 1000 km and 4×10–10 km–2 for the light-speed term.  Thus, the conductivity correction is not 
too important for wavelengths of 1000 km or less such as the IAR modes or Pc1 waveguide 
modes; however, for the purely propagating atmospheric waveguide modes for which ω ≈ k⊥c, 
this conductivity may be important.  Using the simple exponential profile described here, the 
conductivity term is greater than the light speed term above about 45 km.  As an example of this 
effect, Galejs (1972) has estimated the Q value of the first Schumann resonance to be in the 
range 3.8-6.5 using different models of this type. 
 The other major approximation made in this analysis is the assumption of a vertically 
incident magnetic field.  While this assumption is reasonable for high latitudes, it certainly fails 
for low latitudes, where the field lines enter the ionosphere obliquely.  For oblique dip angles, 
the degeneracy between the two perpendicular directions is broken, since waves with wave 
vectors in the latitudinal direction (in the plane of the dipole field) differ from those in the 
longitudinal direction.  Sciffer and Waters (2002) and Sciffer et al. (2004) have analyzed the 
reflection and mode conversion of Alfvén and fast mode waves in the presence of oblique 
magnetic fields.  They find a strong dependence on dip angle, especially for longitudinal 
propagation.  One aspect of this interaction is that, while for vertical fields the magnetic fields 
due to field-aligned and Pedersen currents cancel, this is no longer true for oblique fields.  This is 
due in part to the presence of horizontal field-aligned currents.  Thus, in the oblique case the 
ground magnetic field can be non-zero even in the absence of Hall currents, which is not true for 
vertical fields.  Numerical modeling (Lysak, 2004) in a dipole model with oblique fields has 
confirmed that the coupling between the shear Alfvén modes and fast modes is present in this 
case. 
 A final approximation is that of a planar atmosphere, neglecting the curvature of the 
Earth.  While this approximation is reasonable for waves with less than 1000 km perpendicular 
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wavelength, it must surely fail for the analysis of waves in the atmospheric waveguide at ULF 
frequencies since waves at frequencies less than the fundamental Schumann resonance (~ 8 Hz) 
have wavelengths greater than the circumference of the Earth.  This does not, however, preclude 
the presence of transient signal propagation at the speed of light in this waveguide at these 
frequencies; such waves will not, however, constitute a normal mode of this waveguide.  An 
analysis of these waves in a spherical geometry, which has not yet been published to the best of 
our knowledge, would shed more light on this subject.  It may be noted that Cummer (2000) and 
Soriano et al. (2005) have recently developed time-domain models in spherical geometry for 
atmospheric waves, although their results are restricted to the ELF and VLF frequency ranges.  
Nevertheless, this technique might be promising for ULF studies in the atmosphere. 
 It is interesting to note that in addition to being observed at auroral latitudes, signatures of 
the IAR have been found at low and mid-latitudes (Polyakov and Rapaport, 1981; Belyaev et al., 
1999; Bösinger et al., 2002, 2004; Yahnin et al., 2003).  At these lower latitudes, the excitation 
of the resonator from externally imposed field-aligned currents is not likely to be effective, so 
additional mechanisms should be considered.  The original observations of Polyakov and 
Rapaport (1981) suggested that thunderstorms could provide an excitation mechanism; this 
mechanism has been explored in much greater detail by Surkov et al. (2005).  It has also been 
suggested that neutral winds might play a role in this excitation (Surkov et al., 2004).  In the 
thunderstorm model, the lightning discharge radiates electric dipole radiation in the TM mode.  
While the rise of the discharge current takes place in microseconds, the so-called “continuing 
current” decreases exponentially with time scales the order of 0.1 s (e.g., Uman, 1987).  Such a 
quick rise, slow decay exponential has a spectrum that is nearly flat at frequencies below the 
inverse of the decay time, the order of 10 Hz in this case.  Analyzing the radiated wave in a 
manner similar to that in Section 6 (although they perform this calculation in cylindrical 
coordinates to analyze the fields of a source localized in horizontal position), Surkov et al. (2005) 
show that the IAR can be excited due to thunderstorms, although the field due to a stochastic 
distribution of discharges is found to be an order of magnitude below observations; however, 
nearby thunderstorms can excite stronger fields locally. 

7.  Conclusions 
 
 Understanding the propagation of waves in the strongly inhomogeneous Earth-
atmosphere-ionosphere-magnetosphere system is important for the analysis of ULF wave signals 
observed on the ground as well as with ionospheric radars, particularly at Pc1/Pi1 frequencies the 
order of 1 Hz.  This paper has reviewed the theory of the various waveguides and resonant 
cavities that can be formed in this system, and showed how they are coupled together.  Although, 
for simplicity, we have restricted the detailed analysis to a slab geometry with vertical magnetic 
fields, the basic physics of these interactions will persist in the more realistic geometry of the 
atmosphere.   
 Although this review has focused on the theoretical aspects of these waveguides and 
cavities, there are many potential applications of these structures.  In the auroral zone, the 
excitation of waves in the ionospheric Alfvén resonator can lead to the acceleration of auroral 
electrons (e.g., Chaston et al., 2002a).  These waves can also play a role in conductivity 
variations in the auroral zone leading to a feedback instability (e.g., Lysak, 1991; Lysak and Song, 
2002; Pokhotelov et al., 2002a), which may be a critical ingredient in the formation of narrow 
auroral arcs (e.g., Newell et al., 1996).   
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 The coupling of magnetospheric ULF waves through the ionosphere to the atmosphere 
and the ground allows for the observation of these waves by ground magnetometers, even at 
lower frequencies where the atmospheric modes may be evanescent.  At Pc1 frequencies, the fast 
mode signal can propagate in the ionospheric waveguide and be seen over 1000 km from their 
source (e.g., Fraser, 1975; Neudegg et al., 1995).  These waves can be excited by 
magnetospherically-imposed field-aligned currents carried by the shear Alfvén wave, followed 
by mode conversion due to the Hall conductivity of the ionosphere (Yoshikawa and Itonaga, 
1996, 2000; Lysak and Song, 2001; Lysak, 2004).  Simultaneous observations of Pc1 and Pi1 
signals both in space and on the ground (Arnoldy et al., 1996, 1998) confirm this link between 
magnetospheric and atmospheric fields.  Thus, the existence of these waveguide modes, in 
addition to the coupling caused by the anisotropic conductivity in the ionosphere, is essential for 
the understanding of ground magnetometer data and its use to understand the field-aligned 
currents entering the ionosphere. 
 Consideration of the propagation of waves through the atmospheric waveguide confirms 
that the TM mode propagates and is not evanescent even at ULF frequencies.  However, the 
large perpendicular wavelength that is required for this mode indicates that a true global 
waveguide mode cannot be set up at ULF frequencies, where the wavelength would be much 
larger than the circumference of the Earth.  Impulsive events, either externally generated such as 
the onset of a magnetic storm or internal events such as lightning discharges could excite signals 
that would propagate at the speed of light and could couple to the ionosphere and magnetosphere.   
 These considerations suggest that an understanding of the different waveguides and 
resonant cavities formed by the strong inhomogeneities in the Earth-atmosphere-ionosphere-
magnetosphere system is essential both for interpreting the signals observed both on the ground 
and in space, as well as for propagating information rapidly throughout the system.  Further work 
is clearly needed to describe this signal propagation and the full coupling of this system.  Such 
work would lead to a much better understanding of how the magnetosphere and ionosphere make 
their presence felt to observers on the ground. 
 
 

Appendix:  Stepwise constant Alfvén speed profile 
 
 A number of authors (e.g., Trakhtengertz and Feldstein, 1984; Fedorov et al., 2001; 
Pilipenko et al., 2002; Surkov et al., 2005) have used a stepwise constant profile of the Alfvén 
speed, where VA = VAI for 0 ≤ z ≤ L and VA = VAM for z > L.  In this case, the solution consists of 
upgoing and downgoing waves in the lower region and upgoing waves in the upper region.  
Matching boundary conditions at z = L, the solutions can be written as 
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where again we have ε = VAI / VAM.   
 The relationship between this model and the model presented in section 2 can be seen 
when we invoke the ionospheric boundary condition given by equations (9) and (10).  Inserting 
the first expression in equation (A1) into this boundary condition, we can write the dispersion 
relation as (see, e.g., Surkov et al., 2004) 



 19

 ( )
( )

2 /

2 /

1 1
0

1 1

AI

AI

i L V

Pi L V

e
e

ω

ω

+ ε − − ε
+α =

+ ε + − ε
 (A2) 

where 0P P AIVα = µ Σ .  Solving for the phase factor, we find 
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Note here that while 1ε , αP can take on any positive value.  So for αP < 1, the right-hand side 
is positive and we can take the log of both sides, recognizing that the logarithm is multiply-
valued, to find 
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where n is an integer.  Rewriting this expression by breaking the ε and αP parts of the logarithm 
and expanding for small ε, 
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On the other hand, for the good conductor case, αP > 1, the argument of the logarithm is negative 
and so a factor of ln(–1) = iπ must be factored out.  In this case, the frequencies are given by 

 11 1 ln
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 (A6) 

These expressions show that the lowest eigenmode with non-zero frequency is given by /AIV Lπ  
for a poor conductor and / 2AIV Lπ  for a good conductor.  In both cases, energy is lost due to 
leakage out of the top of the resonator (the ε term) as well as dissipation in the ionosphere. 

This model is consistent with the exponential model discussed in Section 2 in that the 
first eigenfrequency decreases from the poor conductivity to the good conductivity case.  
However, to make the frequencies match, one must take L = 1.64h for low conductivity and L = 
1.31h in the high conductivity case.  In addition, the eigenfrequencies make a discrete jump at αP 
= 1 in the step function profile, while the transition is smooth in the exponential case, as can be 
seen in Figures 3 and 4 of Lysak (1991).   
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Figure 1.  Profile of the Alfvén speed for parameters based on the MSIS and IRI 
models.  Top panel shows up to 10,000 km altitude; bottom panel up to 1000 km. 
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Figure 2.  Dispersion relation for the first four fast/TE coupled modes for ΣP = 10 
mho.  Top panel: Real frequency.  Middle panel: Ratio of maximum atmospheric to 
ionospheric electric field.  Bottom panel: Group velocity.  Other parameters 
assumed are 1000 km/s for the ionospheric Alfvén speed, 100,000 km/s for the 
magnetospheric Alfvén speed, and 1000 km for the topside ionosphere scale 
height.  
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Figure 3.  Same as Figure 2 for an ionospheric Pedersen conductance of 0.1 mho. 
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Figure 4.  Dispersion characteristics of the atmospheric waveguide mode for ΣP = 
10 mho..  Top panel: real frequency.  Middle panel: growth rate.  Bottom panel: 
Ratio of the atmospheric magnetic field times the ionospheric Alfvén speed to the 
ionospheric electric field.  Other parameters are as in Figure 2. 
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Figure 5.  Dispersion characteristics of the ionospheric Alfvén resonator coupled to 
the atmospheric waveguide.  Format and assumed parameters are as in Figure 4. 
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Figure 6.  Dispersion characteristics of the fast and shear Alfvén modes coupled by 
the Hall conductance for ΣP = 0.1 mho and ΣH = 0.2 mho.  Other parameters are the 
same as in the other figures.  Top panel:  Real frequency.  Bottom panel: Growth 
(damping) rate for the lowest two modes. 
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