
Let’s start with linear algebra.


.37 .28 .23 .26 .36
.87 .76 .11 .37 .86
.52 .82 .76 .26 .12
.91 .91 .79 .82 .48
.44 .13 .28 .37 .84

 =


–.25 .03 + .05 i .03 – .05 i .76 –.04
–.46 .3 – .48 i .3 + .48 i –.48 –.03
–.41 –.57 –.57 .15 .44
–.67 –.35 + .3 i –.35 – .3 i –.33 –.83
–.32 .33 + .19 i .33 – .19 i –.23 .35

 ·


2.5 0 0 0 0
0 .39 + .47 i 0 0 0
0 0 .39 – .47 i 0 0
0 0 0 .02 0
0 0 0 0 .27

 · P–1

We know conditions for diagonalization of linear transformations.



What if we worked over a polynomial ring?

A =



0 0 0 0 0 x1y0y1 0 0 x1y0y2 0 0 0 x0y1y2 0 0
–x0y1 + x1y1 – x1y2 –x0y2 0 0 0 x1y2 x1y2 x1y2 –x1y2 –x0y1 + x1y1 – x1y2 –x1y2 0 x1y2 x1y2 x1y2

0 0 0 x1y1 0 0 0 0 –x1y2 0 –x1y2 0 –x0y1 – x1y2 –x0y1 –x1y2
0 0 –x1y2 0 x0y0 – x1y0 – x0y2 x1y2 x1y2 –x1y2 –x1y2 0 x0y2 – x1y2 x0y2 –x0y2 + x1y2 x0y2 + x1y2 0
0 0 0 0 0 –x1y2 –x1y2 x1y2 x1y2 x0y1 – x1y1 + x1y2 x1y2 0 –x1y2 –x1y2 –x1y2
0 0 x1y1 0 x1y0 0 0 0 0 0 0 0 0 x0y1 x1y2
0 0 0 0 0 –x1y0 0 –x1y0 –x1y0 0 x0y2 x0y0 0 0 0

x0y1 x0y0 0 0 0 0 0 x1y0 0 0 0 0 0 0 0
0 0 0 –x1 0 –x1 –x1 –x1 –x1 0 x0 – x1 x0 x0 –x0 – x1 0

y1y2 y0y2 0 0 0 –y0y1 + y1y2 –y0y1 + y1y2 0 0 –y1y2 0 0 –y1y2 y1y2 0
0 0 y1y2 0 y0y2 0 y0y1 0 y0y2 –y1y2 y0y2 –y0y2 –y0y2 –y0y2 –y0y2
–y1 –y0 0 0 0 0 0 0 y0 – y2 y1 y0 – y2 0 –y0 – y2 –y0 –y0 + y2
0 0 0 –y1 0 –y1 y1 0 y2 0 0 0 y1 + y2 y1 –y2
0 0 –y1 y1 –y0 y1 y1 0 y2 0 y2 0 –y1 + y2 y1 –y2
0 0 0 0 0 –y0 + y2 –y0 + y2 y0 – y2 y0 – y2 –y2 –y2 –y0 y2 y2 0
0 0 0 0 0 0 0 0 0 –y1 –y0 –y0 y0 y0 y0 – y2



B =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1y2 x0y1 – x1y1 0 0 0 0 0 0 0 0 0 0 0 0 0

–y0 + y2 y0 – y1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 x0y1 x1y1 – x1y2 0 0 0 0 0 0 0 0 0 0 0
0 0 y0 y0 – y2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 –x0 + x1 x1 0 0 0 0 0 0 0 0 0
0 0 0 0 y0y2 – y1y2 y0y1 – y1y2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x1y0 x0y0 – x0y2 0 0 0 0 0 0 0
0 0 0 0 0 0 –y1 –y1 + y2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 x0y1 – x1y1 + x1y2 x0y2 0 0 0 0 0
0 0 0 0 0 0 0 0 –y1 –y0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x1y2 0 x0y2 0 x0y0 – x1y0 – x0y2
0 0 0 0 0 0 0 0 0 0 x1y1 0 x0y1 0 –x1y0
0 0 0 0 0 0 0 0 0 0 0 x1y0 –x0y2 x0y0 – x0y2 0
0 0 0 0 0 0 0 0 0 0 y1y2 y0y1 0 y0y1 – y0y2 –y0y2
0 0 0 0 0 0 0 0 0 0 y1 y1 y1 – y2 y1 – y2 –y0



This means cokerA ∼= cokerB splits as a direct sum of 7 modules.

A is diagonalizable ⇐⇒ cokerA splits as a sum of twists.
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Warm-up: splitting of vector bundles on Pn

Let S = k[x0, . . . , xn] be a polynomial ring with deg xi = 1.
Let E be a vector bundle of rank r on Pn = ProjS .

Fact: vector bundles on Pn ⇐⇒ projective modules over S .

Classical question

When does E split as a direct sum of line bundles?

- Grothendieck: any vector bundle on P1 splits as E =
⊕
OP1(di ).

- There are indecomposable bundles of rank n – 1 on Pn, n≥3.
- Horrocks–Mumford: an indecomposable rank 2 bundle on P4 from

O5
P4← Ω

2
P4(2)⊕Ω

2
P4(2)← OP4(–1)5.

- Hartshorne’s conjecture: there are no rank 2 bundles on Pn, n ≥ 7.



Warm-up: a splitting criterion for vector bundles on Pn

Theorem (Horrocks ’64)

If for all twists d ∈ Z and i ≥ 0, H i (Pn,E ⊗OPn(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

“If it walks like a duck and quacks like a duck, then it’s a duck.”

- Dolgachev ’82: Weighted projective spaces
- Ottaviani ’89: Gr(k, n) and quadric hypersurfaces in Pn, n ≥ 4
- Fulger–Marchitan ’11: rank 2 bundles on Hirzebruch surfaces

Goal

Prove a similar splitting criterion over toric varieties.



What makes a splitting criterion strong?

When X = Pn1× Pn2× · · · × Pnt:

Theorem (Eisenbud–Erman–Schreyer ’15)

Let E be a vector bundle on X whose sheaf cohomology matches
that of

∑r
i=1O(d i )ei , for d i ∈ Zr . If d r ≤ · · · ≤ d1, then E splits.

- Holds in arbitrary dimension and Picard rank.
- But only when Nef X = Eff(X ) = the positive quadrant.

When X = P(O ⊕O(a1)⊕ · · · ⊕ O(as))→ Pt:

Theorem (Brown–S. ’22)

Let E be a vector bundle on X whose sheaf cohomology matches
that of

∑r
i=1O(bi , ci )ei . If (br , cr ) ≤ · · · ≤ (b1, c1), then E splits.

- Holds in arbitrary dimension, but always Picard rank = 2.
- Now Nef X = the positive quadrant, but Eff(X ) is larger.



Example: the Hirzebruch surface

Let Ht = P
(
OP1⊕OP1(2)

)
be a smooth projective toric variety.

Let S = k[x0, x1, x2, x3] with B = ⟨x0, x2⟩ ∩ ⟨x1, x3⟩ and
degrees: 1 – 2 1 0

0 1 0 1

ρ0
ρ3

ρ2
ρ1

x0, x2

x1 x3

Figure: Left: fan of H2. Right: the cones NefH2 (dark blue) and Eff(H)2.

Cox: every coherent sheaf on Ht corresponds to a
B-saturated finitely generated Z2-graded S-module.



Interlude: Fourier–Mukai Transforms

Consider the diagram:
X × X

X X

π1 π2

Let K be a resolution of the diagonal ∆ = im(X → X × X )

K : 0← O∆ ← K1 ← K2 ← · · · ← Kn ← 0

Definition

The Fourier–Mukai transform with kernel K is the functor

ΦK : Db(X ) −−−−−→ Db(X ),

given by E 7−−−→ Rπ2∗(π
∗
1E ⊗K).

- identity functor on Db(X ) produces quasi-isomorphisms.
- only finitely many line bundles may appear in this complex.



Toy Example: X = P2

Compare Beilinson’s resolution (’78):

O ← O(–1)⊠ Ω(1)← O(–2)⊠ Ω
2(2)

With resolutions by King (’97) and Canonaco–Karp (’07):

O(–2, 2)⊕O(–1, 1)⊕O ← O(–2, 1)3 ⊕O(–1, 0)3 ← O(–2, 0)3

And by Hicks–Hanlon–Lazarev, Favero–Huang, Brown–Erman (’23):

O ← O(–1, –1)3 ← O(–2, –1)⊕O(–1, –2)



“Reimagined” proof of Horrocks’ criterion on P2

The Beilinson spectral sequence has E1 page:

R2π2∗(π
∗
1E ⊗K0) R2π2∗(π

∗
1E ⊗K1) R2π2∗(π

∗
1E ⊗K2)

R1π2∗(π
∗
1E ⊗K0) R1π2∗(π

∗
1E ⊗K1) R1π2∗(π

∗
1E ⊗K2)

π2∗(π
∗
1E ⊗K0) π2∗(π

∗
1E ⊗K1) π2∗(π

∗
1E ⊗K2)

k=2k=1k=0

But this is all we need:

E–0,2
1 E–1,2

1 E–2,2
1

E–0,1
1 E–1,1

1 E–2,1
1

E–0,0
1 E–1,0

1 E–2,0
1

k=
2

k=
1

k=
0

- There is a complex with terms Tot(E1) quasi-isomorphic to E .

- The terms are bundles E–i ,j
1
∼= H j (Pn,E (–i))⊗Ωi (i).

- Twist E until the generators have degrees 0 and above.
- For all d ≤ 0, if E = OPn(d) this page is “upper triangular”.

Red terms (along k = 1) vanish =⇒ E splits.



“Reimagined” proof of Grothendieck’s theorem or P1

The Beilinson spectral sequence on P1 has E1 page:

E0,1
1 E–1,1

1

E0,0
1 E–1,0

1

=⇒
E0,1
1 ← E–1,–1

1
⊕

E0,0
1 ← E–1,0

1

Claim: we can always twist the vector bundle E until:

▶ E0,0
1 = H0(P1,E )⊗O ≠ 0

▶ E–1,0
1 = H0(P1,E (–1))⊗Ω(1) = 0

Then E0,0
1 is a summand of E .



Translating the proof for Picard rank 2

Theorem (Brown–S. ’22)

Let E be a vector bundle on X whose sheaf cohomology matches
that of

∑r
i=1O(bi , ci )ei . If (br , cr ) ≤ · · · ≤ (b1, c1), then E splits.

We again have a Beilinson-”type” spectral sequence with first page:

E–0,2
1 E–1,2

1 E–2,2
1

E–0,1
1 E–1,1

1 E–2,1
1

E–0,0
1 E–1,0

1 E–2,0
1

k=
2

k=
1

k=
0

- There is a complex with terms Tot(E1) quasi-isomorphic to E .
- The terms are direct sums of line bundles.
- Twist E until the generators have degrees 0 and “above”.
- For all a, b ≤ 0, if E = OX (a, b) this page is “upper triangular”.



Ingredient list for other toric varieties

When X is an arbitrary smooth projective toric variety:

Theorem (S. ’24)

Let E be a vector bundle on X whose sheaf cohomology matches
that of

∑r
1O(Di )

ei, Di ∈ PicX. If Di+1–Di is ample, then E splits.

- Holds in arbitrary dimension and Picard rank.
- Holds for arbitrary Nef X and Eff(X ).
- But: the additional hypothesis on E is stronger ... probably!

Key step:
a resolution of the diagonal for X , such that we can prove

for all D ample, if E = O(–D) the “page” is “upper triangular”.

Candidate: Hanlon–Hicks–Lazarev’s resolution of the diagonal.
New tool: vanishing theorems on line bundles and Q-divisors.



What if E doesn’t totally split?

Questions:
- can we explicitly deduce (or compute) summands of E?

- can we “block diagonalize” the presentation E ← F
f←− G? Yes!

[Mallory–S. ’24]

Input: finitely generated graded module M over an algebra.

1. Compute Hom(M,M);
Note: the degree zero part only, so multigrading helps!

2. Find element h corresponding to an idempotent;
▶ Hope that generators of Hom are idempotents;
▶ In finite characteristic, use a general endomorphism.

3. Split M = im h ⊕ coker h;

And repeat!
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