Let's start with linear algebra.

37 28 23 26 .36 -.25 .03+ .05i .03-.05i .76 -.04 25 0 0 0 0
87 .76 .11 .37 .86 -46 3-.48i 3+ .48i -.48 -03 0 .39+ 47i 0 0 0
52 82 76 26 .12 | =| -4l -.57 -.57 .15 44 0 0 39-47i 0 O
91 91 .79 .82 .48 -.67 -35+.3i -35-.3i -33 -83 0 0 0 02 0
44 13 28 37 .84 -32 33+.19i .33-.19i -23 .35 0 0 0 0 .27

We know conditions for diagonalization of linear transformations.



What if we worked over a polynomial ring?
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coker B splits as a direct sum
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7 modaules.

A is diagonalizable <= coker A splits as a sum of twists.
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Warm-up: splitting of vector bundles on IP"

Let S = Kk[xp, ..., xn] be a polynomial ring with deg x; = 1.
Let E be a vector bundle of rank r on P = Proj S.

Fact: vector bundles on P" <= projective modules over S.

Classical question

When does E split as a direct sum of line bundles?

- Grothendieck: any vector bundle on P1splits as E = @ Op1(d;).
- There are indecomposable bundles of rank n—1 on P", n>3.
- Horrocks—Mumford: an indecomposable rank 2 bundle on P* from

O ¢ Q2,4(2) & Q24(2) + Opa(-1)°.

- Hartshorne's conjecture: there are no rank 2 bundles on P", n > 7.



Warm-up: a splitting criterion for vector bundles on P”

Theorem (Horrocks '64)

If for all twists d € Z and i >0, H'(P", E ® Opn(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

“If it walks like a duck and quacks like a duck, then it's a duck.”

- Dolgachev '82: Weighted projective spaces
- Ottaviani '89: Gr(k, n) and quadric hypersurfaces in P, n > 4
- Fulger—-Marchitan '11: rank 2 bundles on Hirzebruch surfaces

Prove a similar splitting criterion over toric varieties.




What makes a splitting criterion strong?

When X = PM x P™x ... x P™
Theorem (Eisenbud-Erman—Schreyer '15)

Let E be a vector bundle on X whose sheaf cohomology matches
that of Y.i_1 O(d;)¢, ford; € Z". Ifd, < --- < dy, then E splits.

- Holds in arbitrary dimension and Picard rank.
- But only when Nef X = Eff(X) = the positive quadrant.

When X = P(O & O(a1) @ --- & O(as)) — Pt
Theorem (Brown-S. '22)

Let E be a vector bundle on X whose sheaf cohomology matches
that of > 71 O(b;, ¢;). If (br, cr) < --- < (b1, c1), then E splits.

- Holds in arbitrary dimension, but always Picard rank = 2.
- Now Nef X = the positive quadrant, but Eff(X) is larger.



Example: the Hirzebruch surface

Let H¢ = P(Op1® Op1(2)) be a smooth projective toric variety.
Let S = k[xp, x1, X2, x3] with B = (xg, x2) N (x1, x3) and
degrees: 1-21 0

0101

Figure: Left: fan of H5. Right: the cones Nef H, (dark blue) and Eff(#)».

Cox: every coherent sheaf on H¢ corresponds to a
B-saturated finitely generated Z2-graded S-module.



Interlude: Fourier—Mukai Transforms

Consider the diagram: Xm/X % X\

Let K be a resolution of the diagonal A = im(X — X x X)

K0 OpA— K1y Kp+0

Definition
The Fourier—Mukai transform with kernel IC is the functor
@) : DP(X) —— D°(X),
given by E —— R (7]E ® K).

- identity functor on Db(X) produces quasi-isomorphisms.
- only finitely many line bundles may appear in this complex.



Toy Example: X = P2

Compare Beilinson's resolution ('78):
O+ O(-1)RQ(1) + O(-2) K Q?(2)

With resolutions by King ('97) and Canonaco—Karp ('07):
0(=2,2)®0(-1,1)® O + 0(=2,1)3 ® 0(-1,0)3 «+ 0(-2,0)3

And by Hicks—Hanlon—Lazarev, Favero-Huang, Brown—Erman ('23):
O+ 0(-1,-1)3 « 0(=2,-1) ® O(-1,-2)



“Reimagined” proof of Horrocks’ criterion on P2

The Beilinson spectral sequence has E; page:

Rznz*(nlE & ICo) — ]R2n2*(7t1E ® IC1) — ]R27t2*(n1E ® IC2)
]Rlng*(nlE®lCo) — ]R ng*(nlE@)lCl) — 1R17t2 (mIE® Kg)

ng*(n1E®I€o) — nh(nlE ® /Cl) — ng*(nlE@Jng) “
k=0 - K=t -mmm oot k=2~ =

But this is all we need:

- There is a complex with terms Tot(E;) quasi-isomorphic to E.
- The terms are bundles E-' =~ HIi(PP" E(={)) @ O/ ().



“Reimagined” proof of Grothendieck’s theorem or P!

The Beilinson spectral sequence on P! has page:

i E?’l « El—l,l E{),l — Elfl,fl

i 0,0 1,0 %90 1,0
| - -
B EX0

!

Claim: we can always twist the vector bundle E until:
> £ = HOPLE)® O #0
» £10= HO(PL E(-1)) @ Q(1) =0

Then Ef is a summand of E.



Translating the proof for Picard rank 2

Theorem (Brown-S. '22)

Let E be a vector bundle on X whose sheaf cohomology matches
that of .71 O(b;, ¢;). If (br, cr) < --- < (b1, c1), then E splits.

We again have a Beilinson-"type" spectral sequence with first page:

Y B e gt
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- There is a complex with terms Tot(E7) quasi-isomorphic to E.

- The terms are direct sums of line bundles.

- Twist E until the generators have degrees 0 and “above”.

- For all a,b <0, if E = Ox(a, b) this page is “upper triangular”.



Ingredient list for other toric varieties

When X is an arbitrary smooth projective toric variety:

Theorem (S. '24)

Let E be a vector bundle on X whose sheaf cohomology matches
that of .1 O(D;)¢, D; € Pic X. If D;1—D; is ample, then E splits.

- Holds in arbitrary dimension and Picard rank.
- Holds for arbitrary Nef X and Eff(X).
- But: the additional hypothesis on E is stronger ... probably!

Key step:
a resolution of the diagonal for X, such that we can prove
for all D ample, if E = O(-D) the “page” is “upper triangular”.
Candidate: Hanlon—Hicks—Lazarev's resolution of the diagonal.
New tool: vanishing theorems on line bundles and Q-divisors.



What if E doesn't totally split?
Questions:
- can we explicitly deduce (or compute) summands of E?

“ H H 1" . f
- can we “block diagonalize” the presentation E < F <— G? Yes!

[Mallory=S. '24]

Input: finitely generated graded module M over an algebra.

1. Compute Hom(M, M);
Note: the degree zero part only, so multigrading helps!

2. Find element h corresponding to an idempotent;

> Hope that generators of Hom are idempotents;
» In finite characteristic, use a general endomorphism.

3. Split M = im h & coker h;
And repeat!
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