
Diagonalization, Direct Summands,
and Resolutions of the Diagonal

A dissertation

submitted to the faculty of the graduate school

of the University of Minnesota

by

Mahrud Sayrafi

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

advised by

Christine Berkesch

May, 2024



© Mahrud Sayrafi 2024

All rights reserved.



Acknowledgements

I owe a debt of gratitude to more mentors, colleagues, and friends than this space affords.

Foremost, I am indebted to my advisor, Christine Berkesch, for her encouragement, mentorship,

and teaching me to follow my own path while pointing me in the right direction whenever I was lost.

My trajectory would not have been the same without insights from David Eisenbud, who grounded

my research and opened new doors. I have also benefited immensely from conversations with

Mike Stillman, Greg Smith, Daniel Erman, Sri Iyengar, Mark Walker, Matthew Ballard, and my

defense committee members David Favero, Gennady Lyubeznik, Peter Webb, and Anna Weigandt.

Every sentence in this thesis echos contribution from my collaborators. I am thankful to

Ayah Almousa, Michael Brown, Juliette Bruce, Mike Loper, Devlin Mallory, Dylan Peifer, and above

all Lauren Cranton Heller for finding the bug in my code that started it all.

Mathematics is meaningless without community, and my colleagues provided me with the best I

could have wished for. Maya, John, Greg, Sasha, Courtney, Alicia, Ben, Ola, Justin, Ritvik, I have

learned so much from you. McCleary, Sasha, Eduardo, thanks for being my SCAM co-conspirators,

and Caitlyn, Connor, Ayah, Mike, Tim, thank you for being my partners in NSF-sponsored crime.

I am grateful to the math department staff and custodians, whom I have always relied on, and to

numerous colleagues along the way for making the Directed Reading Program possible.

My friends in Minnesota were my ultimate source of warmth while away from family in California.

I will miss the omnipresent group of Carleton alumni who made me feel at home in my early years

and members of the Jade Club who kept my spirits high in my later years.

Throughout graduate school I was supported by the NSF (DMS-1502209, DMS-1745638, DMS-

2001101), the Doctoral Dissertation Fellowship, and many semesters of teaching, while living and

working in places which stand on Miní Sóta Makhóčhe, the homelands of the Dakhóta Oyáte.

The doing of mathematics is not separate from this.

i



Abstract

This thesis concerns the interplay of algebraic geometry and multigraded commutative algebra,

particularly in the setting of toric geometry. Recent years have seen a flourishing of new conjectures

and techniques relating algebraic invariants like multigraded syzygies and the geometry of toric

varieties, with new ideas originating from homological mirror symmetry to applied algebraic geometry.

An active program in commutative algebra seeks to construct virtual resolutions of ideals and

module over multigraded polynomial rings known as Cox rings in order to study algebraic geometry

over toric varieties. We solve several problems in different aspects of this program:

• Chapter 3: Uniqueness of virtual resolutions on products of projective spaces;

• Chapter 4: Existence of short virtual resolutions and Orlov’s conjecture in Picard rank 2;

• Chapter 5: Horrocks’ splitting criterion for vector bundles on smooth projective toric varieties;

• Chapter 6: Castelnuovo–Mumford regularity and truncations of multigraded modules;

• Chapter 7: Bounds on Castelnuovo–Mumford regularity of modules and powers of ideals;

• Chapter 8: Computing direct summand decompositions of multigraded modules and sheaves.

Background for the key concepts used in carrying out the goals above is given in Chapter 2.
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Introduction for the casual reader

A defining step in understanding any complex structure, whether in mathematics or in nature,

is to identify the simplest components which do not split any further. Discovering the primary colors,

musical notes, or the elementary particles are all different expressions of this same instinct.

Then comes our imagination of possible compositions, and the question becomes: are there any

rules governing how these simple components can be meaningfully assembled?

Consider the following mathematical theorem: given a spherical object with hair growing from

every point on its surface, it is impossible to comb the hair flat without at least one spot left uncombed.

For instance, if strands of hair on a globe represent the direction of wind on Earth at any given location,

then the theorem guarantees that at any given time there is at least one spot somewhere on Earth

where the air is still. Crucially, if the surface of Earth was instead the shape of a doughnut, then

it would be possible for rotating air flow to cover the entire surface. The wind direction here is

a basic example of a line bundle on a surface—also known as a vector field in calculus courses.

Line bundles are simple structures assembled into higher-dimensional structures called vector bundles.

This example demonstrates how to learn homological information (e.g. the number of holes) about

the underlying geometric object (in this case the surface of a planet) through studying the rules

governing which vector bundles may be assembled on it.

Figure 1: Unlike our planet, cyclones on a toroidal Earth may not have an eye of the storm.
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In this thesis, the underlying geometric objects are sets of solutions to systems of polynomial

equations which we call varieties. For example, the variety defined by the solutions of the equation

x2 + y2 + z2 = 1 is a sphere with radius one. A toric variety is a special type of variety which enjoys

a kind of symmetry frequently found in applications within mathematics and across the sciences.

An early source of this understanding dates back to Renaissance artists and architects who used

perspective in their paintings and sketches, essentially discovering the projective plane, denoted P2.

From an algebraic perspective, vector bundles are also described by systems of polynomial functions.

In case of P2, these functions are homogeneous polynomials in 3 variables with a standard grading.

For instance, if x, y, and z have degree 1 then the functions yz − x2 and x2y + xyz + yz2 are

homogeneous because all added terms have the same total degree.

For more general toric varieties, the variables in the polynomials may be multigraded : for a toric

variety known as the Hirzebruch surface of type 1, we have degree(x) = degree(y) = (1, 0) while

degree(z) = (0, 1) and degree(w) = (−1, 1), so that the polynomial x2w + yz will be homogeneous

of degree (1, 1). This introduces a wide range of new possibilities for geometric structures.

The results in this thesis are aimed at extending the classical, standard graded theory over Pn to

the multigraded world of toric varieties by finding the rules for building vector bundles on them.

Are there criteria for checking whether a vector bundle on a toric variety can be split as a direct sum

of line bundles? See Chapters 4 and 5. Can a computer find the components, or direct summands,

of the vector bundle? See Chapter 8. Most importantly, am I able to explain an explicit application

of my thesis to a non-expert?

Consider a second mathematical theorem from linear algebra: an n× n matrix A is diagonalizable

(i.e. can be written as A = PDP−1 with D a diagonal matrix) if and only if it has n linearly

independent eigenvectors. For example, the following is a diagonalization of a 5× 5 matrix:


2 −3 3 −3 3

−3 8 −3 10 0

7 3 2 −1 −3

1 −3 3 −2 3

13 −5 5 −13 −2


=



−3 −3 −3 0 0

4 + 2i 4− 2i 3 −1 1

3 3 3 1 1

−3 −3 −3 1 0

−2− i −2 + i 1 −1 0


·



2 + 3i 0 0 0 0

0 2− 3i 0 0 0

0 0 −2 0 0

0 0 0 1 0

0 0 0 0 5


· P−1

Finding diagonalizations of numerical matrices has applications in almost any field where matrices

are used, particularly physics and computer science.
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What if we instead considered matrices of homogeneous polynomials? Such matrices represent sys-

tems of polynomial functions. The following matrix, for example, represents the system of polynomial

functions that describes a particular vector bundle on a surface1. What does it mean to diagonalize it?

A =



0 0 0 0 0 x1y0y1 0 0 x1y0y2 0 0 0 x0y1y2 0 0

−x0y1 + x1y1 − x1y2 −x0y2 0 0 0 x1y2 x1y2 x1y2 −x1y2 −x0y1 + x1y1 − x1y2 −x1y2 0 x1y2 x1y2 x1y2

0 0 0 x1y1 0 0 0 0 −x1y2 0 −x1y2 0 −x0y1 − x1y2 −x0y1 −x1y2

0 0 −x1y2 0 x0y0 − x1y0 − x0y2 x1y2 x1y2 −x1y2 −x1y2 0 x0y2 − x1y2 x0y2 −x0y2 + x1y2 x0y2 + x1y2 0

0 0 0 0 0 −x1y2 −x1y2 x1y2 x1y2 x0y1 − x1y1 + x1y2 x1y2 0 −x1y2 −x1y2 −x1y2

0 0 x1y1 0 x1y0 0 0 0 0 0 0 0 0 x0y1 x1y2

0 0 0 0 0 −x1y0 0 −x1y0 −x1y0 0 x0y2 x0y0 0 0 0

x0y1 x0y0 0 0 0 0 0 x1y0 0 0 0 0 0 0 0

0 0 0 −x1 0 −x1 −x1 −x1 −x1 0 x0 − x1 x0 x0 −x0 − x1 0

y1y2 y0y2 0 0 0 −y0y1 + y1y2 −y0y1 + y1y2 0 0 −y1y2 0 0 −y1y2 y1y2 0

0 0 y1y2 0 y0y2 0 y0y1 0 y0y2 −y1y2 y0y2 −y0y2 −y0y2 −y0y2 −y0y2

−y1 −y0 0 0 0 0 0 0 y0 − y2 y1 y0 − y2 0 −y0 − y2 −y0 −y0 + y2

0 0 0 −y1 0 −y1 y1 0 y2 0 0 0 y1 + y2 y1 −y2

0 0 −y1 y1 −y0 y1 y1 0 y2 0 y2 0 −y1 + y2 y1 −y2

0 0 0 0 0 −y0 + y2 −y0 + y2 y0 − y2 y0 − y2 −y2 −y2 −y0 y2 y2 0

0 0 0 0 0 0 0 0 0 −y1 −y0 −y0 y0 y0 y0 − y2



An explicit application of this thesis is an algorithm for finding invertible matrices P,Q with

numerical entries such that A = PBQ and B is the following matrix with blocks along the diagonal:

B =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1y2 x0y1 − x1y1 0 0 0 0 0 0 0 0 0 0 0 0 0

−y0 + y2 y0 − y1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 x0y1 x1y1 − x1y2 0 0 0 0 0 0 0 0 0 0 0

0 0 y0 y0 − y2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −x0 + x1 x1 0 0 0 0 0 0 0 0 0

0 0 0 0 y0y2 − y1y2 y0y1 − y1y2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x1y0 x0y0 − x0y2 0 0 0 0 0 0 0

0 0 0 0 0 0 −y1 −y1 + y2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x0y1 − x1y1 + x1y2 x0y2 0 0 0 0 0

0 0 0 0 0 0 0 0 −y1 −y0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x1y2 0 x0y2 0 x0y0 − x1y0 − x0y2

0 0 0 0 0 0 0 0 0 0 x1y1 0 x0y1 0 −x1y0

0 0 0 0 0 0 0 0 0 0 0 x1y0 −x0y2 x0y0 − x0y2 0

0 0 0 0 0 0 0 0 0 0 y1y2 y0y1 0 y0y1 − y0y2 −y0y2

0 0 0 0 0 0 0 0 0 0 y1 y1 y1 − y2 y1 − y2 −y0


Mathematically, this block diagonalization is equivalent to splitting the vector bundle into its

simplest components. This example demonstrates that while six of the seven2 blocks correspond to

line bundles, the rightmost block is an indecomposable vector bundle on the surface. Learning what

governs the existence of such vector bundles, while harder to visualize with a cartoon, is important

for studying the geometry of the underlying varieties, and a natural motivation for my research.

1This is not an introduction for the experts, but if you are one: the sheafification of the cokernel of A over Z/3 is the
Frobenius pushforward of the structure sheaf of the blow-up of P2 in four points as a variety embedded in P1× P2.

2For those who only count six blocks: if you look carefully, there is a 0× 1 block hiding in the top left corner!
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1 Introduction

Minimal free resolutions, or syzygies, of ideals over a standard graded polynomial ring capture

subtle geometric properties of subvarieties of projective space, such as dimension, degrees of defining

equations, and their deformations [GLP83,Gre84,EL93,Eis05]. However, free resolutions often fail

to faithfully reflect the geometry of varieties embedded in other spaces.

1.1 Construction and Uniqueness of Short Virtual Resolutions

Introduced by Berkesch, Erman, and Smith, virtual resolutions are the homological substitutes for

free resolutions over toric varieties, which are a class of varieties ubiquitous in birational geometry

[Rei83,BMSZ18], combinatorics [Sta80,AHK18], and other fields.

In order to construct virtual resolutions over a toric variety X, we use the toric algebra-geometry

dictionary to translate between sheaves on X and multigraded modules over the Cox ring S [Cox95].

Here, S is a polynomial ring graded by PicX, the group of isomorphism classes of line bundles on X.

Berkesch–Erman–Smith conjectured a version of Hilbert’s Syzygy Theorem for toric varieties,

asking whether any finitely generated, graded S-module M admits a virtual resolution of length at

most dim(X), and proved it for a products of projective spaces Pn := Pn1× · · · × Pnr [BES20].

In Chapter 3, taken from [BCHS21], we establish the following uniqueness theorem for minimal

virtual resolutions with terms in a full strong exceptional collection for Pn.

Theorem A ([BCHS21]; also Theorem 3.5.4). Let S be the Cox ring of a product of projective

spaces Pn and suppose F• and G• are minimal virtual resolutions of an S-module M . If every term

is a direct sum of S(−a) for 0 ≤ a ≤ n, then G• and F• are isomorphic.

Our proof of Theorem A reduces the problem to the uniqueness of minimal projective resolutions

over certain graded associative algebras, using established techniques from derived algebraic geometry

and the representation theory of finite-dimensional algebras.
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1.2 Orlov’s Conjecture and Horrocks’ Splitting Criterion

Beilinson’s resolution of the diagonal over a projective space is a powerful tool in algebraic geometry

[Bĕı78a]. This classical construction, which appears in many results from both derived algebraic

geometry and commutative algebra [GLP83,Kap88,AO89], may be used to prove strong results

about the bounded derived category of coherent sheaves Db(Pn).

Consider the sheaf O∆ which cuts out the diagonal subvariety ∆ ⊂ X ×X. By a resolution of

the diagonal, we mean a locally free resolution K of O∆. Taking a Fourier–Mukai transform with

kernel given by Beilinson’s resolution yields a representation of any object in Db(Pn) as a complex

of vector bundles, called a Beilinson monad, which has been used to great effect in computational

algebraic geometry [ES03,ES09].

In Chapter 4, taken from [BS22], we construct explicit resolutions of the diagonal for smooth

projective toric varieties of Picard rank 2 in order to prove existence of short virtual resolutions.

This class includes all smooth projective varieties whose Cox ring is a bigraded polynomial ring.

By a result of Kleinschmidt [Kle88], every such toric variety is the projectivization of a sum of line

bundle on a projective space Pr, which is to say X = P(OPr⊕OPr(a1)⊕ · · · ⊕ OPr(as)) for ai ∈ Z.

Theorem B ([BS22]; also Theorem 4.1.1). Let X be a smooth toric variety of Picard rank 2, then

any finitely generated, graded S-module M admits a virtual resolution of length at most dim(X).

In 2023, Hanlon–Hicks–Lazarev and Brown–Erman proved the conjecture for all smooth toric

stacks [HHL23,BE23b], with the former drawing ideas from homological mirror symmetry. Each

of these results also established new cases of Orlov’s conjecture, illustrating the usefulness of

multigraded commutative algebra in derived algebraic geometry (c.f. [Rou08,BFK19,FH23]).

Conjecture 1.2.1 ([Orl09, Conj. 10]). Let X be a smooth projective scheme. The Rouquier

dimension of the bounded derived category of coherent sheaves Db(X) is equal to dim(X).

Our method is analogous to Weyman’s “geometric technique” for building free resolutions as

pushforwards from certain fibrations [Wey03, §5]. Moreover, the explicit structure of our resolutions

opens the door to other applications in algebraic geometry, such as the study of vector bundles on

toric varieties.

2



A Splitting Criterion for Vector Bundles

In 1964, Horrocks gave criteria under which a vector bundle on Pn is a sum of line bundles [Hor64].

The importance of this result is revealed by its relationship with Hartshorne’s conjecture that

every rank 2 vector bundle on P7 splits, which implies that any codimension 2 subvariety is a

complete intersection [Har74]. Horrocks’ splitting criterion has been generalized to products of

projective spaces [CM05, EES15, Sch22], Grassmannians and quadrics [Ott89], and Hirzebruch

surfaces [Buc87,AM11,FM11,Yas15], among others.

We use our construction to prove a the following toric splitting criterion.

Theorem C ([BS22]). Let X be an arbitrary smooth projective toric variety of Picard rank 2.

Suppose E and E ′ =
⊕t

i=1O(ai, bi)mi are vector bundles on X with (ai, bi) ≤ (ai−1, bi−1) for all i.

If Hp(X, E(c, d)) = Hp(X, E ′(c, d)) for all c, d ∈ Z and p ≥ 0, then E ∼= E ′.

The results of [EES15] hold in any Picard rank, but only for products of projective spaces, where

all effective divisors are nef. Theorem C, however, holds true even when the nef cone is a strict

subset of the effective cone in PicX ≃ Z2.

In Chapter 5, taken from [Say24], we further extend this theorem to all smooth projective toric

varieties using the construction of Hanlon–Hicks–Lazarev.

Theorem D ([Say24]; also Theorem 5.1.1). Suppose E and E ′ =
⊕t

i=1O(Di)
mi are vector bundles

on a smooth projective toric variety X such that Di+1−Di is ample for all i. If Hp(X, E ⊗ L) =

Hp(X, E ′ ⊗ L) for all L ∈ PicX and p ≥ 0, then E ∼= E ′.

As noted, the main ingredient in each of the above results is the construction of a resolution

of the diagonal K for the toric variety. The corresponding Fourier–Mukai transform is a functor

defined as the composition of derived functors

ΦK : Db(X)
π∗
1−→ Db(X ×X)

− ⊗K−−−→ Db(X ×X)
Rπ2∗−−−→ Db(X),

where πi are the projections from X×X onto the factors. Importantly, the functor ΦK is simply the

identity functor in the derived category Db(X), which is to say that it produces highly structured

quasi-isomorphisms encapsulating the sheaf cohomology of a vector bundle and its twists [Huy06].

3



Therefore the key to proving Conjecture 3.1.2 is constructing a resolution of the diagonal K consisting

of direct sums of line bundles whose length equals dim(X). In particular, K can be presented as the

sheafification of a complex of free modules over the Cox ring of X ×X, making this a construction

concerning virtual resolutions over S ⊗k S.

A Splitting Algorithm for Sheaves and Multigraded Modules

More generally, the problem of determining the indecomposable summands of a sheaf or module

or finding isomorphism classes of indecomposable modules with certain properties is ubiquitous in

commutative algebra, group theory, representation theory, and other fields.

Within commutative algebra, for instance, the classification of Cohen–Macaulay local rings R

for which there are only finitely many indecomposable maximal Cohen–Macaulay R-modules (the

finite CM-type property), or determining whether iterated Frobenius pushforwards of a Noetherian

ring in positive characteristic have finitely many isomorphism classes of indecomposable summands

(the finite F-representation type property) are two well-established research problems. For both

these problems, and many others, making and testing conjectures depends on finding summands of

modules and verifying their indecomposability.

In Chapter 8, taken from forthcoming work with Mallory, we give an explicit method for computing

the indecomposable direct summands of multigraded modules and sheaves, which we also implement

in the computer algebra software Macaulay2 [M2].

1.3 Castelnuovo–Mumford Regularity and Truncations

Serre’s vanishing, an important theorem in algebraic geometry, states that all cohomological subtleties

of a coherent sheaf F on the projective space Pn disappear after tensoring by a high enough power

of the line bundle O(1). Castelnuovo–Mumford regularity measures the smallest power where this

happens, and hence controls the algebraic complexity, or positivity, of coherent sheaves [Mum66].

Remarkably, if M is a graded module corresponding to F, Eisenbud and Goto proved that the

regularity of F can be computed in terms of (1) degrees of syzygies, (2) local cohomology, and (3)

resolutions of truncations of M [EG84].

Motivated by toric geometry, Maclagan and Smith leveraged the correspondence between quasi-
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coherent sheaves on a simplicial toric variety X and graded modules over the multigraded Cox ring

S to define and relate multigraded regularity for both, in essence generalizing Eisenbud–Goto’s

condition (2) [MS04]. In this setting, regularity is a subset regM ⊂ PicX.

When X = Pn, the minimal element of multigraded regularity recovers the classical Castelnuovo–

Mumford regularity. However, when the Picard rank is more than one, discerning an equivalent

algebraic condition on truncations and syzygies which translates to Maclagan and Smith’s definition

has been an open problem [HW04,SVTW06,Hà07,CM07,BC17,CN20].

In Chapters 6 and 7, taken from [BCHS21,BCHS22], we use techniques from derived algebraic ge-

ometry to prove several theorems about the relationship between multigraded regularity, truncations,

and syzygies of M , as well as asymptotic behavior of regularity of powers of ideals.

Generalizing Eisenbud–Goto’s condition (3) for a product of projective spaces X, we show that

under a mild saturation hypothesis, multigraded Castelnuovo–Mumford regularity is determined by

a different linearity condition, which we call quasilinearity (see Definition 6.3.3).

Theorem E ([BCHS21]; also Theorem 6.3.6). Let M be a finitely generated, graded S-module with

H0
B(M) = 0. Then d ∈ regM if and only if the free resolution of the truncation M≥d is quasilinear.

We also show that the graded Betti numbers of M at best bound its multigraded regularity, which

is emblematic of nuances of commutative algebra over multigraded Cox rings. As an application, we

found the regularity of all complete intersections of ample divisors.

A recurring technique in my research involves resolutions of multigraded truncations. For a finitely

generated, Pic(X)-graded S-module M with free presentation 0 ← M ← F ← F ′ we define the

(nef-)truncation M≥d at a (multi)degree d to be the S-module with presentation

0←M≥d ← F≥d ← F ′
≥d,

where F≥d is the submodule generated by graded pieces Fa with a ∈ d+NefX, and similarly for

F ′
≥d (c.f. [MS04, Def. 5.1]). The significance of truncations lies in the fact that a free resolution of

M≥d is a virtual resolution for M. Syzygies of nef-truncations are also tied to Oda’s conjecture that

smooth projective toric varieties are projectively normal [Oda97,Mac07].

To show Theorem E, we completely describe the twists that occur in minimal free resolutions of
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M≥d when M saturated and d-regular. In particular, these twists from a full strong exceptional

collection of line bundles for the ambient product of projective spaces.

Working over an arbitrary smooth projective toric variety, we also use truncations of modules

with respect to the net cone to expand the body of literature by Smith–Swanson, Cutkosky–Herzog–

Trung, Kodiyalam, and others [BEL91,CEL01,Swa97,SS97,CHT99,Kod00,CK11] on the asymptotic

behavior of regularity for powers of an ideal I ⊂ S by bounding reg(In) between two linearly

translating regions.

Theorem F ([BCHS22]; also Theorem 7.4.1). There exist degrees d1,d2,a ∈ PicX so that for all

n > 0 we have:

n · d1 + a+NefX ⊆ reg(In) ⊆ n · d2 +NefX.

It is worth emphasizing that this result holds in arbitrary toric multigradings, where the cones of

nef and effective divisors may differ. In this case, we find finitely generated modules with torsion

whose regularity has infinitely many minimal elements. This illustrates another subtle but deep

divergence from the standard graded case, requiring new techniques.

The key to addressing the above divergences is relating the syzygies of truncated modules M≥d

to the sheaf cohomology of M̃ using Beilinson’s resolution of the diagonal for products of projective

spaces and the corresponding Fourier–Mukai transform [BES20].

Remarkably, we show that when M is saturated and d-regular, the minimal free resolution of

M≥d is isomorphic to the Fourier–Mukai transform of M (see [BCHS21, Sec. 3]. Specifically, we

introduce a Čech–Koszul spectral sequence that relates the Betti numbers of M≥d to the sheaf

cohomology of M̃ tensored with truncated Koszul complexes, generalizing the machinery of Koszul

homology introduced by Green [Gre84].
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2 Background

Some of the material in this chapter originally appeared in the author’s Master’s thesis.

2.1 Simplicial Toric Varieties

Toric varieties are algebraic varieties with an intrinsic combinatorial structure, making them suitable

test subjects for conjectures in algebraic geometry. At the same time, there are interesting problems

in algebraic combinatorics whose solutions involve toric varieties.

In this section we briefly recall the terminology for normal toric varieties and give a number of key

running examples of toric varieties in the end. For an in depth exposition see [CLS11] and [Ful93].

Definition 2.1.1. A toric variety of dimension n over C is a variety X containing the torus

T = (C∗)n as a dense open subset, with an action of T on X that extends the action of T on itself.

The structure of an affine toric variety can be characterized by a strongly convex rational cone.

Concretely, let N be a lattice in Zn and σ a cone in N , then the dual cone σ∨ in M = HomZ(N,Z)

is the set of vectors in M ⊗Z R with non-negative inner product on σ. This gives a commutative

semi-group Sσ = σ∨ ∩M = {η ∈ M : η(ν) ≥ 0 for all ν ∈ σ}, and an open affine toric variety

Uσ = Spec C[Sσ] corresponding to its group algebra. The gluing data for a general toric variety

comes from a fan of cones.

Definition 2.1.2. A fan Σ of strongly convex polyhedral cones in NR = N ⊗Z R is a set of rational

strongly convex polyhedral cones σ ∈ NR such that:

1. each face of a cone in Σ is also a cone in Σ;

2. the intersection of two cones in Σ is a face of each of the cones.
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(2.1.3) P1 (2.1.4) P2 (2.1.5) P1× P1 (2.1.6) F1 Blx(F1) dP6

Table 2.1: Fans of P1 and the five smooth toric Fano surfaces

With this information in hand, a normal toric variety X is fully characterized as follows: given

a fan Σ, X(Σ) is assembled by gluing the affine toric subvarieties Uσ for each σ ∈ Σ. The toric

variety X is smooth (resp. simplicial) if every cone σ ∈ Σ is generated by a subset of a Z-basis (resp.

R-basis) of N , and it is projective if the fan Σ is complete; i.e. all points are in a maximal cone.

Let Σ(i) denote the set of i-dimensional cones in Σ. A 1-dimensional cone ρ ∈ Σ(1) is referred to

as a ray and corresponds to an irreducible T-invariant Weil divisor Dρ on X. Hence we identify

Div(X) = ZΣ(1) and define CDiv(X) to be the subgroup of T-invariant Cartier divisors on X. To

any Cartier divisor D on a normal variety X we can associate an invertible sheaf L = OX(D) which

is a locally free sheaf of sections of a line bundle L→ X. Isomorphism classes1 of such line bundles

on X define the Picard group PicX, with tensor product as the group operation.

The relationship between these groups is captured in a commutative diagram of Z-modules

0 M CDiv(X) PicX 0

0 M Div(X) An−1(X) 0,

div

(2.1.1)

where div(m) =
∑

ρ⟨m,nρ⟩Dρ with nρ ∈ N the generator of ρ ⊂ NR computes the orders of poles

and zeros along the divisors Dρ. See [Cox95] or [Har77, Ch.II §6] for further context.

Key examples

Example 2.1.3. The Projective Line P1

Let V be a 2-dimensional k-vector space with dual space W = V ∗. Classically, the projective

space P1= PV is defined to be the set of 1-dimensional subspaces in V .
1Two divisors are linearly equivalent, denoted D ∼ D′, if D −D′ is a principal divisor.
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As a projective variety, P1 is the simplest case of the Proj construction: let S = SymW be the

symmetric algebra on W and E =
∧
V the exterior algebra on V ; the set P1= P(W ) = ProjS is the

set of all homogeneous prime ideals that are strictly contained in the irrelevant ideal m = ⟨x0, x1⟩.

Note that S is a polynomial ring with generators corresponding to a set of coordinates on W , while

E is a skew symmetric algebra with generators corresponding to the dual basis. In particular,

observe that H0
(
P1,OP1(1)

)
= W and Hn

(
P1, ωP1

)
= V . Crucially, since Homk(E,k) ≃ E, the

exterior algebra is Gorenstein and has finite dimension over the field.

The projective line P1 is the simplest non-affine example. Let Σ be a fan with cones R≥0, {0},

and R≤0, corresponding to the affine toric varieties C, C∗, and C, respectively, which are glued via

C
[
x0
x1

]
↪−→ C

[
x0
x1
,
x1
x0

]
←−↩ C

[
x1
x0

]
.

Generalizing this definition yields Pn as the set of lines in a vector space of dimension n+ 1.

Example 2.1.4. The Projective Plane P2

A second way of constructing a toric variety is through the geometric quotient construction:

let C∗ act on C3 \ {0} by scalar multiplication; since the C∗-orbits are closed, P2= (C3 \ {0})/C∗

is a geometric quotient. This construction extends to arbitrary n as Pn = (Cn+1 \ {0})/C∗. See

[Cox95, Thm. 2.1] or [CLS11, Ch.5] for the quotient construction of toric varieties.

Example 2.1.5. Product of Projective Spaces P1× P1

The Proj construction of a projective variety can be further extended to the relative case:

let S = OP1[y0, y1] be a sheaf of graded algebras over P1 with deg yi = 1; the projectivization

P1×P1= ProjS is a rational ruled surface which also carries the structure of a toric variety induced

by the equivariant morphism π1 : ProjS → P1. In particular, the pullback π∗1(OP1(1)) yields the

invertible sheaf O(1, 0) on P1× P1.

Seen through this lens, the definition of P1 as the Proj of a graded ring is a relative Proj of the

sheaf OSpecC[x0, x1]. Repeating this construction yields products of projective spaces with higher

Picard rank, such as P1×P1×P1=: P(1,1,1), while increasing the number of generators in S increases

the dimension of each projective space factor.

Recall that a vector bundle on a variety X is a locally free sheaf on X. In the language of modules
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over the coordinate ring, vector bundles correspond to modules which are free after localization at

a sufficiently small neighborhood of every point. An important class of varieties, called projective

bundles, arise as projectivizations of vector bundles.

Example 2.1.6. The Hirzebruch Surface Fa

Another construction is the projective bundle P(E ) associated with a locally free sheaf E : let

E = OP1(a)⊕OP1 be a locally free coherent sheaf on P1, and consider the sheaf of graded algebras

S =
⊕

m≥0 Sym
m E ∨. The projective bundle Fa = P(E ) = ProjS is the Hirzebruch surface of type

a. In particular, there is a projection π : P(E )→ P1which induces a natural surjection π∗E → OP1(1).

See [Har77, Ch.II §7] for further context on this construction.

Remark 2.1.7. While projectivization of a toric vector bundle on a toric variety yields a variety with

a T-action, it is only a toric variety if the vector bundle splits as a sum of line bundles [Oda78, §7].

2.2 Cox Rings of Algebraic Varieties

The Cox ring of an algebraic variety X is an invariant ring that captures the birational geometry of X.

Initially defined for a toric variety by Cox [Cox95], Hu and Keel [HK00] extended the definition for

a smooth projective variety X with divisor class group Cl(X) to be

S :=
⊕

[D]∈Cl(X) Γ(X,O(D)),

with multiplicative structure defined by a choice of divisor classes that generate Cl(X). In particular,

S is a multigraded commutative ring with grading induced by Cl(X), and if S is finitely generated

we call X a Mori dream space (MDS). This terminology was used by Hu and Keel, who studied

the moduli spaces M0,n from the perspective of the Mori program in birational geometry. Other

examples include Grassmannians and flag varieties, projective toric varieties, square determinantal

varieties, many complete intersection rings, and smooth Fano varieties over C [BCHM10].

A smooth projective variety with finitely generated and free Picard group is a Mori Dream Space

precisely when its Cox ring is finitely generated as an algebra over the base field. This provides a

strong link between the birational geometry of a Mori Dream Space and the birational geometry of

an ambient toric variety.
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Mori dream spaces generalize projective spaces in a natural way. Whereas Pn can be defined from

the standard graded polynomial ring and homogeneous maximal ideal m via the geometric quotient

(SpecC[x0, . . . , xn] \ V(m)) // C∗, so can a Mori dream space be constructed from the Cox ring S

and some additional data via a GIT quotient by the group G := Hom(Cl(X),C∗) [MFK94,AH09].

Through this lens, a projective toric variety X is a Mori dream space with S a polynomial ring.

The rays ΣX(1) correspond to G and the multigrading on S via Gale duality [BFS90,OP91], and

the additional data required to construct X is any of the following equivalent ingredients:

1. the choice of maximal cones of ΣX ;

2. the choice of an irrelevant ideal B ⊂ S (which generalizes the maximal ideal m for Pn);

3. the choice of an ample class in Cl(X), which determines the cone NefX of nef divisors.

While (1) is only defined for toric varieties, (2) and (3) can be used in general to define the algebraic

operations B-saturation and nef-truncation for multigraded modules over arbitrary Cox rings.

For a finitely generated, Cl(X)-graded S-module M with free presentation 0←M ← F ← F ′ we

define the nef-truncation M≥d at a (multi)degree d to be the S-module with presentation

0←M≥d ← F≥d ← F ′
≥d,

where F≥d is the submodule generated by graded pieces Fa with a ∈ d+NefX (c.f. [MS04, Def. 5.1]).

The significance of nef-truncations lies in the fact that a free resolution of M≥d is a virtual

resolution for M (see Definition 3.1.1). Syzygies of nef-truncations are also tied to Oda’s conjecture

that smooth projective toric varieties are projectively normal [Oda97,Mac07].

An additional, equivalent ingredient for constructing X from the information in the Cox ring S

involves the Frobenius morphism:

4. the choice of higher extensions among the summands of the Frobenius pushforward of S.

In other words, the higher extensions of line bundles are a source of geometric information.

By working with ideals and modules over the multigraded Cox ring of X, many theorems about

subvarieties of Pn and coherent sheaves on it can be generalized to geometric statements over X.

11



2.3 Representations of Bound Quivers

A quiver Q is a directed graph consisting of a finite set Q0 of vertices and Q1 of arrows. Notably,

the category of representations of a quiver over a field k is equivalent to the category of finite-

dimensional left modules over a k-algebra. This equivalence is significant to the study of bounded

derived categories of certain toric varieties, hence this section reviews the basic terminology for

quivers and their representations. See Section 2.3 for examples of quivers corresponding to the

running examples. See [Cra07, §1] for further details.

To each arrow x
α−→ y, the maps t, h : Q1 → Q0 correspond a tail t(α) = x and head h(α) = y

such that a sequence of arrows p = αl · · ·α1 form a path of length l whenever h(αi) = t(αi+1) for

1 ≤ i < l. By convention, for each vertex x there is a trivial path x ex−→ x.

Definition 2.3.1. A representation W of a quiver Q over a field k consists of

• a k-vector space Wx for each vertex x ∈ Q0;

• a k-linear map wα : Wtα →Whα for each arrow α ∈ Q1.

A representation W is finite-dimensional if each Wi has finite dimension over k. More generally,

a representation may be defined over any ring, but here working over a field suffices.

A key object in this section is the path algebra associated to a quiver.

Definition 2.3.2. The path algebra kQ of a quiver Q is the graded k-algebra where

• (kQ)l is a k-vector space with basis the set of paths of length l, and

• multiplication is defined by concatenation of paths, when possible, or zero otherwise.

The path algebra is an associative algebra with identity
∑

x∈Q0
ex and it is finite-dimensional when

the quiver is acyclic. Moreover, the subring (kQ)0 generated by the trivial paths ex is a semi-simple

ring with ex as orthogonal idempotents; that is, exey = ex when x = y and zero otherwise.

Our interest in quiver representations stems from the construction of tilting algebras as the quotient

of a path algebra with vertices corresponding to the exceptional objects and arrows corresponding

to homomorphisms between them.
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2.3.5 P1 2.3.6 P2 2.3.7 P1× P1 2.3.8 F2

• •x
y • • •

z̄ z

x̄
ȳ

x
y

• •

• •

ā1
b1b̄0

a1

ā0

a0
b̄1 b0

• •

• •

ā1
bb̄

a1

d2

ā0

a0
d1

Table 2.2: Examples of Beilinson or Bondal quivers of toric varieties

Definition 2.3.3. A bound quiver (Q,R) is a quiver Q together with a finite set of relations R,

given as k-linear combinations of paths of length at least 2 with the same head and tail. Note that

R can be identified with an ideal in kQ.

A representation of (Q,R) is a representation of Q where for each p− p′ ∈ R the homomorphisms

associated to p and p′ coincide; that is, Hom(Wtp,Whp) = Hom(Wtp′ ,Whp′). Note that for each

quiver representation W we may associate a kQ/R-module
⊕

x∈Q0
Wx. Conversely, for any left

kQ/R-module M we have a quiver representation given by the k-vector spaces Wx = exM for

x ∈ Q0 and maps wα : Wtα →Whα given by m 7→ α(m) for α ∈ Q1.

Proposition 2.3.4. The category Repk(Q,R) of representations of bound quivers is equivalent to

the category of finitely generated left kQ/R-modules.

Observe that if (kQ)op is the opposite algebra with product a · b = ba, then (kQ)op ≃ kQop

where Qop is the opposite quiver with arrows reversed. In particular, the proposition above gives an

equivalence of mod(Aop) and Repk(Q
op, R).

Key examples

Example 2.3.5. Kronecker quiver

This is the unique acyclic quiver with two vertices and two nontrivial arrows. A representation

W of this quiver consists of a pair of vector spaces (W0,W1) and maps w,w′ :W0 →W1.

Beilinson’s exceptional collection for P1 proved the equivalence Db(P1) = ⟨O,O(1)⟩. The impor-

tance of the Kronecker quiver, also known as the Beilinson quiver or Bondal quiver for P1, is due

to the isomorphism kQ ≃ Endk(O ⊕O(1)); that is, Q encodes the data of endomorphisms of the

tilting bundle T = O ⊕O(1). Writing P1= Projk[x, y], the arrows of Q correspond to the maps

O(1) ·x−→ O and O(1) ·y−→ O.
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Recall that a vector bundle E on P1 splits as a direct sum E = ⊕ri=1OP1(di) for di∈Z, hence E has

a trivial locally free resolution consisting only of twists OP1(di). However, the existence of Beilinson’s

exceptional collection Db(P1) = ⟨O,O(1)⟩ implies that there is also a locally free resolution consisting

only of those two twists, though a priori this resolution may be longer. This observation points to

the fact that the fixing an exceptional collection amounts to limiting permissible representations of

objects in the derived category.

Example 2.3.6. Beilinson quiver for P2

This quiver is the first example of a Beilinson quiver for which the tilting algebra of interest is

isomorphic to a quotient of the path algebra. Therefore we introduce an ideal of relations

R = ⟨x̄y − ȳx, x̄z − z̄x, ȳz − z̄y⟩.

We can then write kQ/R ∼= Endk(O ⊕O(1)⊕O(2)) as before.

Example 2.3.7. Quiver of sections for P1× P1

Consider the collection of line bundles {O,O(1, 0),O(0, 1),O(1, 1)}, with O(1, 0) and O(0, 1) the

pullbacks of OP1(1) along the first and second projection P1× P1→ P1.

The quiver of sections of this collection is the quiver with vertices corresponding to the bundles

Li and an arrow i→ j for each indecomposable T-invariant section

s ∈ H0(P1× P1, Lj ⊗ L−1
i ).

A T-invariant section is indecomposable if the divisor div(s) does not split as a sum div(s′)+ div(s′′)

for nonzero sections s′, s′′ of Lj ⊗ L−1
k and Lk ⊗ L−1

i .

Example 2.3.8. Quiver of sections for F2

The path algebra of this quiver, modulo the ideal of relations, represents the homomorphisms

among the bundles {O,O(D1),O(D4),O(D1 +D4)}, where Di are the T-invariant divisors of X.

For more complicated examples, such as this one, the ideal of relations is easier to write as having

generators coming from the composition rule; i.e., the relations that arise are of the form p− p′ ∈ R.
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2.4 The Derived Category of Coherent Sheaves

Let X be a smooth projective variety, and Coh(X) the Abelian category of coherent sheaves on X.

Every morphism f : X → Y between such varieties induces two functors:

• the inverse image functor f∗ : Coh(Y )→ Coh(X) (pullback), and

• the direct image functor f∗ : Coh(X)→ Coh(Y ) (pushforward).

However, these two functors are not exact, in the sense that exact sequences are not preserved. To

preserve functoriality, Cartan and Eilenberg introduced the notion of derived functors.

The derived category of coherent sheaves on X, denoted D(X), contains geometric information

about X. In some cases one can even recover X from D(X), but there are also examples of different

varieties, for instance non-isomorphic K3 surfaces, with equivalent derived categories. This section

provides an introduction to the derived category theory used in the rest of this thesis. See [Huy06]

or [Orl03] for further context and topics.

Definition 2.4.1. We denote by Kb(X) the bounded homotopy category on Coh(X), where the

objects are bounded chain complexes of coherent sheaves on X modulo the relation of homotopy and

chain maps as morphisms. The bounded derived category on Coh(X), denoted Db(X), has the same

objects as Kb(X), but each quasi-isomorphism is endowed with an inverse morphism. Explicitly,

morphisms in the derived category can be expressed as roofs A ← A′ → B where A′ → A is a

quasi-isomorphism. Note that caution is needed in order to check whether a morphism A→ B in

Db(X) can be lifted back to Kb(X) (e.g. see Lemma 2.4.7).

Unlike Abelian categories, short exact sequences do not exist in derived categories, and kernels

and cokernels of morphisms are not defined. However, derived categories are endowed with the

structure of a triangulated category, formalized by Verdier.

Definition 2.4.2. An additive category D is a triangulated category if for any morphism f : A→ B

in D there exists a distinguished triangle A→ B → C → A[1], where C = Cone f is the cone of the

morphism f , satisfying certain axioms.

A triangulated subcategory is a full subcategory D that is closed under the shift functor and

taking the mapping cone of morphisms. In other words, if two objects of some triangle belong to a
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triangulated subcategory, then so does the third object. We say that D is thick (or epaisse) if it is

further closed under isomorphisms and direct summands of objects. The thick envelope of an object

E in D is the smallest thick triangulated subcategory of D containing E. When the thick envelope

is equal to D we say that E generates D.

Remark 2.4.3. The derived category Db(X) is a triangulated category, with the shift E• 7→ E•[1]

given by E•[1]i = Ei+1 and diE[1] = −d
i+1
E , and the cone of morphism f : E• → F • given by

Cone f i = Ei+1 ⊕ F i.

There is a fully faithful functor Coh(X) ↪−→ Db(X) that guarantees

Exti(E•, F •) ≃ HomDb(X)(E
•, F •[i]),

hence we will identify the two going forward.

Derived categories of coherent sheaves appear in many other areas of algebraic geometry as well.

For instance, the Homological Mirror Symmetry Conjecture states that there is an equivalence

of categories between the derived category of coherent sheaves on a Calabi–Yau variety and the

derived Fukaya category of its mirror. While this is beyond the scope of this chapter, it is worth

mentioning that a large number of Calabi–Yau manifolds are realized as subspaces of toric varieties,

in particular weighted projective spaces.

In the next two sections the structure of Db(X) is determined using two related approaches:

exceptional collections and tilting bundles.

2.4.1 Exceptional Collections

Studying the structure of the derived category is an important step towards studying the underlying

scheme. Recall that an object E in a triangulated category D generates the category D if any thick

triangulated subcategory containing it is equivalent to D. In this section, this idea is generalized to

that of a full strong exceptional collection for Db(X), the existence of which implies that Db(X) is

freely and finitely generated. Refer to [Kuz14] for further details on semiorthogonal decompositions.

Consider a full triangulated subcategory B in a triangulated category D. The right (resp. left)

orthogonal to B is the full subcategory B⊥ ⊂ D (resp. ⊥B) consisting of the objects C such that
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Hom(B,C) = 0 (resp. Hom(C,B) = 0) for all B ∈ B. Both right and left orthogonal subcategories

are also triangulated.

A sequence of triangulated subcategories (B0, . . . ,Bn) in a triangulated category D is a semiorthog-

onal sequence if Bj ⊂ B⊥i for all 0 ≤ j < i ≤ n.

Definition 2.4.4. A semiorthogonal decomposition D = ⟨B0, . . . ,Bn⟩ is a semiorthogonal sequence

that generates D as a triangulated category.

The first examples of semiorthogonal decompositions arise from full exceptional collections.

Definition 2.4.5. Let D be a k-linear triangulated abelian category.

• An object E ∈ D is exceptional if

Hom(E,E[ℓ]) =


C if ℓ = 0

0 if ℓ ̸= 0.

Equivalently, using the notation of the derived functors, the condition states Hom(E,E) = C

and RℓHom(E,E) = Extℓ(E,E) = 0 when ℓ ̸= 0.

• An exceptional collection is an ordered sequence E1, . . . , En of exceptional objects such that

Hom(Ei, Ej [ℓ]) = 0 for all i > j and all ℓ.

Equivalently, R•Hom(Ei, Ej) = Ext•(Ei, Ej) = 0 when i > j.

• An exceptional collection is strong if Hom(Ei, Ej [ℓ]) = 0 for all i ≤ j and ℓ > 0.

Equivalently, RℓHom(Ei, Ej) = Extℓ(Ei, Ej) = 0 when i ≤ j and ℓ > 0.

• An exceptional collection is full if D is generated by {Ei}; that is, any full triangulated

subcategory containing all objects Ei is equivalent to D via inclusion of Ei.

There is a mutative structure available on such sets, including an action by the braid group, which

we will not need for our purposes.
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Example 2.4.6 ([Bĕı78b]). The projective space Pn has a full strong exceptional collection consisting

of twists of the structure sheaf,

Db(Pn) =
〈
O,O(1),O(2), . . . ,O(n)

〉
,

as well as one consisting of exterior products of the cotangent bundle Ω1(1),

Db(Pn) =
〈
O,Ω1(1),Ω2(2), . . . ,Ωn(n)

〉
.

Observe that while the first exceptional collection is comprised of symmetric products of O(1),

any “window” of n+ 1 consecutive twists of O is a full strong exceptional collection for Db(Pn).

The following lemma implies that given two complexes consisting of terms in a strong exceptional

collection, any map between them in the derived category lifts to a map of complexes.

Lemma 2.4.7 ([Kap88]). Let C and D be bounded complexes over an abelian category A. Suppose

that ExtpA(Ci, Dj) = 0 for p > 0 and all i, j. Then

HomDb(A)(C,D) = HomHot(A)(C,D).

In particular, if f : C → D is a quasi-isomorphism, then the inverse in the derived category lifts

to a map g : D → C with a chain homotopy fg = idD + sd+ ds.

In the next section we will use full strong exceptional collections to construct equivalences of

bounded derived categories.

2.4.2 Tilting Bundles

Bondal’s work established an equivalence between the category of bounded complexes of coherent

sheaves on a projective space and the category of finitely generated representations of a bound

quiver (Q,R). See [Cra07] for the details and proofs of theorems cited.

Borrowing terminology from representation theory (cf. [Bae88]), the notion of a tilting sheaf on a

scheme X aims to generalize Beilinson’s result in the following sense: a tilting sheaf is a sheaf T of

OX -modules that induces an equivalence of triangulated categories Db(X)→ Db(Aop) which sends
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T to A = EndX(T ), its endomorphism algebra.

Recall that the global dimension of an algebra A is defined to be the supremum of projective

dimension of all right A-modules.

Definition 2.4.8. A sheaf of OX -modules is a tilting sheaf (resp. bundle) if the following hold:

(i) T has no higher self-extensions, that is, ExtiX(T, T ) = 0 for i > 0,

(ii) the endomorphism algebra A = HomX(T, T ) has finite global dimension, and

(iii) T generates the bounded derived category Db(X).

More specifically, Bondal showed in [Bon90] that a triangulated category generated by a strong

exceptional collection is equivalent to the derived category of right modules over the algebra of

homomorphisms of the collection, which we represented as a bound quiver in Section 2.3.

Theorem 2.4.9 ([Bae88,Bon90]). Let T be a tilting sheaf on a smooth projective variety X, with

associated tilting algebra A = EndX(T ). Then the functors

HomX( T , − ) : Coh(X) −−→ mod(Aop) and

−⊗A T : mod(Aop) −−→ Coh(X)

induce derived equivalences of triangulated categories

RHomX( T , − ) : Db(X) −−→ Db(Aop) and

−⊗L
A T : Db(Aop) −−→ Db(X)

which are quasi-inverse to each other.

Corollary 2.4.10. Suppose T is a coherent sheaf on X satisfying (i) and (ii), then T satisfies (iii)

if and only if for any E ∈ Db(X) we have RHomX(T,E)⊗L
A T
∼= E.

Establishing that a sheaf is a tilting sheaf on X is essentially done in two steps: first find a strong

exceptional collection on X, then show that the exceptional collection is full. With this information,

the tilting sheaf can be constructed simply as a direct sum of the exceptional collection. When the
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exceptional collection contains only vector bundles, then T is a tilting bundle, and if it contains

only line bundles, then T is a particularly useful invariant of the derived category.

Proposition 2.4.11 ([Cra07], Prop. 2.7). Let T = ⊕ni=0Ei be a locally-free sheaf on X with each

Ei a line bundle (in particular, HomX(Ei, Ei) = 0 for all i). Then

1. If T satisfies (i) and (ii), then (E0, . . . , En) forms a strong exceptional collection.

2. If T satisfies (iii), then (E0, . . . , En) is a full strong exceptional collection.

Conversely, every full strong exceptional collection defines a tilting sheaf.

The connection with Beilinson’s work is apparent from the following theorem, which can be seen

as a strengthening of Corollary 2.4.10.

Theorem 2.4.12 ([Kin97], Theorem 1.2). Let X be a smooth projective variety and T be a bundle

satisfying conditions (i) and (ii). Then T is a tilting bundle if and only if the map T∨ ⊠L
A T → O∆

is an isomorphism in Db(X ×X).

Once again, the structure of a resolution of O∆ as an object in Db(X ×X) is closely related to

the derived category of X.
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3 Uniqueness of Minimal Virtual Resolutions

The material in this chapter originally appeared in [BCHS21], with the exception of Theorem 3.5.4,

which was stated as a conjecture in that paper.

3.1 Introduction

Let X be a smooth projective toric variety with Pic(X)-graded Cox ring S and irrelevant ideal B.

Consider a graded S-module M . While a minimal free resolution F• of M can be easily computed

using Gröbner methods, it does not always provide a faithful reflection of the geometry of X. For

example, when the Picard rank of X is greater than one, the length of F• may exceed dimX. To

bridge this gap, Berkesch, Erman, and Smith introduced virtual resolutions in [BES20] as the

homological substitutes for free resolutions in the toric case.

Definition 3.1.1 ([BES20]). A Pic(X)-graded complex of free S-modules G• is a virtual resolution

of M if the complex G̃• of locally free sheaves on X is a resolution of the sheaf M̃ .

Using this notion, one may expect a version of Hilbert’s Syzygy Theorem to hold for other spaces.

Conjecture 3.1.2 ([BES20, Question 6.5]). If S is the Cox ring of X and M is a finitely generated,

Cl(X)-graded S-module, then M admits a virtual resolution of length at most dim(X).

This conjecture was proven for products of projective spaces in [BES20], for smooth projective

toric varieties of Picard rank 2 by Brown and the author (Theorem B), and for all smooth toric stacks

by Hanlon–Hicks–Lazarev and Brown–Erman [HHL23,BE23b], using independent ideas. These

results established new cases of Orlov’s conjecture below, which further illustrates the potential of

multigraded commutative algebra techniques in derived algebraic geometry (c.f. [Rou08,BDM19,

BFK19,FH23]).

21



Conjecture 3.1.3 ([Orl09, Conj. 10]). Let X be a smooth quasi-projective scheme. The Rouquier

dimension of the bounded derived category of coherent sheaves Db(X) is equal to dim(X).

Despite more faithfully capturing the geometry of X, virtual resolutions are often less rigid than

minimal free resolutions. For example, a module M generally has many non-isomorphic virtual

resolutions. In this section we consider virtual resolutions containing no degree 0 maps, which we

show to be subcomplexes of minimal free resolutions in certain situations. Remarkably, we prove

uniqueness of virtual resolutions which consist only of certain twists.

This uniqueness is key to our proof of Theorem E. Inspired by the work of Berkesch, Erman,

and Smith, we use a Fourier-Mukai transform to construct a virtual resolution of M whose Betti

numbers are computable in terms of certain cohomology groups. In Section 6.3.1 we then prove

that this virtual resolution is isomorphic to the minimal free resolution of M≥d.

3.2 Minimal Virtual Resolutions

A complex of S-modules is trivial if it is a direct sum of complexes of the form

· · · 0 S S 0 · · · .1

A free resolution of a finitely generated Pic(X)-graded S-module M is isomorphic to the direct sum

of the Pic(X)-graded minimal free resolution of M and a trivial complex. With this in mind we

introduce the following notion of a minimal virtual resolution.

Definition 3.2.1. A virtual resolution F• is minimal if it is not isomorphic to a Pic(X)-graded

chain complex of the form F ′
• ⊕ F ′′

• where F ′′
• is a trivial complex.

Note that, unlike in the case of ordinary free resolutions, minimal virtual resolutions are not

unique, even up to isomorphism. Further, minimal virtual resolutions need not have the same

length. That said, analogous to the case of minimal free resolutions, minimal virtual resolutions are

characterized by having no constant entries in their differentials.

Lemma 3.2.2. A virtual resolution of M is minimal if and only if its differentials have no degree 0

components.
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Proof. Since S is positively graded, a graded version of Nakayama’s Lemma holds (see [MS05, pp. 155-

156]). The statement follows from an argument similar to those in [Eis95, Thm. 20.2, Exc. 20.1].

The following structure result shows that a minimal virtual resolution F of a module M satisfying

certain conditions on the Betti numbers arises as a subcomplex of the minimal free resolution of

H0(F•). Here we denote by EffX the cone generated by the degrees of the variables of S in PicX.

Proposition 3.2.3. Let (F•, φ•) be a finite minimal virtual resolution and let N = H0(F•). Suppose

1. dimkTori(F•,k)d ≤ dimkTori(N,k)d for all d and all i;

2. whenever c− d ∈ EffX and Tori(F•,k)c ̸= 0 then equality holds in (1).

Then F• is a subcomplex of the minimal free resolution of N .

Proof. First, we will inductively construct a resolution (G•, ψ•) of N which contains (F•, φ•) as a

subcomplex. Let G0 = F0, G1 = F1, and ψ1 = φ1, so that H0(G•) = N .

Suppose Gi has been defined for 0 ≤ i ≤ n − 1 so that F• is a summand and G• is exact for

0 < i < n− 1. Consider φn as a map Fn → Gn−1 by composing with the inclusion Fn−1 ↪→ Gn−1.

Choose z1, . . . , zs ∈ kerψn−1 such that their images generate kerψn−1/ imφn. Let Gn = Fn ⊕

S(−a1)⊕ · · · ⊕ S(−as) where deg zj = aj . Define ψn by ψn|Fn = φn and ψn(gj) = zj , where gj is

the generator of S(−aj). Then imψn = kerψn−1, so that G• is a complex and exact at n− 1.

We will now show by induction that it is possible to prune G• to a minimal free resolution of N

that contains F• as a subcomplex. At each step, take a nonminimal homogeneous relation among

the images of generators of some Gi. Write it as

ψi

(∑
ajfj +

∑
bjgj

)
= 0,

where fj ∈ Fi, gj ∈ Gi \ Fi, and aj , bj ≠ 0 for all j. As F• is minimal, at least one gj does appear.

Since each Gi has only finitely many generators, it is possible to choose a relation whose degree c

satisfies c− d /∈ EffX for all degrees d ̸= c of other available relations.

Assume by induction that no generator of F• has been removed in a previous step. Since the

chosen relation is nonminimal, at least one of its coefficients is a unit. If some bj is a unit then we

may remove the corresponding gj and continue pruning.
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Suppose instead that all unit coefficients appear among the aj . In this case we must prune some

fk in order to remove the relation. Note that by homogeneity

deg fk = deg akfk = c = deg bjgj = deg bj + deg gj

for all j. Thus c− deg gj = deg bj ∈ EffX, so equality holds in (1) for d = deg gj by hypothesis. By

choice of c we cannot remove anything of degree deg gj in a subsequent step. Hence gj appears in

the minimal free resolution of N , so by the equality in (1) some generator f of Fi with degree d

must be removed. However, it cannot have been removed before fk by the induction hypothesis,

and it cannot be removed after fk by choice of c. This is a contradiction, so we are never required

to prune a generator of F•, completing the proof.

In the language of [BES20], this proposition implies that a virtual resolution that appears to

be a virtual resolution of a pair based only on its Betti numbers can indeed be produced by that

construction. Note that the proposition is not true without conditions on the Betti numbers. For

instance, [BC21, Ex. 1.2] gives a minimal virtual resolution which is not a subcomplex of the minimal

free resolution of its cokernel.

3.3 The Fourier–Mukai Transform

The sheafification of a virtual resolution of M is a resolution of M̃ by direct sums of line bundles.

More generally, following [EES15, §8], we define a free monad of a coherent sheaf F to be a finite

complex

L : 0← L−s ← · · · ← L−1 ← L0 ← L1 ← · · · Lt ← 0

whose terms are direct sums of line bundles and whose homology is H•(L) = H0(L) ≃ F .

In this section we introduce a type of geometric functor between derived categories known as a

Fourier–Mukai transform. We will use a particular instance in Section 3.4 to prove that a complex

constructed from the Beilinson spectral sequence is a free monad. See [Huy06, §5] for background

and further details.
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Let X and Y be smooth projective varieties and consider the two projections

X × Y

X Y.

pq

A Fourier–Mukai transform is a functor

ΦK : Db(X)→ Db(Y )

between the derived categories of bounded complexes of coherent sheaves. It is represented by an

object K ∈ Db(X × Y ) and constructed as a composition of derived functors

F 7→ Rp∗
(
Lq∗F ⊗L K

)
.

Here Lq∗, Rp∗, and − ⊗L K are the derived functors induced by q∗, p∗, and − ⊗ K, respectively.

Moreover, since q is flat Lq∗ is the usual pull-back, and if K is a complex of locally free sheaves

−⊗L K is the usual tensor product. In fact, all equivalences between Db(X) and Db(Y ) arise in

this way.

A special case of the Fourier–Mukai transform occurs when Y = X and K ∈ Db(X ×X) is a

resolution of the structure sheaf O∆ of the diagonal subscheme ι : ∆→ X ×X. Such K is referred

to as a resolution of the diagonal.

Using the projection formula, one can see that the Fourier–Mukai transform ΦO∆
is simply the

identity in the derived category; that is to say, replacing O∆ with K produces quasi-isomorphisms.

We will use this fact in the proof of Proposition 3.5.1.

3.4 The Beilinson Spectral Sequence

Returning to the case of products of projective spaces, we consider coherent sheaves on X = Pn. We

construct a free monad for M̃ from the Beilinson spectral sequence on Pn×Pn and describe its Betti

numbers. When M is 0-regular it is a minimal virtual resolution, which we will use in Sections

6.3. See [OSS80, §3.1] for a geometric exposition and [Huy06, §8.3] or [AO89, §3] for an algebraic

exposition on a single projective space.
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For sheaves F and G on Pn, denote p∗F ⊗ q∗G by F ⊠ G. Consider the vector bundle

W =
r⊕
i=1

OPn(ei)⊠ T ei
Pn (−ei),

where T ei
Pn is the pullback of the tangent bundle, as in the Euler sequence on the factor Pni:

0 OPni Oni+1
Pni (ei) TPni 0. (3.4.1)

There is a canonical section s ∈ H0(Pn×Pn,W) whose vanishing cuts out the diagonal subscheme

∆ ⊂ Pn× Pn (see [BES20, Lem. 2.1]), giving a Koszul resolution of O∆:

K : 0 OPn×Pn W∨ ∧2W∨ · · ·
∧nW∨ 0. (3.4.2)

The terms of K can be written as

Kj =
∧j

(
r⊕
i=1

OPn(−ei)⊠ Ωei
Pn(ei)

)
=
⊕
|a|=j

OPn(−a)⊠ Ωa
Pn(a), for 0 ≤ j ≤ |n|. (3.4.3)

As in Section 3.3, we are interested in the derived pushforward of q∗M̃ ⊗K, which we will compute

by resolving the second term of each box product with a Čech complex to obtain a spectral sequence.

Since K is a resolution of the diagonal, the pushforward will be quasi-isomorphic to M̃ .

Consider the double complex

C−s,t =
⊕
|a|=s

OPn(−a)⊠ Čt
(
UB, M̃ ⊗ Ωa

Pn(a)
)
,

with vertical maps from the Čech complexes and horizontal maps from K. Since taking Čech

complexes is functorial and exact we have Tot(C) ∼ q∗M̃ ⊗K, which is a resolution of q∗M̃ ⊗O∆

because K is locally free. Moreover, since the first term of each box product in q∗M̃⊗K is locally free,

the columns of C are p∗-acyclic (c.f. [Har66, Prop. 3.2], [AO89, Lem. 3.2]). Hence the pushforward

E−s,t
0 = p∗(C

−s,t) =
⊕
|a|=s

OPn(−a)⊗ Γ
(
Pn, Čt

(
UB, M̃ ⊗ Ωa

Pn(a)
))

(3.4.4)

26



satisfies Tot(E0) = ΦK(M̃) ∼ M̃ . With this notation, the Beilinson spectral sequence is the spectral

sequence of the double complex E0, whose (vertical) first page has terms

E−s,t
1 =

⊕
|a|=s

OPn(−a)⊗Ht
(
Pn, M̃ ⊗ Ωa

Pn(a)
)
= Rtp∗(q

∗M̃ ⊗Ks). (3.4.5)

Beilinson’s resolution of the diagonal and the associated spectral sequence are crucial ingredients

in constructions of Beilinson monads, Tate resolutions, and virtual resolutions [EFS03, EES15,

BES20]. Recently, Brown and Erman [BE21] expanded these constructions to toric varieties using

a noncommutative analogue of a Fourier–Mukai transform. More generally, Costa and Miró-Roig

[CM07] have introduced a Beilinson type spectral sequence for a smooth projective variety under

certain conditions on its derived category.

3.5 Construction and Uniqueness

The main results of this chapter are Proposition 3.5.1 and Theorem 3.5.4, which describe the Betti

numbers of a free monad constructed from the Beilinson spectral sequence (c.f. [BES20, Thm. 2.9])

and prove its uniqueness.

Proposition 3.5.1. Let M be a finitely generated Zr-graded S-module. There is a free monad L

for M̃ with terms

Lk =
⊕
|a|≥k

OPn(−a)⊗H |a|−k(Pn, M̃ ⊗ Ωa
Pn(a))

so that

1. the free complex G• = Γ∗(L) has Betti numbers βk,a(G•) = h|a|−k
(
Pn, M̃ ⊗ Ωa

Pn(a)
)
;

2. if H i
(
Pn, M̃ ⊗Ωa

Pn(a)
)
= 0 for i > |a| then G• is a virtual resolution for M whose differentials

have no degree 0 components.

Proof. Let K be the resolution of the diagonal from (3.4.3) and let ΦK be the corresponding
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Fourier–Mukai transform. The Beilinson spectral sequence has (vertical) first page E−s,t
1 :

...
...

...

R2p∗(q
∗M̃ ⊗K0) R2p∗(q

∗M̃ ⊗K1) R2p∗(q
∗M̃ ⊗K2) · · ·

R1p∗(q
∗M̃ ⊗K0) R1p∗(q

∗M̃ ⊗K1) R1p∗(q
∗M̃ ⊗K2) · · ·

p∗(q
∗M̃ ⊗K0) p∗(q

∗M̃ ⊗K1) p∗(q
∗M̃ ⊗K2) · · ·

k=2k=1k=0

(3.5.1)

The vertical differentials of E0 in (3.4.4) are sheaves tensored with complexes of vector spaces that

are global sections of Čech complexes, so they satisfy the splitting hypotheses of [EFS03, Lem. 3.5],

which implies that the total complex of E0 is homotopy equivalent to a complex L with terms

Lk =
⊕

s−t=k E
−s,t
1 . Hence

L ∼ Tot(E0) = ΦK(M̃) ∼ M̃.

Since the terms of E1 are direct sums of line bundles, the complex L is a free monad for M̃ .

Observe that the only terms with twist a appear in Ks for s = |a| and that the Betti numbers in

homological index k come from the higher direct images E−s,t
1 on diagonals with s− t = k. Hence

βk,a(G•) is the rank of OPn(−a) in E−|a|,|a|−k
1 which is h|a|−k(Pn, M̃ ⊗ Ωa(a)).

Lastly, note that the hypothesis of part (2) implies that the terms of (3.5.1) on diagonals with k < 0

vanish; hence the free monad L is a locally free resolution. Since each map in the construction from

[EFS03, Lem. 3.5] increases the index −s, the differentials in G• have no degree 0 components.

Remark 3.5.2. In the proof of [BES20, Prop. 1.2], Berkesch, Erman, and Smith show that if M is

sufficiently twisted so that all higher direct images of M̃ ⊗ Ωa
Pn(a) vanish, then the E1 page will be

concentrated in one row, which results in a linear virtual resolution. Similarly in [EES15, Prop. 1.7],

Eisenbud, Erman, and Schreyer prove that for sufficiently positive twists, the truncation of M has a

linear free resolution. However, in both cases the positivity condition is stronger than 0-regularity

for M , as illustrated by the following example.

Example 3.5.3. Write S = k[x0, x1, y0, y1, y2] for the Cox ring of P1× P2 and consider the ideal

I = (y0 + y1 + y2, x0y0 + x0y1 + x0y2 + x1y0 + x1y1). Then M = S/I is a bigraded, (0, 0)-regular
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S-module. The global sections of the Beilinson spectral sequence for M̃ has first page

0 0 S(−1,−1) S(−1,−2) 0

S S(0,−1) 0 0 0

y0+y1+y2

−x1y2

y0+y1+y2

x1y2

where the dotted diagonal maps are lifts of maps from the second page of the spectral sequence,

which agree with the maps from [EFS03, Lem. 3.5].

In Chapter 6 we state and prove Theorem E by illustrating the restrictions on the virtual resolution

above that follow from the regularity of M̃ and using them to bound the shape of the minimal free

resolution of a truncation of M . In a sense, we will characterize d-regularity by showing that this

virtual resolution is isomorphic to the minimal free resolution of M≥d. To do so, we will need the

following proposition on uniqueness of virtual resolutions which consist only of certain twists.

Theorem 3.5.4. Suppose F• and G• are minimal virtual resolutions of an S-module M.

If every term is a direct sum of S(−a) for 0 ≤ a ≤ n, then G• and F• are isomorphic.

The proof uses an explicit equivalence of categories to reduce the question to the uniqueness of

minimal projective resolutions over the path algebra of bound quivers. For a detailed account of the

representation theory of finite-dimensional algebras, see [Bon89,Bon90,Kin97].

Consider the direct sum of line bundles E =
⊕n

a=0O(−a) and its endomorphism algebra A =

End(E). In this situation, A is the path algebra of a bound quiver whose vertices correspond to

summands of E and paths correspond to homomorphisms between them. In particular, A is a

finite-dimensional graded algebra whose canonical basis consists of a monomial for each path in

the quiver. The projective modules over A are submodules of A containing all paths starting at a

vertex, and are labeled Pa = eaA where ea is an idempotent. We will use the fact that summands

of E form a full strong exceptional collection [Huy06, §1.4], which by [Bon90, Thm. 6.2] implies that

RHom(E ,−) : Db(X)→ Db(mod−A). (3.5.2)

is an equivalence of categories. By a direct computation present in the proof of [Bon90, Thm. 6.2],

this functor sends the bundles O(−a) to projective modules Pa for 0 ≤ a ≤ n. Moreover, minimality

29



is preserved, in the sense that a non-constant map O(−a) ← O(−b) is sent to the map eaA ←

ebA corresponding to the monomial for the path beginning at vertex b and ending at vertex a.

Composing with the reverse equivalence −⊗L E gives the identity on these objects by the proof of

[Kin97, Thm. 2.1].

Another ingredient of the proof is showing that Hom(E ,−) is exact on the class of free monads

constructed in Proposition 3.5.1, and in particular we may apply the additive functor (3.5.2) term-

wise on locally free resolutions in this class and yield projective resolutions. See [Wei94, §2.5] for

terminology of derived categories and acyclic classes.

Lemma 3.5.5. A chain complex L whose terms consist of summands of E is Hom(E ,−)-acyclic.

Furthermore,

1. if L is a free monad for G then RHom(E ,G) = RHom(E ,L) = Hom(E ,L);

2. if L is a locally free resolution then RHom(E ,G) is a projective resolution over A.

Proof. Since the summands of E form a strong exceptional sequence and each Lj consists of

summands of E , we have RiHom(E ,L) = 0 for i ̸= 0, hence L is Hom(E ,−)-acyclic. Thus, denoting

F = Hom(E ,−), the spectral sequence E−j,i = RiF (Lj) ⇒ RF (L) degenerates on the first page

to F (L). On the other hand, if L is a free monad for G we have RF (G) = RF (L) = F (L) as

triangulated functors preserve quasi-isomorphisms. Thus we can apply the functor (3.5.2) on L

term-wise.

For the second part, first observe that if L is a free monad for G and H iF (L) = RiF (G) = 0 for

i ̸= 0 then F (L) is a projective monad for F (G). We will show that this vanishing holds when L is a

locally free resolution by inducting on the length of L: consider 0← G ← L0 ← L1 ← 0 with length

1, then the long exact sequence of Hom(E ,−) implies that RiHom(E ,G) = Ri+1Hom(E ,L1) = 0

for i ̸= 0. If L has length n, break it into

0← G ← L0 ← G′ ← 0 and 0← G′ ← L1 ← · · · ← Ln ← 0.

Then by the inductive hypothesis RiHom(E ,G′) = 0 for i ̸= 0, thus RiHom(E ,G) = 0 for i ̸= 0

using the short exact sequence. Thus, when L is a locally free resolution as above, RHom(E ,G) =

Hom(E ,L) is a projective resolution over A.

30



Proof of Theorem 3.5.4. Since F• and G• are minimal virtual resolutions of the same module, the

locally free resolutions F̃• and G̃• are quasi-isomorphic, and by assumption all their terms are direct

sums of O(−a) for 0 ≤ a ≤ n. Hence by Lemma 3.5.5 applying the functor (3.5.2) gives minimal

projective resolutions C• and D•, respectively.

Since A is graded it follows from [BK99, §2] that mod−A is a “perfect” category in the sense of

[Eil56, §2]. Thus by [Eil56, Prop. 7] there exists an isomorphism ψ : C• → D• of complexes of right

A-modules.

Applying the reverse equivalence − ⊗L E gives an isomorphism of complexes of OX -modules

ψ ⊗L E : F̃• → G̃• as desired. Finally, applying twisted global sections Γ∗ yields the isomorphism

between F• and G•.

Remark 3.5.6. Note that Lemma 3.5.5 holds in more generality for any triangulated category and

any additive left exact functor F such that RiF (E) = 0 for i > 0, and the equivalence of categories

via the functor (3.5.2) applies to any full exceptional collection of line bundles on a toric variety.

In particular, translating every line bundles in the collection by a fixed line bundle results in a

similar uniqueness theorem that may apply to virtual resolutions which are only free monads for the

standard collection. However, note that in general free monads are not sent to projective monads.
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4 Resolving the Diagonal for Toric Varieties of

Picard Rank 2

The material in this chapter originally appeared in [BS22].

4.1 Introduction

In this chapter, we aim to construct a Beilinson-type resolution of the diagonal over a smooth

projective toric variety X of Picard rank 2. More specifically, with a view toward proving a new case

of a conjecture of Berkesch–Erman–Smith (Conjecture 3.1.2 below), we construct such a resolution

of length dimX—the shortest possible length—whose terms are finite direct sums of line bundles.

While the existence of a full strong exceptional collection of line bundles [CM04,BH09] implies that

X admits a resolution of the diagonal via a tilting bundle construction [Kin97, Prop. 3.1], it follows

from a result of Ballard–Favero [BF12, Prop. 3.33] that this resolution may have length greater than

dimX. Our main result is as follows:

Theorem 4.1.1. Let X be the projective bundle P(O⊕O(a1)⊕ · · · ⊕O(as)) over Pr, where 1 ≤ r, s

and 0 ≤ a1 ≤ · · · ≤ as. Denote by Fas the Hirzebruch surface of type as, and equip Pic(Fas) ∼= Z2

with the basis described in Convention 4.3.1 below. There is a complex R of finitely generated graded

free modules over the Cox ring of X ×X such that:

1. R is exact in positive degrees.

2. R is linear, in the sense that there exists a basis of R with respect to which the differentials of

R are matrices whose entries are k-linear combinations of the variables.

3. We have rankRn =
(
r+s
n

)
dimkH

0(Fas ,O(r, s)). In particular, R has length dimX = r + s,

and the equality rankRn = rankRr+s−n holds.

4. The sheafification R of R is a resolution of the diagonal sheaf O∆ on X ×X.
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We note that, by a result of Kleinschmidt in [Kle88], every smooth projective toric variety of

Picard rank 2 arises as a projective bundle as in the hypothesis of Theorem 4.1.1. We construct

the resolution R in Theorem 4.1.1 using a variant of Weyman’s “geometric technique" for building

free resolutions, described in [Wey03, §5]. In a bit more detail: let xi and x′i refer to the variables

corresponding to the first and second copy of X, respectively, in the Cox ring S of X ×X. A first,

naive, idea is that the diagonal sheaf O∆ ought to be defined by the relations xi − x′i in S. The

problem is that these relations are not homogeneous with respect to the Z4-grading on S. To fix

this, we homogenize the relations xi − x′i in the Cox ring of a certain toric fiber bundle E over

X ×X with fiber given by Fas . Our resolution R is obtained by taking the Koszul complex on these

homogenized relations over E, twisting it by a certain line bundle, and pushing it forward to X ×X.

Choosing the toric fiber bundle E is delicate; not only do the degrees of the variables in the Cox

ring of E need to be suitable for homogenizing the relations xi − x′i, but the terms of the Koszul

complex on these homogenized relations must enjoy appropriate cohomological vanishing properties

in order to conclude that R is a resolution of the required form. See §4.3.3 for details.

The simplest case of Theorem 4.1.1 is the Hirzebruch surface Fa = P(O ⊕O(a)), where r = s = 1

and a = a1. As detailed in Example 4.3.9, the construction above yields a resolution of the diagonal

for Fa whose terms R0, R1, and R2 are sums of a+ 4, 2a+ 8, and a+ 4 line bundles, respectively

(cf. [Buc87, §1]).

As we explain in §4.2, the resolution R in Theorem 4.1.1 should be considered as a natural

extension of Beilinson’s resolution over projective space and similar resolutions due to Buchdahl for

Hirzebruch surfaces [Buc87], Canonaco–Karp for weighted projective stacks [CK08], and Kapranov

for quadrics and flag varieties [Kap88]. See [BE21, §4] for a related idea, where a resolution of the

diagonal—with terms given by infinite direct sums of line bundles—is obtained for any projective

toric stack.

As a consequence of Theorem 4.1.1, we prove the following:

Corollary 4.1.2. Conjectures 3.1.2 and 1.2.1 hold for smooth projective toric varieties of Picard

rank 2.

We refer the reader to the original paper [Rou08] of Rouquier for background on his notion of

dimension for triangulated categories. Since the resolution of the diagonal R in Theorem 4.1.1
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has length dimX, and each term Ri is a sum of box products of vector bundles on X, it is an

immediate consequence of [Rou08, Prop. 7.6] that Theorem 4.1.1 implies Conjecture 1.2.1 for

smooth projective toric varieties of Picard rank 2. Conjecture 1.2.1 was first proven in this case

by Ballard–Favero–Katzarkov [BFK19, Cor. 5.2.6] using an entirely different approach: they first

observe that the conjecture holds for a smooth projective Picard rank 2 toric variety that is weakly

Fano, and then they apply descent along admissible subcategories. See the discussion beneath

[BC21, Conj. 1.1] for a list of known cases of Conjecture 1.2.1.

In Chapter 5, we also apply Theorem 4.1.1 to obtain a splitting criterion for vector bundles on

smooth projective toric varieties of Picard rank 2.

4.2 Warm-up: the Case of Pn

Throughout this chapter, we work over a base field k. Let TPn denote the tangent bundle on Pn and

W the vector bundle OPn(1)⊠TPn(−1) on Pn×Pn. There is a canonical section s ∈ H0(Pn×Pn,W)

whose vanishing cuts out the diagonal in Pn×Pn (see [Huy06, §8.3]). The Koszul complex associated

to s yields Beilinson’s resolution of the diagonal

0← O∆ ← OPn×Pn ← Λ1W∨ ← · · · ← ΛnW∨ ← 0.

In this section, we construct another resolution of the diagonal sheaf on Pn × Pn, whose terms are

direct sums of line bundles (cf. [CK08, Rem. 3.3]). We explain in Remark 4.2.3(3) a sense in which

this resolution resembles Beilinson’s. As discussed in the introduction, our approach is similar to

Weyman’s “geometric technique” [Wey03, §5]. In §4.3, we explain how the approach in this section

extends to smooth projective toric varieties of Picard rank 2.

Let E denote the projective bundle P(O ⊕ O(−1, 1)) on Pn × Pn and let π : E → Pn × Pn be

the canonical map. The projective bundle E is a toric variety with Z3-graded Cox ring SE =

k[x0, . . . , xn, y0, . . . , yn, u0, u1], where deg(xi) = (1, 0, 0), deg(yi) = (0, 1, 0), deg(u0) = (1,−1, 1),

and deg(u1) = (0, 0, 1). Set αi = u1xi − u0yi for all i; the intuition here is that u0 and u1 are

homogenizing variables for the non-homogeneous equations xi−yi. Let K denote the Koszul complex

on α0, . . . , αn, considered as a complex of sheaves on E, and set V = O(−1, 0, 0)n+1. Twisting K by
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O(0, 0, n) yields a complex of the form

O(0, 0, n)← (Λ1V)(0, 0, n− 1)← · · · ← ΛnV ← (Λn+1V)(0, 0,−1).

Using [Har77, Ch. III, Ex. 8.4(a)] and the projection formula, R = π∗K(0, 0, n) has the form

SymnQ ← Λ1P ⊗ Symn−1Q ← · · · ← Λn−1P ⊗ Sym1Q ← ΛnP, (4.2.1)

where P = O(−1, 0)n+1 and Q = O ⊕ O(−1, 1). Notice that applying π∗ to the n + 1th term

(Λn+1V)(0, 0,−1) of K(0, 0, n) gives 0, hence the complex (4.2.1) has length n.

Proposition 4.2.1. The complex R is a resolution of the diagonal sheaf on Pn × Pn. Moreover,

the complex R is isomorphic to (the sheafification of) the nth symmetric power of the complex

S(−1, 1)⊕ S

−y0 −y1 · · · −yn

x0 x1 · · · xn


←−−−−−−−−−−−−−−−−−−− S(−1, 0)n+1, (4.2.2)

concentrated in homological degrees 0 and 1, where S denotes the Cox ring of Pn × Pn.

Proof. One can use a slight variation of the proof of Theorem 4.1.1 below to show that R is a

resolution of the diagonal. As for the second statement: let K denote the Koszul complex on the

regular sequence α0, . . . , αn, considered as a complex of SE-modules. Let R be the complex of

S-modules given by K(0, 0, n)(∗,∗,0). Since K is exact in positive homological degrees, R is as well. It

follows from the description of R in (4.2.1) that R sheafifies to R. Let R′ denote the nth symmetric

power of (4.2.2). We observe that R′ has exactly the same terms as R. The complex R′ is precisely

the generalized Eagon–Northcott complex of type Cn, as defined in [Eis95, A2.6], associated to the

map (4.2.2). It therefore follows from [Eis95, Thm. A2.10(c)] that R′ is exact in positive homological

degrees. By the uniqueness of minimal free resolutions, we need only check that the cokernels of the

first differentials of R and R′ are isomorphic, and this can be verified by direct computation.

We now compute a well-known example using this approach (cf. [Kin97, Ex. 5.2]).

Example 4.2.2. Suppose n = 2. The monomials in the ui’s give bases for the symmetric powers
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of Q, and the exterior monomials in the αi’s give bases for the terms of K, which correspond

to the exterior powers of P. Hence, we may index the summands of (4.2.1) by monomials in

u0, u1, α0, α1, α2. With this in mind, the complex (4.2.1) has terms

O(−2, 2)︸ ︷︷ ︸
u20

⊕O(−1, 1)︸ ︷︷ ︸
u0u1

⊕ O︸︷︷︸
u21

∂1←− O(−2, 1)3︸ ︷︷ ︸
α0u0,α1u0,α2u0

⊕ O(−1, 0)3︸ ︷︷ ︸
α0u1,α1u1,α2u1

∂2←− O(−2, 0)3︸ ︷︷ ︸
α0α1,α0α2,α1α2

and differentials

∂1 =


−y0 −y1 −y2 0 0 0

x0 x1 x2 −y0 −y1 −y2

0 0 0 x0 x1 x2

 and ∂2 =



y1 y2 0

−y0 0 y2

0 −y0 −y1

−x1 −x2 0

x0 0 −x2

0 x0 x1


.

Remark 4.2.3. We conclude this section with the following observations:

1. We have rankRi = rankRn−i, just as in Theorem 4.1.1.

2. The resolutions in Theorem 4.1.1 cannot arise as symmetric powers of complexes, in general;

this follows immediately from rank considerations.

3. Let us explain a sense in which our resolution R is modeled on Beilinson’s resolution of

the diagonal. Consider the external tensor product of O(1) with the Euler sequence: 0 ←

O(1)⊠ T (−1)← O(1, 0)n+1

(
y0 · · · yn

)
T

←−−−−−−−−−−−− O(1,−1)← 0. Letting C denote the subcomplex

O(1, 0)n+1 ← O(1,−1) concentrated in degrees 0 and 1, there is a quasi-isomorphism C ≃−→

O(1) ⊠ T (−1). The morphism s : O

(
x0 · · · xn

)
T

−−−−−−−−−−−−→ C, where O lies in degree 0, gives a

hypercohomology class in H0(Pn × Pn, C), which is isomorphic to H0(Pn × Pn,O(1)⊠ T (−1)).

By Proposition 4.2.1, the nth symmetric power of the dual of s, i.e. the nth Koszul complex of

the dual of s [Köc01, Definition 2.3], is isomorphic to the resolution R. In short: the resolution

R is a Koszul complex on a section of O(1)⊠ T (−1), just like Beilinson’s resolution.
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4.3 Smooth Projective Toric Varieties of Picard Rank 2

In this section, we extend the construction in §4.2 and prove the main theorem. Let X denote

the projective bundle P(O ⊕ O(a1) ⊕ · · · ⊕ O(as)) over Pr, where a1 ≤ · · · ≤ as. As discussed in

[CLS11, §7.3], the fan ΣX ⊆ Zr+s of X has r + s + 2 ray generators given by the rows of the

(r + s+ 2)× (r + s) matrix

P =



−1 −1 · · · −1 a1 a2 · · · as

1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 1 0 0 · · · 0

0 0 · · · 0 −1 −1 · · · −1

0 0 · · · 0 1 0 · · · 0

0 0 · · · 0 0 1 · · · 0
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · 1



=



ρ0

ρ1

ρ2
...

ρr

σ0

σ1

σ2
...

σs



(4.3.1)

and maximal cones generated by collections of rays of the form

{ρ0, . . . , ρ̂i, . . . , ρr, σ0, . . . , σ̂j , . . . , σs}.

Convention 4.3.1. Throughout this chapter, we equip PicX ∼= coker(P ) ∼= Z2 with the basis given

by the divisors corresponding to ρ0 and σ0. With this choice of basis, we may view the Cox ring of

X as the Z2-graded ring k[x0, . . . , xr, y0, . . . , ys] whose variables have degrees given by the columns

of the matrix

A =

1 1 · · · 1 0 −a1 · · · −as

0 0 · · · 0 1 1 · · · 1

.
A main reason we use this convention is that it is also used by the function kleinschmidt in

Macaulay2, which produces any smooth projective toric variety of Picard rank 2 as an object of

type NormalToricVariety.
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4.3.1 Vanishing of Sheaf Cohomology

We will need a calculation of the cohomology of a line bundle on X:

Proposition 4.3.2. Let E be the vector bundle O⊕O(a1)⊕ · · ·⊕O(as) on Pr, where a1 ≤ · · · ≤ as,

so that X = P(E). Write m =
∑s

i=1 ai, and consider a line bundle O(k, ℓ) on X. For each

0 ≤ j ≤ r + s, we have:

Hj(X,O(k, ℓ)) ∼=


Hj(Pr,OPr(k)⊗ Symℓ(E)), ℓ ≥ 0;

Hj−s(Pr,OPr(k −m)⊗ Sym−ℓ−s−1(E)∨), ℓ ≤ −s− 1;

0, otherwise.

Proof. Let π : X → Pr denote the projective bundle map. It follows from a well-known calculation

(see e.g. [TT90, 4.5(e)]) and the projection formula that

Riπ∗(O(k, ℓ)) =


OPr(k)⊗ Symℓ(E), i = 0;

OPr(k −m)⊗ Sym−ℓ−s−1(E)∨, i = s;

0, 0 < i < s.

The conclusion follows from the observation that the second page of the Grothendieck spectral

sequence

Ep,q2 = Hp(Pr,Rqπ∗(O(k, ℓ)))⇒ Hp+q(X,O(k, ℓ))

collapses to row q = 0 when ℓ ≥ 0 and to row q = s when ℓ ≤ −s− 1.

The following result is an immediate consequence of Proposition 4.3.2. It will play a key role in

the proof of Theorem 4.1.1.

Corollary 4.3.3. Let X be the projective bundle P(O ⊕ O(a1) ⊕ · · · ⊕ O(as)) over Pr as above,

where a1 ≤ · · · ≤ as. Write m =
∑s

i=1 ai, and consider a line bundle O(k, ℓ) on X.

1. We have:

a) H i(X,O(k, ℓ)) = 0 if i /∈ {0, r, s, r + s}.
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b) H0(X,O(k, ℓ)) = 0 if and only if ℓ < 0 or k + asℓ < 0.

c) If r ̸= s then

i. Hr(X,O(k, ℓ)) = 0 if and only if −r − 1 < k or ℓ < 0, and

ii. Hs(X,O(k, ℓ)) = 0 if and only if −s− 1 < ℓ or k < m.

d) If r = s then Hr(X,O(k, ℓ)) = 0 if and only if both of the following hold:

i. −r − 1 < k or ℓ < 0, and

ii. −s− 1 < ℓ or k < m.

e) Lastly, Hr+s(X,O(k, ℓ)) = 0 if and only if either of the following hold:

i. −r − 1− as(ℓ+ s+ 1) +m < k, or

ii. −s− 1 < ℓ;

2. In particular, the line bundle O(k, ℓ) is acyclic (H i(X,O(k, ℓ)) = 0 for i > 0) if and only if

one of the following holds:

(a) −s− 1 < ℓ < 0,

(b) −r − 1 < k and 0 ≤ ℓ,

(c) −r − 1− as(ℓ+ s+ 1) +m < k < m and ℓ ≤ −s− 1.

Remark 4.3.4. Conditions (1b) and (1e) are Serre dual to one another. Ditto for the two conditions

in (1c), as well as the conditions (i) and (ii) in (1d). These calculations are surely well-known; see,

for instance, [LM11, Prop. 3.9] for a criterion for acyclicity of line bundles on toric varieties. We

refer the reader to [BE21, Ex. 3.14] for a depiction of the regions of Z2 where each H i(X,O(k, ℓ))

vanishes for the Hirzebruch surface X = P(OP1 ⊕OP1(3)).

4.3.2 Toric Fiber Bundles

Let E and Y be smooth projective toric varieties of dimensions dE and dY associated to fans ΣE

and ΣY . Let π̄ : ZdE → ZdY be a Z-linear surjection that is compatible with the fans ΣE and ΣY ,

in the sense of [CLS11, Def. 3.3.1], so that it induces a morphism π : E → Y . We denote by F the

toric variety associated to the fan ΣF = {σ ∈ ΣE : σ ⊆ ker(π̄)R}, and write dF = dimF . Let us
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assume that the fan ΣE is split by the fans ΣY and ΣF , in the sense of [CLS11, Def. 3.3.18]. In this

case, the map π : E → Y is a fibration with fiber F ; see [CLS11, Thm. 3.3.19].

Writing the Cox rings of Y and F as SY = k[x1, . . . , xn1 ] and SF = k[u1, . . . , un2 ], the Cox ring

of E has the form SE = k[x1, . . . , xn1 , u1, . . . , un2 ]. We have presentations PY : ZdY → Zn1 and

PF : ZdF → Zn2 of PicY and PicF whose rows are given by the ray generators of ΣY and ΣF ,

respectively. The analogous presentation of PicE is of the form

PY Q

0 PF


for some n1 × dF matrix Q. One may use this presentation to equip SE with a Ze ⊕ Zf -grading

such that degSE
(xi) = (degSY

(xi), 0), and degSE
(ui) = (ti,degSF

(ui)) for some ti ∈ Ze.

Lemma 4.3.5 (cf. [Har77] Ch. III, Ex. 8.4(a)). Let L = OE(b1, . . . , be, c1, . . . , cf ), and let B be

a k-basis of H0(F,OF (c1, . . . , cf )) given by monomials in SF . Given m ∈ B, denote its degree in

SE by (dm1 , . . . , d
m
e , c1, . . . , cf ). We have π∗(L) ∼=

⊕
m∈BOY (b1 − dm1 , . . . , be − dme ). Moreover, if

H i(F,OF (c1, . . . , cf )) = 0, then Riπ∗(L) = 0.

Proof. Let g :
⊕

m∈BOY (b1 − dm1 , . . . , be − dme )→ π∗(L) be the morphism given on the component

corresponding to m ∈ B by multiplication by m. Let U be an affine open subset of Y over

which the fiber bundle E is trivializable; abusing notation slightly, we denote by π the map

π−1(U) → U induced by π. To prove the first statement, it suffices to show that the restriction

gU :
⊕

m∈Bi
OU → π∗(L|U ) of g to U is an isomorphism. Without loss of generality, we may

assume that π−1(U) = U × F and that π : π−1(U) → U is the projection onto U . Letting

γ : π−1(U)→ F denote the projection, we have that L|U = γ∗(OF (c1, . . . , cf )). Finally, we observe

that gU coincides with the base change isomorphism
⊕

m∈BOU = OU ⊗k H0(F,OF (c1, . . . , cf ))
∼=−→

π∗(γ
∗(OF (c1, . . . , cf )) = π∗(L|U ). As for the last statement: it suffices to observe that, by base

change, Riπ∗(L|U ) ∼= OU ⊗k H i(F,OF (c1, . . . , cf )) = 0.
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4.3.3 Constructing the Resolution of the Diagonal

Let X be as defined at the beginning of this section. We will construct our resolution of the diagonal

for X as the pushforward of a certain Koszul complex on a fibration E over X ×X whose fiber is

the Hirzebruch surface Fas . We begin by constructing the fiber bundle π : E → X ×X. The ray

generators of E are given by the rows of the (2r + 2s+ 8)× (2r + 2s+ 2) matrix



P 0 v −w

0 P −v w

0 0 −1 as

0 0 0 1

0 0 1 0

0 0 0 −1


, (4.3.2)

where P is as in (4.3.1), and v (resp. w) is the (r + s+ 2)× 1 matrix with unique nonzero entry

given by a 1 in the first (resp. (r + 2)th) position. Notice that the rows in the top-left quadrant of

this matrix are the ray generators of X ×X, and the rows in the bottom-right quadrant are the ray

generators of Fas .

Let π̄ : Z2r+2s+2 → Z2r+2s denote the projection onto the first 2r + 2s coordinates. We define the

cones of E to be those of the form γ + γ′, where γ is a cone corresponding to a cone of Fas and is

spanned by a subset of the bottom 4 rows of (4.3.2), and γ′ is a cone spanned by a collection of the

top 2r + 2s+ 4 rows of (4.3.2) such that π̄R(γ′) is a cone of X ×X. By [CLS11, Thm. 3.3.19], the

map π̄ induces a fibration π : E → X with fiber Fas .

In order to describe the Cox ring of E, first recall the matrix A from Convention 4.3.1 whose

columns are the degrees of the variables of the Cox ring of X, and consider the matrices

B =

1 −as 0 0

0 1 0 0

 and C =

1 −as 1 0

0 1 0 1

.
Notice that the columns of C are the degrees of the variables in the Cox ring of Fas . We choose a
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basis of PicE ∼= Z6 so that the degrees of the variables in the Cox ring

SE = k[x0, . . . xr, y0, . . . , ys, x
′
0, . . . , x

′
r, y

′
0, . . . , y

′
s, u0, . . . , u3]

of E are given by the columns of the Gale dual of (4.3.2), which is the 6× (2r + 2s+ 8) matrix

A 0 B

0 A −B

0 0 C

 =



1 · · · 1 0 −a1 · · · −as 0 · · · 0 0 0 · · · 0 1 −as 0 0

0 · · · 0 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 1 0 0

0 · · · 0 0 0 · · · 0 1 · · · 1 0 −a1 · · · −as −1 as 0 0

0 · · · 0 0 0 · · · 0 0 · · · 0 1 1 · · · 1 0 −1 0 0

0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 1 −as 1 0

0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 1 0 1


.

Let K be the Koszul complex corresponding to the regular sequence α0, . . . , αr, β0, . . . , βs given

by the homogeneous binomials

αi = u2xi − u0x′i for 0 ≤ i ≤ r and

βi = u3yi − uas−ai0 u1u
ai
2 y

′
i for 0 ≤ i ≤ s (a0 := 0)

in the Cox ring SE . Observe that deg(αi) = (1, 0, 0, 0, 1, 0) and deg(βi) = (−ai, 1, 0, 0, 0, 1). Here, we

are using that the columns of B span the effective cone of X to homogenize the relations xi−x′i and

yi − y′i. Denote by K the complex of sheaves on E corresponding to K. The following proposition

shows that K twisted by OE(0, 0, 0, 0, r, s) is π∗-acyclic.

Proposition 4.3.6. The higher direct images Riπ∗(K(0, 0, 0, 0, r, s)) vanish for i > 0.

Proof. It suffices to show that Riπ∗(Kj(0, 0, 0, 0, r, s)) = 0 for i > 0 and all j. Each term of

K(0, 0, 0, 0, r, s) is a direct sum of line bundles of the form OE(a, b, 0, 0, k, ℓ)) for some a, b ∈ Z,

−1 ≤ k ≤ r, and −1 ≤ ℓ ≤ s. By Lemma 4.3.5, we need only show that H i(Fas ,O(k, ℓ)) = 0 for

i > 0 and such k and ℓ, which follows from Corollary 4.3.3(2)(a-b).

Let S denote the Cox ring of X × X and R the complex of graded S-modules given by the

subcomplex K(0, 0, 0, 0, r, s)(∗,∗,∗,∗,0,0) of the Koszul complex K twisted by SE(0, 0, 0, 0, r, s). We

will show that R satisfies the requirements of Theorem 4.1.1. Observe that, by Lemma 4.3.5, one
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can alternatively construct R by applying the twisted global sections functor:

R =
⊕

L∈Pic(X×X)

H0(X ×X,L ⊗ π∗K(0, 0, 0, 0, r, s)).

In particular, writing R for the complex of sheaves on X ×X corresponding to R, we have R ∼=

π∗K(0, 0, 0, 0, r, s). Note that Proposition 4.3.6 implies that π∗K(0, 0, 0, 0, r, s) is quasi-isomorphic

to Rπ∗(K(0, 0, 0, 0, r, s)).

Before discussing some examples, we must establish a bit of notation:

Notation 4.3.7. Let SF = k[u0, u1, u2, u3] denote the Cox ring of the Hirzebruch surface Fas ,

equipped with the Z2-grading so that the degrees of the variables correspond to the columns of

the matrix C above. Given i, j ∈ Z, let Mi,j denote the set of monomials in SF of degree (i, j).

For m ∈Mi,j , let (dm1 , d
m
2 , d

m
3 , d

m
4 ) ∈ Z4 denote the first four coordinates of the degree of m as an

element of the Z6-graded ring SE ; notice that dm3 = −dm1 , and dm4 = −dm2 .

Example 4.3.8. Let us compute the first differential in R. Using the notation above, we have

R0 =
⊕

m∈Mr,s

S(−dm1 ,−dm2 , dm1 , dm2 ) ·m, and R1 = Rα1 ⊕R
β
1 , where

Rα1 =
r⊕
i=0

⊕
m∈Mr−1,s

S(−dm1 − 1,−dm2 , dm1 , dm2 ) · αim,

Rβ1 =

s⊕
i=0

⊕
m∈Mr,s−1

S(−dm1 + ai,−dm2 − 1, dm1 , d
m
2 ) · βim.

Here, the decorations “ ·m” in our description of R0 are just for bookkeeping, and similarly for the
“·αim” and “·βim” in R1. Viewing the differential ∂1 : R1 → R0 as a matrix with respect to the above
basis, the column corresponding to αim has exactly two nonzero entries: an entry of xi corresponding
to the monomial u2m ∈ Mr,s and an entry of −x′i corresponding to u0m ∈ Mr,s. Similarly, the
column corresponding to βim has exactly two nonzero entries: an entry of yi corresponding to u3m
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and an entry of −y′i corresponding to uas−ai0 u1u
ai
2 m. That is, the matrix ∂1 has the following form:



0 0

−x′
i 0 u0m

0 0

0 −y′
i uas−ai

0 u1u
ai
2 m

· · · 0 · · · 0 · · ·

xi 0 u2m

0 0

0 yi u3m

0 0

αim · · · βim



.

Example 4.3.9. Suppose X is the Hirzebruch surface of type a, i.e. the projective bundle
P(O ⊕ O(a)) over P1. We have r = s = 1 and a1 = a. The Koszul complex K on α0, α1, β0, β1,
twisted by (0, 0, 0, 0, 1, 1), looks like:

SE(0, 0, 0, 0, 1, 1)︸ ︷︷ ︸
1

← SE(−1, 0, 0, 0, 0, 1)2︸ ︷︷ ︸
α0, α1

⊕SE(0,−1, 0, 0, 1, 0)︸ ︷︷ ︸
β0

⊕SE(a,−1, 0, 0, 1, 0)︸ ︷︷ ︸
β1

← SE(−2, 0, 0, 0,−1, 1)︸ ︷︷ ︸
α0α1

⊕SE(−1,−1, 0, 0, 0, 0)2︸ ︷︷ ︸
α0β0, α1β0

⊕SE(a− 1,−1, 0, 0, 0, 0)2︸ ︷︷ ︸
α0β1, α1β1

⊕ SE(a,−2, 0, 0, 1,−1)︸ ︷︷ ︸
β0β1

← SE(a− 2,−1, 0, 0,−1, 0)︸ ︷︷ ︸
α0α1β1

⊕SE(−2,−1, 0, 0,−1, 0)︸ ︷︷ ︸
α0α1β0

⊕SE(a− 1,−2, 0, 0, 0,−1)2︸ ︷︷ ︸
α0β0β1, α1β0β1

← SE(a− 2,−2, 0, 0,−1,−1)︸ ︷︷ ︸
α0α1β0β1

.

Letting Mi,j be as in Notation 4.3.7 (with as = a), we have:

M0,0 = {1}, M1,0 = {u0, u2}, M0,1 = {u3} ∪ {uk0u1uℓ2 : k + ℓ = a},

M−1,1 = {uk0u1uℓ2 : k + ℓ = a− 1},

M1,1 = {u0u3, u2u3} ∪ {uk0u1uℓ2 : k + ℓ = a+ 1},

Mi,j = ∅ for (i, j) ∈ {(1,−1), (−1, 0), (0,−1), (−1,−1)}.
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It follows that the complex R has terms as follows:

R0 =S(−1,−1, 1, 1)︸ ︷︷ ︸
ua+1
0 u1

⊕S(0,−1, 0, 1)︸ ︷︷ ︸
ua
0u1u2

⊕ · · · ⊕ S(a,−1,−a, 1)︸ ︷︷ ︸
u1u

a+1
2

⊕S(−1, 0, 1, 0)︸ ︷︷ ︸
u0u3

⊕S(0, 0, 0, 0)︸ ︷︷ ︸
u2u3

,

R1 =S(−1,−1, 0, 1)2︸ ︷︷ ︸
α0u

a
0u1, α1u

a
0u1

⊕ S(0,−1,−1, 1)2︸ ︷︷ ︸
α0u

a−1
0 u1u2, α1u

a−1
0 u1u2

⊕ · · · ⊕ S(a− 1,−1,−a, 1)2︸ ︷︷ ︸
α0u1u

a
2 , α1u1u

a
2

⊕S(−1, 0, 0, 0)2︸ ︷︷ ︸
α0u3, α1u3

⊕S(−1,−1, 1, 0)︸ ︷︷ ︸
β0u0

⊕S(a− 1,−1, 1, 0)︸ ︷︷ ︸
β1u0

⊕S(0,−1, 0, 0)︸ ︷︷ ︸
β0u2

⊕S(a,−1, 0, 0)︸ ︷︷ ︸
β1u2

,

R2 =S(−1,−1,−1, 1)︸ ︷︷ ︸
α0α1u

a−1
0 u1

⊕S(0,−1,−2, 1)︸ ︷︷ ︸
α0α1u

a−2
0 u1u2

⊕ · · · ⊕ S(a− 2,−1,−a, 1)︸ ︷︷ ︸
α0α1u1u

a−1
2

⊕S(−1,−1, 0, 0)2︸ ︷︷ ︸
α0β0, α1β0

⊕S(a− 1,−1, 0, 0)2︸ ︷︷ ︸
α0β1, α1β1

.

The differentials ∂1 : R0 ← R1 and ∂2 : R1 ← R2 are given, respectively, by the matrices

∂1 =



−x′0 −x′1 0 0 0 0 · · · 0 0 0 0 0 0 −y′0 0 0 0

x0 x1 −x′0 −x′1 0 0 · · · 0 0 0 0 0 0 0 0 −y′0 0

0 0 x0 x1 −x′0 −x′1 · · · 0 0 0 0 0 0 0 0 0 0

0 0 0 0 x0 x1 · · · 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · −x′0 −x′1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 · · · x0 x1 −x′0 −x′1 0 0 0 −y′1 0 0

0 0 0 0 0 0 · · · 0 0 x0 x1 0 0 0 0 0 −y′1
0 0 0 0 0 0 · · · 0 0 0 0 −x′0 −x′1 y0 y1 0 0

0 0 0 0 0 0 · · · 0 0 0 0 x0 x1 0 0 y0 y1



,

∂2 =



x′1 0 · · · 0 y′0 0 0 0

−x′0 0 · · · 0 0 y′0 0 0

−x1 x′1 · · · 0 0 0 0 0

x0 −x′0 · · · 0 0 0 0 0

0 −x1 · · · 0 0 0 0 0

0 x0 · · · 0 0 0 0 0

...
...

...
...

...
...

0 0 · · · x′1 0 0 0 0

0 0 · · · −x′0 0 0 0 0

0 0 · · · −x1 0 0 y′1 0

0 0 · · · x0 0 0 0 y′1

0 0 · · · 0 −y0 0 −y1 0

0 0 · · · 0 0 −y0 0 −y1
0 0 · · · 0 −x′0 −x′1 0 0

0 0 · · · 0 0 0 −x′0 −x′1
0 0 · · · 0 x0 x1 0 0

0 0 · · · 0 0 0 x0 x1



.
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As predicted by Theorem 4.1.1 parts (2) and (3), the differentials in R are linear; and the ranks of

R0, R1, and R2 are a+ 4, 2a+ 8, and a+ 4, respectively.

4.3.4 The Fourier–Mukai Transform

Let π1 and π2 denote the projections ofX×X onto X, and let ΦR denote the following Fourier–Mukai

transform:

ΦR : Db(X)
π∗
1−→ Db(X ×X)

· ⊗R−−−→ Db(X ×X)
Rπ2∗−−−→ Db(X).

We will prove that R is a resolution of the diagonal by showing that ΦR is isomorphic to the identity

functor, and we will do so by directly exhibiting a natural isomorphism Φν : ΦR → ΦO∆
. In fact,

we show this by proving that Φν induces a quasi-isomorphism on a full exceptional collection. To

perform this calculation, we will need an explicit model for the functor ΦR, which we present in

this section. We refer the reader to [Huy06, §8.3] for further background.

Let coh(X) denote the category of coherent sheaves on X, and suppose F1,F2 ∈ coh(X), where

F1 is locally free. By the projection formula and base change, we have canonical isomorphisms

Rπ2∗(F1 ⊠ F2) ∼= Rπ2∗π
∗
1(F1)⊗OX

F2
∼= RΓ(X,F1)⊗k F2

in Db(X). Given F ∈ coh(X), we can use this to explicitly compute ΦR(F) as follows. Given

G ∈ coh(X), let ČG denote the Čech complex of G associated to the affine open cover of X arising

from the maximal cones in its fan. Consider the following bicomplex, where the horizontal maps are

induced by the differentials in R, the vertical maps are induced by the Čech differentials, N is the

length of R, and “L1 ⊠ L2 ∈ Ri” is shorthand for “L1 ⊠ L2 is a summand of Ri”:

0←−−
⊕

L1⊠L2∈R0

ČF⊗L1 ⊗ L2 ←−− · · · ←−−
⊕

L1⊠L2∈RN

ČF⊗L1 ⊗ L2 ←−− 0. (4.3.3)

Since the differentials of ČG have entries in k, the columns of (4.3.3) split. Thus, we may apply

[EFS03, Lem. 3.5] to conclude that the totalization of (4.3.3) is homotopy equivalent to a complex
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B(F) concentrated in degrees k = −N, . . . , N with terms

B(F)k =
⊕
i−j=k

⊕
L1⊠L2∈Ri

Hj(X,F ⊗ L1)⊗ L2 ∼=
⊕
i−j=k

Rjπ2∗(π
∗
1F ⊗Ri). (4.3.4)

The terms of B(F) arise from the totalization of the vertical homology of (4.3.3).

Over projective space, the analogue of this Fourier–Mukai transform involving Beilinson’s resolution

of the diagonal is called the Beilinson monad (see e.g. [EFS03]), hence the notation B(−). Note

that “the” complex B(F) is only well-defined up to homotopy equivalence, since the differential

depends on a choice of splitting of the columns in the bicomplex (4.3.3). More precisely, for each

term Yi,j of (4.3.3), choose a decomposition Yi,j = Bi,j ⊕Hi,j ⊕ Li,j such that Bi,j ⊕Hi,j = Zvert
i,j ,

where Zvert
i,j denotes the vertical cycles in Yi,j . Notice that there is a canonical isomorphism

Hi,j
∼=
⊕

L1⊠L2∈Ri
H−j(F ⊗ L1) ⊗ L2. Let σH : Y•,• → H•,• and σB : Y•,• → B•,• denote the

projections, let g : L•,•
∼=−→ B•,•−1 denote the isomorphism induced by the vertical differential, and

let π = g−1σB. By [EFS03, Lem. 3.5], the differential on B(F) is given by

∂B(F) =
∑
i≥0

σH(dhorπ)
idhor,

where dhor is the horizontal differential in the bicomplex (4.3.3).

Remark 4.3.10. The i = 0 term in the formula for ∂B(F) is simply the map induced by the

differential on R; it is independent of the choices of splittings of the columns of (4.3.3). Since this

is the only part of the differential on B(F) that we will need to explicitly compute, we will ignore

the ambiguity of B(F) up to homotopy equivalence from now on.

4.3.5 Proof of Theorem 4.1.1

Proof. To prove parts (1) and (2), first recall that R is the direct sum of the degree (d1, d2, d3, d4, 0, 0)

components of K(0, 0, 0, 0, r, s) for all d1, . . . , d4 ∈ Z. Thus, since K is exact in positive homological

degrees, R is as well; moreover, the differentials of R are linear1. We now check that R has property

1Free complexes that are linear in the sense of Theorem 4.1.1(2) are called strongly linear in [BE22].
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(3). For all k, ℓ ∈ Z, we have

dimkH
0(Fas ,O(k, ℓ)) =


(k + 1)(ℓ+ 1) +

(
ℓ+1
2

)
as, ℓ ≥ 0;

0, ℓ < 0.

(4.3.5)

We now compute:

rankRn =
n∑
i=0

(
r + 1

i

)(
s+ 1

n− i

)
dimkH

0(Fas ,O(r − i, s− (n− i)))

=
r∑
i=0

(
r + 1

i

)(
s+ 1

n− i

)(
(r − i+ 1)(s− (n− i) + 1) +

(
s− (n− i) + 1

2

)
as

)
+

(
s+ 1

n− (r + 1)

)(
s− (n− (r + 1)) + 1

2

)
as

=
r∑
i=0

(
r

i

)(
s

n− i

)
(r + 1)(s+ 1) +

r∑
i=0

(
r + 1

i

)(
s− 1

n− i

)(
s+ 1

2

)
as

+

(
s− 1

n− (r + 1)

)(
s+ 1

2

)
as

=

r∑
i=0

(
r

i

)(
s

n− i

)
(r + 1)(s+ 1) +

r+1∑
i=0

(
r + 1

i

)(
s− 1

n− i

)(
s+ 1

2

)
as

=

(
r + s

n

)
dimkH

0(Fas ,O(r, s)).

The first equality follows from the definition of R, the second from (4.3.5), the third from some

straightforward manipulations, the fourth by combining the second and third terms, and the last

by Vandermonde’s identity and the equality dimkH
0(Fas ,O(r, s)) = (r + 1)(s+ 1) +

(
s+1
2

)
as. This

proves (3).

Finally, we check property (4): namely, that the cokernel of the differential ∂1 : R1 → R0 is O∆.

Just as in the proof of [CK08, Prop. 3.2], we will prove that R is a resolution of O∆ by showing there

is a chain map R → O∆ that induces a natural isomorphism on certain Fourier–Mukai transforms.

In detail: given any i, j ∈ Z, there is a natural map O(i, j,−i,−j)→ O∆ given by multiplication.

These maps determine a natural map ν0 : R0 → O∆, and it is clear from the description of ∂1 in

Example 4.3.8 that ν0 determines a chain map ν : R → O∆. Recall that ΦR denotes the Fourier–

Mukai transform associated to R. To show that ν is a quasi-isomorphism, we need only prove
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that the induced natural transformation Φν : ΦR → ΦO∆
on Fourier–Mukai transforms is a natural

isomorphism; indeed, this immediately implies that Φcone(ν) is isomorphic to the 0 functor, and so

cone(ν) = 0 by [CK08, Lem. 2.1].

The category Db(X) is generated by the line bundles O(b, c) with 0 ≤ b ≤ r and 0 ≤ c ≤ s; in fact,

these bundles form a full exceptional collection in Db(X) [Orl93, Cor. 2.7]. Since ΦO∆
is the identity

functor, we need only show that the map ΦR(O(b, c))→ O(b, c) induced by Φν is an isomorphism

in Db(X).

Say O(d1, d2, d3, d4) is a summand of R. We first show that the line bundle O(d1 + b, d2 + c) on

X is acyclic, i.e. H i(X,O(d1 + b, d2 + c)) = 0 for i > 0. Say the summand O(d1, d2, d3, d4) of R

corresponds to the monomial αi1 · · ·αikβj1 · · ·βjℓm, where k ≤ r + 1, ℓ ≤ s+ 1, and m ∈Mr−k,s−ℓ.

It follows that d1 = −k − t1 and d2 = −ℓ− t2 for some t1 ≤ r − k and t2 ≤ s− ℓ. In particular, we

have d1 + b ≥ d1 ≥ −r, and d2 + c ≥ d2 ≥ −s. Thus, O(d1 + b, d2 + c) satisfies either (a) or (b) in

Corollary 4.3.3(2), and so O(d1 + b, d2 + c) is acyclic.

Recall from §4.3.4 that, given any sheaf F on X, ΦR(F) may be modeled explicitly as the

complex B(F). The previous paragraph implies that the terms in B(O(b, c)) involving higher

cohomology vanish; that is, the nonzero terms of B(O(b, c)) are of the form H0(L1(b, c))⊗L2, where

L1 ⊠ L2 is a summand of R. In particular, B(O(b, c)) is concentrated in nonnegative degrees, the

map B0(O(b, c)) → O(b, c) induced by ν is the natural multiplication map, and the differential

on B(O(b, c)) is induced by the differential on R. It follows that B(O(b, c)) is exact in positive

degrees, since R has this property. We now show, by direct computation, that the induced map

H0(B(O(b, c)))→ O(b, c) is an isomorphism.

It follows from our explicit descriptions of the terms R0 and R1 in Example 4.3.8 that

B(O(b, c))0 =
⊕

m∈Mr,s

H0(X,O(b− dm1 , c− dm2 ))⊗O(dm1 , dm2 ) ·m, and

B(O(b, c))1 = B(O(b, c))α1 ⊕B(O(b, c))β1 , where

B(O(b, c))α1 =

r⊕
i=0

⊕
m∈Mr−1,s

H0(X,O(b− dm1 − 1, c− dm2 ))⊗O(dm1 , dm2 ) · αim,

B(O(b, c))β1 =
s⊕
i=0

⊕
m∈Mr,s−1

H0(X,O(b− dm1 + ai, c− dm2 − 1))⊗O(dm1 , dm2 ) · βim.
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We represent the first differential on B(O(b, c)) as a matrix with respect to the above decomposition,

along with the monomial bases of each cohomology group. The column of this matrix corresponding to

αim and a monomial z in the Cox ring S = k[x0, . . . , xr, y0, . . . , ys] of X of degree (b−dm1 −1, c−dm2 )

has exactly two nonzero entries:

• an entry of 1 for u2m ∈Mr,s and xiz ∈ H0(X,O(b− du2m1 , c− du2m2 ));

• an entry of −x′i for u0m ∈Mr,s and z ∈ H0(X,O(b− du0m1 , c− du0m2 )).

Similarly, the column corresponding to βim and a monomial w ∈ S of degree (b−dm1 +ai, c−dm2 −1)

has exactly two nonzero entries:

• an entry of 1 for u3m and yiw ∈ H0(X,O(b− du3m1 , c− du3m2 ));

• an entry of −y′i for uas−ai0 u1u
ai
2 m and w ∈ H0(X,O(b− du

as−ai
0 u1u

ai
2 m

1 , c− du
as−ai
0 u1u

ai
2 m

2 )).

That is, the first differential on B(O(b, c)) has the following form:



0 0

−x′
i 0 z ⊗ u0m

0 0

0 −y′
i w ⊗ uas−ai

0 u1u
ai
2 m

· · · 0 · · · 0 · · ·

1 0 xiz ⊗ u2m

0 0

0 1 yiw ⊗ u3m

0 0

z ⊗ αim · · · w ⊗ βim



.

Now observe: every column of this matrix contains exactly one “1", and there is exactly one row

that does not contain a “1": namely, the row corresponding to the summand H0(X,O)⊗O(b, c) ·

ub+cas0 uc1u
r−b
2 us−c3 . It follows immediately that the cokernel of this matrix is isomorphic to the

summand H0(X,O) ⊗ O(b, c), and the multiplication map induced by ν from this summand to

O(b, c) is clearly an isomorphism.

Remark 4.3.11. Our construction of the resolution R realizes it as a subcomplex of the (infinite

rank) resolution of the diagonal obtained in [BE21, Thm. 4.1] and therefore yields a positive answer

to [BE21, Conj. 7.2] for smooth projective toric varieties of Picard rank 2.
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Corollary 4.3.12. Given a coherent sheaf F on X, we have B(F) ∼= F in Db(X).

Corollary 4.3.13. Consider the ideal I = (α0, . . . , αr, β0, . . . , βs) ⊆ SE, and let D denote the sheaf

S̃E/I on E. We have an isomorphism π∗D(0, 0, 0, 0, r, s) ∼= O∆ of sheaves on X ×X.

Proof. Recall that K is the sheafification of the Koszul complex on the generators of I, which form

a regular sequence. Therefore K is a locally free resolution of D, and using Proposition 4.3.6 and

Theorem 4.1.1(4) we have π∗D(0, 0, 0, 0, r, s) ∼= π∗K(0, 0, 0, 0, r, s) ∼= R ∼= O∆.

We will now prove Conjecture 3.1.2 for X as in Theorem 4.1.1.

Proof of Corollary 4.1.2. Our proof is nearly the same as that of [BES20, Prop. 1.2]. Given a

finitely generated graded module M over the Cox ring of X, let F be the associated sheaf on X.

Applying the Fujita Vanishing Theorem, choose i, j ≫ 0 such that, for all summands L1 ⊠ L2 of

the resolution of the diagonal R from Theorem 4.1.1, we have Hq(X,F(i, j)⊗ L1) = 0 for q > 0.

The complex B(F(i, j)) is a resolution of F(i, j) of length at most dim(X) consisting of finite sums

of line bundles, and twisting back by (−i,−j) gives a resolution of F . Now applying the functor

G 7→
⊕

(k,ℓ)∈Z2 H0(X,G(k, ℓ)) to the complex B(F(i, j))(−i,−j) gives a virtual resolution of M .
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5 Splitting of Vector Bundles on Smooth

Projective Toric Varieties

The material in this chapter will appear in a forthcoming preprint [Say24].

5.1 Introduction

The study of algebraic vector bundles, especially as a source for interesting higher dimensional

varieties, is a deep and classical aspect of algebraic geometry [Har79]. Moreover, the equivalence of

the categories of algebraic and holomorphic vector bundles on a complex algebraic variety connects

this study to problems in mathematical physics.

A central problem is existence of indecomposable vector bundles of low rank on Pn [Har74].

A well-known result of Horrocks [Hor64] states that a vector bundle on Pn splits as a sum of line

bundles if and only if it has no intermediate cohomology. This splitting criterion has been extended

to many different spaces: products of projective spaces [CM05,EES15], Grassmannians and quadrics

[Ott89], rank 2 vector bundles on Hirzebruch surfaces [Buc87,AM11,FM11,Yas15], Segre–Veronese

varieties [Sch22], among others.

We prove an analogous splitting criterion for vector bundles on smooth projective toric varieties,

under an additional hypothesis similar to Eisenbud–Erman–Schreyer’s criterion for products of

projective spaces [EES15, Thm. 7.2] and the Picard rank 2 case in [BS22, Thm. 1.5].

Theorem 5.1.1. Suppose E is a vector bundle on a smooth projective toric variety X and

E ′ = ⊕ni=1O(Di)
ri is a sum of line bundles on X such that Di+1 − Di is ample for 0 < i < n.

If Hp(X, E ⊗ L) = Hp(X, E ′ ⊗ L) for all p ≥ 0 and L ∈ PicX, then E ∼= E ′.

The first ingredient is the recent construction of short resolutions of the diagonal for smooth normal
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toric stacks due to Hanlon–Hicks–Lazarev and Brown–Erman [HHL23,BE23b], which consist of line

bundles from the Thomsen collection [Tho00]. The proof of Theorem 5.1.1 uses a Beilinson-type

spectral sequence which computes the corresponding Fourier–Mukai transform. Similar ideas have

been used to great success in [CM05,FM11,AM11,EES15,BS22].

In our case, a significant obstacle is introduced by the difference between the nef and effective

cones for arbitrary toric varieties. In all previous incarnations of the criterion, either the nef and

effective cones are identical or Picard rank is low (one or two). Without either of these restrictions,

the analysis of the cohomology of line bundles requires new ideas.

We begin in §5.2 with a recipe for proving Horrocks-type splitting criteria for any smooth projective

variety, which illustrates the proof. Then in §5.3 we prove Theorem 5.1.1.

5.2 A General Recipe for Splitting Criteria

Let X be a smooth projective variety with a resolution of the diagonal K and E a coherent sheaf

on X. Similar to the case in §4.3.4, we use a Fourier–Mukai functor with kernel K to construct a

monad which is quasi-isomorphic to E and whose terms are prescribed by the terms of K with ranks

given by sheaf cohomology of twists of E . The recipe for splitting criteria described in this section is

a consequence of appropriate vanishing of the terms of this spectral sequence.

The diagonal embedding X → X ×X defines a closed subscheme ∆ ⊂ X ×X. Let π1 and π2

denote the projections of X ×X onto X and for the rest of this paper suppose K is a locally free

resolution for O∆, the structure sheaf of ∆, with terms given as a direct sums of sheaves of the form

G ⊠ L := π∗1G ⊗ π∗2L, where G a locally free sheaf and L = O(E) a line bundle corresponding to a

divisor E on X.

The Fourier–Mukai transform with kernel K is the composition of functors:

ΦK : Db(X)
π∗
1−→ Db(X ×X)

· ⊗K−−−→ Db(X ×X)
Rπ2∗−−−→ Db(X).

In particular, ΦK is the identity functor on the derived categories, meaning that ΦK(E) will be

quasi-isomorphic to E . We compute the last functor, derived pushforward, by resolving the first
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term of each box product with a Čech complex to obtain a spectral sequence

E−s,t
1 = Rtπ2∗(π

∗
1E ⊗ Ks) =

⊕
i

Gi ⊗Ht(X,Li)⇒ Rs−tπ2∗(π
∗
1E ⊗ K) ∼=


E i = j

0 i ̸= j,

where the direct sum ranges over summands Gi ⊠ Li of Ks (c.f. §4.3.4 and Chapter 6, §3.3).

...
...

...
R2π2∗(π

∗
1E ⊗ K0) R2π2∗(π

∗
1E ⊗ K1) R2π2∗(π

∗
1E ⊗ K2) · · ·

R1π2∗(π
∗
1E ⊗ K0) R1π2∗(π

∗
1E ⊗ K1) R1π2∗(π

∗
1E ⊗ K2) · · ·

π2∗(π
∗
1E ⊗ K0) π2∗(π

∗
1E ⊗ K1) π2∗(π

∗
1E ⊗ K2) · · ·

t

sk=2k=1k=0

(5.2.1)

Definition 5.2.1. For a convex cone A ⊂ PicX, we say K is cohomologically supported in A if for

any summand G ⊠O(E) of Kq we have Hp(X,O(E −D)) = 0 for all p < q and D ∈ A.

For instance, Beilinson’s resolution of the diagonal for Pn, its variant for products of projective

spaces, and the resolutions constructed in Chapter 4 are all cohomologically supported in NefX ⊂

PicX. The main difference between these examples is that only the Picard group for Pn has a total

ordering.

Lemma 5.2.2. Let E be a coherent sheaf on a smooth projective variety X with a resolution of the

diagonal K such that ΦK(OX) = OX . Consider the spectral sequence E−s,t
1 ⇒ E above.

1. If E−s−1,s
1 = 0 for all s (i.e. the red terms vanish) then E0,0

1 is a direct summand of E.

2. If K is supported in A and E =
⊕
O(Di)

ri with −Di ∈ A then E−s−1,s
1 = 0 for all s.

Proof. The proof of the first part is identical to [BS22, Lem. 4.1] and [EES15, Lem. 7.3]. Using

[EFS03, Lem. 3.5], there exists a complex with terms the same as the totalization Tot(E1) (along

the dotted diagonals in (5.2.1)) which is quasi-isomorphic to E . The vanishing of the first term of

the totalization (colored in red) implies that all differentials with source or target E0,0
r are zero,

therefore E0,0
1 is a summand of E0,0

∞ = E .
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The second part immediately follows from Definition 5.2.1, as ΦK commutes with direct sums

and the totalization Tot(E1) corresponding to ΦK(O(−D)) for a divisor D ∈ A is supported in

non-positive homological degrees.

Remark 5.2.3. The additional hypotheses present in the splitting criteria proved in [EES15] and

[BS22] are meant to sidestep the problem of missing total ordering in higher Picard rank by proving

a criterion for a smaller cone A = NefX. Nevertheless, to date we do not know whether such

hypotheses are necessary. In contrast, for certain varieties (e.g. Hirzebruch surfaces), it is possible

to compute a resolution of the diagonal supported in EffX, which yields a strictly stronger splitting

criterion.

Proposition 5.2.4. Suppose X is a smooth projective variety X with a locally free resolution of the

diagonal K such that K is cohomologically supported in A and ΦK(OX) = OX . Let E be a vector

bundle and E ′ = ⊕ni=1O(Di)
ri a sum of line bundles on X such that Di+1 −Di ∈ A for 0 < i < n.

If Hp(X, E ⊗ L) = Hp(X, E ′ ⊗ L) for all p ≥ 0 and L ∈ PicX, then E ∼= E ′.

Proof. Following a similar road map as [BS22, Thm. 1.5] and [EES15, Thm. 7.2], twist E and E ′ by the

highest line bundle O(−Dn) so that without loss of generality we can assume E ′ = ⊕n−1
i=1 O(Di)

ri⊕Orn .

Let E1(E) denote the spectral sequence corresponding to ΦK(E).

By hypothesis, E1(E) and E1(E ′) have the same terms, so E0,0
1 (E) = E0,0

1 (E ′) = OrnX . Since

−Di ∈ A for all i, by Lemma 5.2.2(b) we have E−s−1,s
1 (E) = E−s−1,s

1 (E ′) = 0 for all s. Using

Lemma 5.2.2(a), the term E0,0
1 (E) = OrnX is a summand of E . Induction on the complement of OrnX

in E and E ′ finishes the proof.

Remark 5.2.5. The existence of a resolution of the diagonal of appropriate shape is a strong

assumption. For instance, sufficiently complicated varieties, for example K3 surfaces, may not admit

such a resolution consisting of sheaves of the form F ⊠ G (See [Huy06, pp. 180]).

Remark 5.2.6. It is straightforward to prove that given resolutions of the diagonal K and K′

supported in A and A′ for X and X ′, respectively, K⊠K′ is a resolution of the diagonal for X ×X ′

supported in A × A′. In particular, the splitting criterion [EES15, Thm. 7.2] for products of

projective spaces can be recovered from Beilinson’s resolution of the diagonal and Horrocks’ splitting

criterion for Pn.
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5.3 A Splitting Criterion for Toric Varieties

In [HHL23], Hanlon, Hicks, and Lazarev construct resolutions of toric subvarieties by line bundles

on a smooth toric variety X. The case which is of interest here is the diagonal subvariety, where

the resolution of the structure sheaf of the diagonal K consists of line bundles from the Thomsen

collection on X ×X (c.f. [BE23b]).

We will need the following technical lemma on properties of the terms of K.

Lemma 5.3.1. Suppose O(E′)⊠O(E) is a summand of Kq constructed as in [HHL23].

(I). The divisor −E is an effective Cartier divisor on X; that is:

E = −
∑

dρDρ for dρ ∈ Z≥0 and ρ ∈ Σ(1).

(II). The bundle O(E) is a summand of a high toric Frobenius pushforward of OX ; that is, there is

a Cartier Q-divisor Ẽ linearly equivalent to E such that:

Ẽ = −
∑

cρDρ for cρ ∈ [0, 1) and ρ ∈ Σ(1).

(III). The dimension of the polytope P−E is at least q; that is:

If O(E′)⊠O(E) is a summand of Kq then q ≤ dimP−E .

Proof. The Thomsen collection for X × X consists of products of bundles from the Thomsen

collection for X [HHL23, Rem. 1.3], hence the first two properties follow from O(E) being in the

Thomsen collection for X

The third point is more subtle, as it implies that not all line bundles from the Thomsen collection

for X × X appear in K, and only few may appear in a given term. The diagonal embedding

is induced by an inclusion of lattices ϕ : NX → NX×X . The dual map on the character lattices

ϕ∗ : MX×X →MX induces a short exact sequence of real tori:

0→ LR →MX×X,R/MX×X →MX,R/MX → 0.
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In the case of the diagonal, the dimension of LR ∼= MX,R/MX equals the dimension of X, and

it inherits a stratification labeled by divisors on X × X. It follows from the construction in

[HHL23, eq. (17)] that the line bundle summands of Kq correspond to q-dimensional strata. In

particular, the strata on LR are the same as the strata on MX,R when resolving a point on X,

only in that case the labels are divisors on X. Specifically, if a q-dimensional strata Sσ has label

O(E′)⊠O(E) in K, then Sσ has label O(E) in the resolution of a point on X.

Given a line bundle O(E) in the Thomsen collection, let S−E denote the union of strata with

that label. It follows from [FH22, Lem. 5.6] that S−E = (P−E \
⋃
ρ∈Σ(1) P−E−Dρ)/MX . Since

−E is effective P−E is nonempty and since the section polytopes are closed S−E is open, hence

dimS−E = dimP−E . Putting this all together: any q-dimensional strata Sσ which corresponds to a

line bundle O(E) in Kq must satisfy q = dimSσ ≤ dimS−E = dimP−E .

Remark 5.3.2. The stratifications considered in [HHL23, §3.4] and [FH22, §5] are both versions

of the stratification studied by Bondal in [Bon06], but they have subtle differences: the union of

the strata with the same label in [HHL23] is the unique strata with that label in [FH22], which is

contractible by [FH22, Lem. 5.6].

In order to use Lemma 5.2.2, we need the following analysis of the support of K.

Proposition 5.3.3. The resolution of the diagonal K is cohomologically supported in Ample(X).

Proof. Suppose O(E′)⊠O(E) is a summand of Kq. We show that:

Hp(X,O(E −D)) = 0 for p < q and any ample divisor D

First, using notation from (I) and (II), since ⌈dρ − (1− ϵ)cρ⌉ = dρ for 0 ≤ ϵ ≤ 1, we have:

−⌈D + (1− ϵ)Ẽ − E⌉ = −⌈D +
∑

(dρ − (1− ϵ)cρ)Dρ⌉

= −⌈D +
∑

dρDρ⌉ = −⌈D − E⌉ = E −D.
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Second, by linear equivalence in (II) we have Ẽ − E ∼ 0, hence:

D + (1− ϵ)Ẽ − E = D + (Ẽ − E)− ϵẼ

∼ D − ϵẼ,

which, for sufficiently small ϵ, is ample, and hence nef, because by hypothesis D is ample. Third,

since both D and −ϵẼ are effective, we have:

dimP
D+(1−ϵ)Ẽ−E = dimP

D−ϵẼ

≥ dimP−ϵẼ = dimP−Ẽ = dimP−E .

Hence by Batyrev–Borisov vanishing (see [CLS11, Thm. 9.3.5(b)]), we have:

Hp(X,O(E −D)) = Hp(X,O(−⌈D + (1− ϵ)Ẽ − E⌉)) = 0 for all p < dimP−E .

Therefore by (III) we have the weaker vanishing Hp(X,O(E −D)) = 0 for p < q.

The proof of the main theorem is a direct application of the recipe from Section 5.2.

Proof of Theorem 5.1.1. Since K is cohomologically supported in Ample(X) by Proposition 5.3.3

and the consecutive differences Di+1 −Di are ample by hypothesis, the proof follows immediately

using the recipe in Proposition 5.2.4.
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6 Characterizing Multigraded Regularity on

Products of Projective Spaces

The material in this chapter originally appeared in [BCHS21].

6.1 Introduction

Castelnuovo–Mumford regularity of coherent sheaves on a projective variety is a measure of complexity

given in terms of vanishing of sheaf cohomology [BM93]. Its geometric significance has been studied

extensively for projective spaces [Mum66], abelian varieties [PP03], Grassmannians [Chi00], and

smooth projective toric varieties [MS04]. In many of these situations Castelnuovo–Mumford regularity

has deep connections to minimal free resolutions and syzygies of graded modules [Mum70,PP04].

Consider the projective space case. Let S be the polynomial ring on n + 1 variables over an

algebraically closed field k and m its maximal homogeneous ideal. A coherent sheaf F on Pn = ProjS

is d-regular for d ∈ Z if

1. H i(Pn,F (b)) = 0 for all i > 0 and all b ≥ d− i.

The Castelnuovo–Mumford regularity of F is then the minimum d such that F is d-regular. In

[EG84], Eisenbud and Goto considered the analogous condition on the local cohomology of a finitely

generated graded S-module M , proving the equivalence of the following:

2. H i
m(M)b = 0 for all i ≥ 0 and all b > d− i;

3. the truncation M≥d has a linear free resolution;

4. Tori(M,k)b = 0 for all i ≥ 0 and all b > d+ i.

In particular, conditions (1) through (4) are equivalent when M =
⊕

pH
0(Pn,F (p)) is the graded

S-module corresponding to F , so that H0
m(M) = H1

m(M) = 0 (c.f. [Eis05, Prop. 4.16]).
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In [MS04], Maclagan and Smith introduced the notion of multigraded Castelnuovo–Mumford

regularity for finitely generated Pic(X)-graded modules over the Cox ring of a smooth projective

toric variety X. In essence their definition is a generalization of conditions (1) and (2). In this

setting the multigraded regularity of a module is a subset of PicX rather than a single integer.

When X = Pn the minimum element of this region is the classical regularity.

In the multigraded case, translating the geometric definition of Maclagan and Smith into algebraic

conditions like (3) and (4) above has been an open problem. In this direction, Maclagan–Smith and

later Berkesch–Erman–Smith demonstrated connections between multigraded regularity and the

existence of virtual resolutions with certain twists in [MS04, Thm. 7.8] and [BES20, Thm. 2.9]. In a

more general setting, Botbol–Chardin sharpened the relationshop between local cohomology and

multigraded Betti numbers [BC17, Thm. 4.14]. More recently, Brown and Erman explored different

notions of linearity for weighted projective spaces [BE23a] in relation to Green’s Np-conditions and

Benson’s weighted regularity [Ben04].

In this chapter, taken from [BCHS21], we focus on the case when X is a product of projective spaces

and establish a tight relationship between multigraded regularity, truncations, Betti numbers, and

virtual resolutions. Our main results strengthen and clarify previous work in a number of directions:

First, we extend the equivalence of (2) and (3) by modifying the notion of a linear resolution. Second,

we prove a uniqueness theorem for virtual resolutions considered in [BES20, Thm. 2.9] and use it

to show that they are precisely the minimal free resolutions of truncated modules. Finally, as a

consequence we provide an effective method for determining whether a specific element d ∈ PicX

lies in reg(M) without a cohomology computation.

The obvious way one might hope to generalize Eisenbud and Goto’s result to products of projective

spaces is false: the truncation M≥d of a d-regular multigraded module M can have nonlinear maps

in its minimal free resolution (see Example 6.3.2). We show that under a mild saturation hypothesis,

multigraded Castelnuovo–Mumford regularity is determined by a different linearity condition, which

we call quasilinearity (see Definition 6.3.3).

Let S be the Zr-graded Cox ring of Pn := Pn1× · · · × Pnr and B the corresponding irrelevant ideal.

The following complex contains all allowed twists for a quasilinear resolution generated in degree
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zero on a product of 2 projective spaces:

0 S

S(−1, 0)

⊕
S( 0,−1)

⊕ S(−1,−1)

S(−2, 0)

⊕
S(−1,−1)
⊕

S( 0,−2)

⊕
S(−2,−1)
⊕

S(−1,−2)

· · · .

Within each term, the summands in the left column (green) are linear syzygies while those in the

right column (pink) are nonlinear syzygies. In general, for twists −b appearing in the i-th step of a

quasilinear resolution, the sum of the positive components of b− d− 1 is at most i− 1, where d is

the degree of all generators. This condition is inspired by the criterion from [BES20, Thm. 2.9],

which suggest a close relationship between multigraded regularity and properties of the irrelevant

ideal.

Our main theorem characterizes multigraded regularity of modules on products of projective

spaces in terms of the Betti numbers of their truncations.

Theorem G. Let M be a finitely generated Zr-graded S-module with H0
B(M) = 0. Then M is

d-regular if and only if M≥d has a quasilinear resolution F• with F0 generated in degree d.

The proof of Theorem G is based in part on a Čech–Koszul spectral sequence that relates the Betti

numbers of M≥d to the terms of the Beilinson spectral sequence which computes the Fourier–Mukai

transform of M̃(d). Precisely, if M is d-regular and H0
B(M) = 0 then

dimkTor
S
j (M≥d,k)a = h|a|−j

(
Pn, M̃(d)⊗ Ωa

Pn(a)
)

for |a| ≥ j ≥ 0, (6.1.1)

where the Ωa
Pn are cotangent sheaves on Pn. The regularity of M implies certain cohomological

vanishing for M̃ ⊗ Ωa
Pn(a), which, using (6.1.1), implies quasilinearity of the resolution of M≥d.

Conversely, a computation of H i
B(S) in Section 6.3.2 shows that the cokernel of a quasilinear

resolution generated in degree d is d-regular. Thus we give a practically computable criterion for

regularity in degree d.

Our proof of Theorem G extends the same argument used in [BES20, Thm. 2.9], showing that

the Fourier–Mukai transform of a 0-regular module M has the same graded Betti numbers as
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M≥0. Since free resolutions of M≥d are virtual resolutions of M , this naturally suggests that the

virtual resolutions exhibited in [BES20, Thm. 2.9] are precisely the minimal free resolutions of the

truncations of M . We will use prove this to be true using Theorem 3.5.4.

Finally, note that since a linear resolution is necessarily quasilinear, having a linear truncation at

d is strictly stronger than being d-regular. That is to say, when H0
B(M) = 0:

M≥d has a linear resolution

generated in degree d
=⇒

M≥d has a quasilinear resolution

generated in degree d
⇐⇒ M is d-regular.

Despite not fully characterizing multigraded regularity, having a linear resolution after truncation

remains a useful condition. Understanding the geometric implications of these vanishing conditions

is an interesting open question.

6.2 Notation and Background

Throughout we denote the natural numbers by N = {0, 1, 2, . . .}. When referring to vectors in Zr

we use a bold font. Given a vector v = (v1, . . . , vr) ∈ Zr we denote the sum v1 + · · ·+ vr by |v|. For

v,w ∈ Zr we write v ≤ w when vi ≤ wi for all i, and use max{v,w} to denote the vector whose

i-th component is max{vi, wi}. We reserve e1, . . . , er for the standard basis of Zr and for brevity

we write 1 for (1, 1, . . . , 1) ∈ Zr and 0 for (0, 0, . . . , 0) ∈ Zr.

Fix a Picard rank r ∈ N and dimension vector n = (n1, . . . , nr) ∈ Nr. We denote by Pn the

product Pn1× · · · × Pnr of r projective spaces over a field k. Given b ∈ Zr we let

OPn(b) := π∗1OPn1(b1)⊗ · · · ⊗ π∗rOPnr(br)

where πi is the projection of Pn to Pni. This gives an isomorphism PicPn ∼= Zr, which we use

implicitly throughout.

Let S be the Zr-graded Cox ring of Pn, which is isomorphic to the polynomial ring k[xi,j | 1 ≤ i ≤

r, 0 ≤ j ≤ ni] with deg(xi,j) = ei. Further, let B =
⋂r
i=1⟨xi,0, xi,1, . . . , xi,ni⟩ ⊂ S be the irrelevant

ideal. For a description of the Cox ring and the relationship between coherent OPn-modules and

Zr-graded S-modules, see [Cox95, CLS11]. In particular, the twisted global sections functor Γ∗

given by F 7→
⊕

p∈Zr H0(Pn,F (p)) takes coherent sheaves on Pn to S-modules. Given a Zr-graded
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i = 0 i = 1 i = 2 i = 3

Figure 6.1: The top row shows the regions Li(1, 2) in green, and the bottom row Qi(1, 2) in pink
for i = 0, 1, 2, 3, from left to right, as defined in Section 6.2.1.

S-module M , let βi(M) := {b ∈ Zr | TorSi (M,k)b ̸= 0} denote the set of multidegrees of i-th

syzygies of M .

6.2.1 Multigraded Regularity

In order to streamline our definitions of regions inside the Picard group of Pn, we introduce the

following subsets of Zr: for d ∈ Zr and i ∈ N let

Li(d) :=
⋃
|λ|=i

(d− λ1e1 − · · · − λrer + Nr) for λ1, . . . , λr ∈ N

Qi(d) := Li−1(d− 1) for i > 0 and Q0(d) = d+ Nr.

Note that for fixed d ∈ Zr we have Li(d) ⊆ Qi(d) for all i.

Example 6.2.1. When r = 2 the regions Li(d) and Qi(d) can be visualized as in Figure 6.1. For

i > 1 they are shaped like staircases with i+ 1 and i “corners,” respectively; in other words Li(d)

contains i+ 1 minimal elements and Qi(d) contains i.
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Remark 6.2.2. An alternate description of Li(d) will also be useful: it is the set of b ∈ Zr so that

the sum of the positive components of d− b is at most i. (This ensures that we can distribute the

λj so that b+
∑

j λjej ≥ d.)

With this notation in hand we can recall the definition of multigraded regularity.

Definition 6.2.3. [MS04, Def. 1.1] Let M be a finitely generated Zr-graded S-module. We say M

is d-regular for d ∈ Zr if the following hold:

1. H0
B(M)p = 0 for all p ∈

⋃
1≤j≤r(d+ ej + Nr),

2. H i
B(M)p = 0 for all i > 0 and p ∈ Li−1(d).

The multigraded Castelnuovo–Mumford regularity of M is then the set

reg(M) :=
{
d ∈ Zr

∣∣ M is d-regular
}
⊂ PicPn∼= Zr.

It follows directly from the definition that if M is d-regular, then M is d′-regular for all d′ ≥ d.

For other properties of multigraded regularity, such as 0-regularity of S, see [MS04].

Remark 6.2.4. Several alternate notions of Castelnuovo–Mumford regularity for the multigraded

setting exist in the literature. The initial extension was introduced by Hoffman and Wang for a

product of two projective spaces [HW04]. Following Maclagan and Smith’s definition, Botbol and

Chardin gave a more general definition working over an arbitrary base ring [BC17]. Recently, in

their work on Tate resolutions on toric varieties, Brown and Erman introduced a modified notion

of multigraded regularity for a weighted projective space, which they then extended to other toric

varieties [BE21, §6.1].

6.2.2 Truncations and Local Cohomology

In this section we collect facts about truncations and local cohomology that will be used repeatedly.

As in the case of a single projective space, the truncation of a graded module on a product of

projective spaces at multidegree d contains all elements of degree at least d.

Definition 6.2.5. For d ∈ Zr and M a Zr-graded S-module, the truncation of M at d is the

Zr-graded S-submodule M≥d :=
⊕

d′≥dMd′ .
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Immediate from the definition is the following lemma.

Lemma 6.2.6. The truncation map M 7→M≥d is an exact functor of Zr-graded S-modules.

Remark 6.2.7. Since truncation is exact, if F• is a graded free resolution of a module M then the

term by term truncation (F•)≥d is a resolution of M≥d. However, in general the truncation of a

free module is not free, so (F•)≥d is generally not a free resolution of M≥d.

We denote by Hp
B(M) the p-th local cohomology of M supported at the irrelevant ideal B. For

p > 0 and a ∈ Zr there exist natural isomorphisms

Hp
(
Pn, M̃(b)

) ∼= Hp+1
B (M)b,

and for p = 0 there is a Zr-graded exact sequence

0 H0
B(M) M Γ∗(M̃) H1

B(M) 0. (6.2.1)

An important tool for computing local cohomology is the local Čech complex

Č•(B,M) : 0 M
⊕
M [g−1

i ]
⊕
M [g−1

i , g−1
j ] · · ·

where the gi range over the generators of B. We index the local Čech complex so that the summands

of Čp(B,M) are localizations of M at p distinct generators of B. Then we have

Hp
B(M) ∼= Hp(Č•(B,M)).

See [ILL+07] and [CLS11, §9] for more details.

Note that inverting a generator of B inverts a variable from each factor of Pn, so the distinguished

open sets corresponding to the generators of B form an affine cover UB of Pn. Denote by Č•(UB,F )

the Čech complex of a sheaf F with respect to UB:

Č•(UB,F ) : 0
⊕

F |Ui

⊕
F |Ui∩Uj · · · .
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Lemma 6.2.8. Given a complex of graded S-modules L → M → N such that L̃ → M̃ → Ñ is

exact, the complex Čp(B,L)→ Čp(B,M)→ Čp(B,N) is exact for each p ≥ 0.

Proof. Fix p. Then Čp(B,L)→ Čp(B,M)→ Čp(B,N) splits as a direct sum of complexes

L[g−1
1 , . . . , g−1

p ]→M [g−1
1 , . . . , g−1

p ]→ N [g−1
1 , . . . , g−1

p ]

each of which can be obtained by applying Γ(U,−) to L̃→ M̃ → Ñ , where U is the complement of

V (g1, . . . , gp). Since U is affine they are exact.

Since M/M≥d is annihilated by a power of B, a module M and its truncation define the same sheaf

on Pn. In particular Hp
B(M) = Hp

B(M≥d) for p ≥ 2. The long exact sequence of local cohomology

applied to 0→M≥d →M →M/M≥d → 0 gives

0 H0
B(M≥d) H0

B(M) M/M≥d H1
B(M≥d) H1

B(M) 0.

Hence H0
B(M) = 0 implies H0

B(M≥d) = 0. Since M/M≥d is zero in degrees larger than d we also

have H1
B(M≥d)≥d = H1

B(M)≥d. An immediate consequence is the following lemma, which we will

use repeatedly to reduce to the case when d = 0.

Lemma 6.2.9. A Zr-graded S-module M is d-regular if and only if M≥d is d-regular.

6.2.3 Koszul Complexes and Cotangent Sheaves

For each factor Pni of Pn, the Koszul complex on the variables of Si = CoxPni is a resolution of k:

Ki
• : 0← Si ← Sni+1

i (−1)←
∧2[

Sni+1
i (−1)

]
← · · · ←

∧ni+1[
Sni+1
i (−1)

]
← 0. (6.2.2)

The Koszul complex K• on the variables of S is the tensor product of the complexes π∗iK
i
•.

For 1 ≤ a ≤ n let Ω̂aPni be the kernel of
∧a−1

[
Sni+1
i (−1)

]
←
∧a
[
Sni+1
i (−1)

]
and let ΩaPni denote its

sheafification. The minimal free resolution of Ω̂aPni then consists of the terms of Ki
• with homological

index greater than a. Write Ω̂0
Pni for the kernel of k← Si (so that Ω0

Pni = OPni) and take Ω̂aPni to be
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0 otherwise. For a ∈ Zr with 0 ≤ a ≤ n define

Ωa
Pn := π∗1Ω

a1
Pn1⊗ · · · ⊗ π∗rΩ

ar
Pnr

and write Ω̂a
Pn for the analogous tensor product of the modules Ω̂aPni.

Given a free complex F• and a multidegree a ∈ Zr, denote by F≤a
• the subcomplex of F• consisting

of free summands generated in degrees at most a.

Lemma 6.2.10. Fix a ∈ Zr and let K• be the Koszul complex on the variables of S. The subcomplex

K≤a
• is equal to K• in degrees ≤ a, and its sheafification is exact except at homological index |a|,

where it has homology Ωa
Pn.

Proof. The first statement follows from the fact that the terms appearing in K• but not K≤a
• have

no elements in degrees ≤ a.

Note that K≤a
• is a tensor product of pullbacks of subcomplexes of the Ki

• in (6.2.2):

K≤a
• = π∗i (K

1
• )

≤a1 ⊗ · · · ⊗ π∗r (Kr
•)

≤ar .

After sheafification, each complex π∗i (K
i
•)

≤a is exact away from its kernel π∗iΩ
ai
Pni, which appears at

homological index ai. Thus K̃≤a
• has homology Ωa

Pn, appearing in index |a|.

6.3 A Criterion for Multigraded Regularity

To investigate the relationship between multigraded regularity and resolutions of truncations we first

need to establish a definition of linearity for a multigraded resolution. We would like the differentials

to be given by matrices with entries of total degree at most 1. However, we will examine only the

twists in the resolution, requiring that they lie in the L regions from Section 6.2.1. In particular, we

will identify a complex with a map of degree > 1 as nonlinear even if that map is zero.

Definition 6.3.1. Let F• be a Zr-graded free resolution. We say F• is linear if F0 is generated in a

single multidegree d and the twists appearing in Fj lie in Lj(−d).

We require F0 to be generated in a single degree so that the truncation of a module with a

linear resolution also has a linear resolution (see Proposition 6.3.5). Otherwise, for instance, the
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minimal resolution of M in the following example would be considered linear, yet the resolution of

its truncation M≥(1,0) would not.

Example 6.3.2. Write S = k[x0, x1, y0, y1] for the Cox ring of P1× P1 and let M be the module

with resolution S(0,−1)2 ⊕ S(−1, 0)2 ← S(−1,−1)4 ← 0 given by the presentation matrix


x0 x1 0 0

0 0 x1 x0

−y0 0 −y0 0

0 −y1 0 −y1

.

A Macaulay2 computation shows that M is (1, 0)-regular. However, the minimal graded free

resolution of the truncation M≥(1,0) is

0 S(−1, 0)2 S(−2,−1)2 0

which is not linear because (−2,−1) /∈ L1(−1, 0).

This example shows that a module can be d-regular yet have a nonlinear resolution for M≥d.

Thus in order to characterize regularity in terms of truncations we need to weaken the definition of

linear. We will use the larger Q regions from Section 6.2.1 in order to allow some maps of higher

degree.

Definition 6.3.3. Let F• be a Zr-graded free resolution. We say F• is quasilinear if F0 is generated

in a single multidegree d and for each j the twists appearing in Fj lie in Qj(−d).

Example 6.3.4. Unlike on a single projective space, the resolution of S/B for the irrelevant ideal

B on a product of projective spaces is not linear. However it is quasilinear. On P1× P2, for instance,

S/B has resolution

0 S S(−1,−1)6
S(−1,−2)6

⊕
S(−2,−1)3

S(−1,−3)2

⊕
S(−2,−2)3

S(−2,−3) 0,
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which has generators in degree (0, 0) and relations in degree (1, 1). Thus the resolution is not linear,

since (−1,−1) /∈ L1(0, 0). However (−1,−1) ∈ Q1(0, 0) is compatible with quasilinearity.

This condition is inspired by [BES20, Thm. 2.9], which characterized regularity in terms of the

existence of virtual resolutions with Betti numbers similar to those of S/B—see Corollary 6.3.13

and Section 6.3.2 for a more complete discussion. Note that both linear and quasilinear reduce to

the standard definition of linear on a single projective space.

Proposition 6.3.5. Let M be a Zr-graded S-module. If M≥d has a linear (respectively quasilinear)

resolution and d′ ≥ d then M≥d′ has a linear (respectively quasilinear) resolution.

A linear resolution for M≥d implies that M is d-regular when H0
B(M) = 0. To obtain a converse

that generalizes Eisenbud–Goto’s result one should instead check that the resolution is quasilinear.

This gives a criterion for regularity that does not require computing cohomology.

Theorem 6.3.6. Let M be a finitely generated Zr-graded S-module such that H0
B(M) = 0. Then M

is d-regular if and only if M≥d has a quasilinear resolution F• such that F0 is generated in degree d.

Example 6.3.7. A smooth hyperelliptic curve of genus 4 can be embedded into P1×P2 as a curve of

degree (2, 8). An example of such a curve is given explicitly in [BES20, Ex. 1.4] as the B-saturation

I of the ideal 〈
x20y

2
0 + x21y

2
1 + x0x1y

2
2, x

3
0y2 + x31(y0 + y1)

〉
.

Using Theorem 6.3.9 it is relatively easy to check that S/I is not (2, 1)-regular: the minimal, graded,

free resolution of (S/I)≥(2,1) is

0 S(−2,−1)9

S(−3,−1)7

⊕

S(−2,−2)10

⊕

S(−2,−3)2

S(−3,−2)6

⊕

S(−2,−3)3

⊕

S(−3,−3)3

S(−3,−3)2 0

which is not quasilinear because (−2,−3) /∈ Q1(−2,−1).
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We prove one direction of Theorem 6.3.6 in Section 6.3.1 (Theorem 6.3.9) and the other in

Section 6.3.2 (Theorem 6.3.15).

6.3.1 Regularity Implies Quasilinearity

In Proposition 3.5.1 we constructed a virtual resolution with Betti numbers determined by the sheaf

cohomology of M̃ ⊗ Ωa
Pn(a). By resolving the Ωa

Pn(a) in terms of line bundles and tensoring with M̃ ,

we can relate the cohomological vanishing in the definition of multigraded regularity to the shape of

this virtual resolution. The following lemma implies that when M is d-regular the virtual resolution

is quasilinear, i.e., the coefficients of twists outside of Qi(−d) are zero. The lemma is a variant of

[BES20, Lem. 2.13] (see Section 6.3.2).

Lemma 6.3.8. If a Zr-graded S-module M is 0-regular then H |a|−i(Pn, M̃ ⊗ Ωa
Pn(a)) = 0 for all

−a /∈ Qi(0) and all i > 0.

Proof. Fix i and a ∈ Zr with −a /∈ Qi(0), and suppose that H |a|−i(Pn, M̃ ⊗ Ωa
Pn(a)) ̸= 0. We will

show that M is not 0-regular. We must have 0 ≤ a ≤ n, else Ωa
Pn(a) = 0. Let ℓ be the number of

nonzero coordinates in a.

A tensor product of locally free resolutions for the factors π∗i (Ω
ai
Pni) gives a locally free resolution

for Ωa
Pn(a). Since Ω0

Pni = OPni we can use r− ℓ copies of OPn and ℓ linear resolutions, each generated

in total degree 1, to obtain such a resolution F• (see Section 6.2.3). Thus the twists in Fj have

nonpositive coordinates and total degree −j − ℓ, so they are in Lj+ℓ(0).

Since F is locally free the cokernel of M̃ ⊗F is isomorphic to M̃ ⊗Ωa
Pn(a). By a standard spectral

sequence argument, explained in the proof of Theorem 6.3.15, the nonvanishing of H |a|−i(Pn, M̃ ⊗

Ωa
Pn(a)) implies the existence of some j such that H |a|−i+j(Pn, M̃ ⊗Fj) ̸= 0.

If i = 0 then

|a| − i+ j ≥ ℓ− i+ j = j + ℓ.

If i > 0 then a− 1 has ℓ nonnegative coordinates that sum to |a| − ℓ. Thus |a| − ℓ > i− 1, since

−a /∈ Qi(0) = Li−1(−1) (see Remark 6.2.2). This also gives

|a| − i+ j ≥ (ℓ+ i)− i+ j = j + ℓ.
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so in either case Lj+ℓ(0) ⊆ L|a|−i+j(0). Therefore H |a|−i+j(Pn, M̃ ⊗Fj) ̸= 0 for Fj with twists in

Lj+ℓ(0) implies that M is not 0-regular.

See [CM07, Thm. 5.5] for a similar result relating Hoffman and Wang’s definition of regularity

[HW04] to a different cohomology vanishing for M̃ ⊗ Ωa
Pn(a).

Motivated by the quasilinearity of the virtual resolution in Proposition 3.5.1, we will prove that

the d-regularity of M implies that the minimal free resolution of M≥d is quasilinear. Let K be the

Koszul complex from Section 6.2.3 and Čp(B, ·) the Čech complex as in Section 6.2.2. We will use

the spectral sequence of a double complex with rows from subcomplexes of K and columns given by

Čech complexes in order to relate the Betti numbers of M≥d to the sheaf cohomology of M̃ ⊗Ωa
Pn(a).

Theorem 6.3.9. Let M be a finitely generated Zr-graded S-module such that H0
B(M)d = 0. If M

is d-regular then M≥d has a quasilinear resolution F• with F0 generated in degree d.

Proof. Without loss of generality we may assume that d = 0 and M =M≥0 (see Lemma 6.2.9).

By Proposition 3.5.1 there exists a free monad G• of M with j-th Betti number given by

h|a|−j(M̃ ⊗ Ωa
Pn(a)). Since M is 0-regular the vanishing of these cohomology groups results in a

quasilinear virtual resolution by Lemma 6.3.8 and (2) from Proposition 3.5.1. Let F• be the minimal

free resolution of M . We will show that the Betti numbers of F• are equal to those of G•, so that

F• is also quasilinear and F0 = G0 is generated in degree d. (In fact this is enough to show that F•

and G• are isomorphic, as we will do in Corollary 6.3.13.)

Fix a degree a ∈ Zr. Construct a double complex E•,• by taking the Čech complex of each term

in M ⊗K≤a
• and including the Čech complex of M ⊗ Ω̂a

Pn as an additional column. Index E•,• so

that

Es,t =


Čt
(
B,M ⊗K≤a

|a|+1−s

)
if s > 0,

Čt
(
B,M ⊗ Ω̂a

Pn

)
if s = 0.

We will compare the vertical and horizontal spectral sequences of E•,• in degree a. By Lemma 6.2.10

and the fact that K≤a
• is locally free, the sheafification of the 0-th row E•,0 is exact. Thus by

Lemma 6.2.8 the rows of E•,• are exact for t ̸= 0.
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...
...

...
...

Č2(B,M ⊗ Ω̂a
Pn) Č2(B,M ⊗K≤a

|a| ) Č2(B,M ⊗K≤a
|a|−1) · · · Č2(B,M ⊗K≤a

0 )

Č1(B,M ⊗ Ω̂a
Pn) Č1(B,M ⊗K≤a

|a| ) Č1(B,M ⊗K≤a
|a|−1) · · · Č1(B,M ⊗K≤a

0 )

M ⊗ Ω̂a
Pn M ⊗K≤a

|a| M ⊗K≤a
|a|−1 · · · M ⊗K≤a

0

Since the elements of M have degrees ≥ 0, the elements of degree a in M⊗K• come from elements

of degree ≤ a in K•. Thus by Lemma 6.2.10 the homology of M ⊗K≤a
• in degree a is the same as

that of M ⊗K•. Hence the cohomology of the 0-th row E•,0 in degree a computes the degree a

Betti numbers of Fj for 0 ≤ j ≤ |a|, i.e., for s > 0,

Hs(E•,0)a = Tor|a|+1−s(M,k)a. (6.3.1)

The vertical cohomology of E•,• gives the local cohomology of the terms of M ⊗ K≤a
• along

with M ⊗ Ω̂a
Pn. Consider the degree a part of this double complex. The cohomology coming from

M ⊗ K≤a
• has summands of the form H i

B(M(−b))a = H i
B(M)a−b where b ≤ a. These vanish

because M is 0-regular, except possibly H0
B(M)0 which vanishes by hypothesis, so the only nonzero

terms come from M ⊗ Ω̂a
Pn.

Since K≤a
• is a resolution of k in degrees ≤ a, there are no elements of degree a in M ⊗ Ω̂a

Pn.

Hence, using (6.2.1),

H1
B

(
M ⊗ Ω̂a

Pn

)
a = H0

(
Pn, M̃ ⊗ Ωa

Pn(a)
)
.

Therefore the cohomology of the 0-th column E0,• in degree a is

Ht(E0,•)a = Ht
B(M ⊗ Ω̂a

Pn)a = Ht−1(Pn, M̃ ⊗ Ωa
Pn(a)) (6.3.2)

for t > 0, i.e., the Betti numbers of G• indexed differently.

Since both spectral sequences of the double complex E•,• converge after the first page, their total
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complexes agree in degree a, so by equating the dimensions of (6.3.1) and (6.3.2) in total degree

|a|+ 1− j we get

dimkTorj(M,k)a = dimkH
|a|−j(Pn, M̃ ⊗ Ωa

Pn(a)) (6.3.3)

for |a| ≥ j ≥ 0. When j > |a|, neither F• nor G• has a nonzero Betti number for degree reasons,

and when a has Ωa
Pn = 0 the argument above still holds. Hence the Betti numbers of G• and F• are

equal in degree a.

To check that a module M is d-regular directly from Definition 6.2.3, condition (2) requires one

to show that H i
B(M)p vanishes for all i > 0 and all p ∈

⋃
|λ|=i(d− λ1e1 − · · · − λrer + Nr) with

λ ∈ Nr. The proof of Theorem 6.3.9, when combined with Theorem 6.3.6 and Lemma 6.3.8, shows

that on a product of projective spaces the full strength of this condition is unnecessary. In particular,

one only needs to consider λj with λj ≤ nj + 1.

Proposition 6.3.10. Let M be a finitely generated Zr-graded S-module. If

1. H0
B(M)p = 0 for all p ≥ d

2. H i
B(M)p = 0 for all i > 0 and all p ∈

⋃
|λ|=i(d−

∑r
1 λjej + Nr) where 0 ≤ λj ≤ nj + 1

then M is d-regular.

Proof. The only difference between (2) above and condition (2) in Definition 6.2.3 is the restriction

to λj ≤ nj + 1. By the proof of Theorem 6.3.9, if H0
B(M)b = 0 and M satisfies the hypotheses of

Proposition 3.5.1 and Lemma 6.3.8 then M has a quasilinear resolution generated in degree d and

is thus d-regular by Theorem 6.3.6. In the proof of Lemma 6.3.8 it is sufficient for the cohomology

of M(d) to vanish in degrees appearing in the resolution of some Ωa
Pn(a), which excludes those with

coordinates not ≤ n+ 1.

Example 6.3.11. On P1× P1× P1, to show that a module M is 0-regular using Definition 6.2.3 one

must check that H3
B(M)p = 0 for p in the region with minimal elements

(−3, 0, 0), (−2,−1, 0), (−2, 0,−1), . . . , (0,−3, 0), . . . , (0, 0,−3).
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However, Proposition 6.3.10 implies that a smaller region is sufficient. For instance, we need not

check that H3
B(M)p = 0 for p equal to each of (−3, 0, 0), (0,−3, 0), and (0, 0,−3).

Remark 6.3.12. One may also deduce Proposition 6.3.10 from the proofs in [BES20] without the

hypothesis that H0
B(M)d = 0.

The proof of Theorem 6.3.9 also implies that when M is d-regular the resolution of M≥d is

isomorphic to the virtual resolution constructed in Proposition 3.5.1. In other words, the minimal

free resolution of M≥d is a splitting of the Beilinson spectral sequence for M(d), giving a concrete

construction of the abstractly defined virtual resolutions used in [BES20, Thm. 2.9] to witness the

regularity of M(d).

Corollary 6.3.13. The complexes F• and G• in the proof of Theorem 6.3.9 are isomorphic.

Proof. From Proposition 3.5.1 and the fact that Ωa
Pn is nonzero only for 0 ≤ a ≤ n it follows

that G• is a minimal virtual resolution consisting of twists S(−a) with 0 ≤ a ≤ n. Therefore the

isomorphism follows from Theorem 3.5.4.

6.3.2 Quasilinearity Implies Regularity

We will now prove the reverse implication of Theorem 6.3.6, namely that a quasilinear resolution

generated in degree d for M≥d implies that M is d-regular. We use a hypercohomology spectral

sequence argument, which relates the local cohomology of M to the local cohomology of the terms

in a resolution for M≥d.

The following lemma will show that entire diagonals in our spectral sequence vanish when the

resolution is quasilinear. Thus the local cohomology modules H i
B(M) to which the diagonals

converge also vanish in the same degrees.

Lemma 6.3.14. If i, j ∈ N then H i+j+1
B (S)a+b = 0 for all a ∈ Li(0) and all b ∈ Qj(0).

Proof. Note that Li(0) +Qj(0) = Li(0) + Lj−1(−1) = Li+j−1(−1) as sets. We also have H0
B(S) =

H1
B(S) = 0, so it suffices to show that Hk+1

B (S)c = Hk(Pn,OPn(c)) = 0 for k ≥ 1 and c ∈ Lk−1(−1).

The cohomology of OPn is given by the Künneth formula. Fix a nonempty set of indices J ⊆
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{1, . . . , r} and consider the term

⊗
j∈J

Hnj (Pnj,OPnj(dj))

⊗
⊗
j /∈J

H0(Pnj,OPnj(dj))

,
which contributes to Hk(Pn,OPn(c)) for k =

∑
j∈J nj . It will be nonzero if and only if dj ≤ −nj − 1

for j ∈ J and dj ≥ 0 for j /∈ J . If c ∈ Lk−1(−1) then

c ≥ −1− λ1e1 − · · · − λrer

for some λi with
∑
λi = k − 1 = −1 +

∑
j∈J nj . It is not possible for the right side to have

components ≤ −nj − 1 for all j ∈ J . Since all cohomology of OPn arises in this way, the lemma

follows.

In [BES20, Thm. 2.9] Berkesch, Erman, and Smith show for M with H0
B(M) = H1

B(M) = 0 that

M is d-regular if and only if M has a virtual resolution F• so that the degrees of the generators

of F (d)• are at most those appearing in the minimal free resolution of S/B. This Betti number

condition is stronger than quasilinearity, but the additional strength is not used in their proof, so

the existence of such a virtual resolution is equivalent to the existence of a quasilinear one.

Since a resolution of M≥d is a type of virtual resolution, the reverse implication of Theorem 6.3.6

mostly reduces to this result. We present a modified proof for completeness. In particular, we do not

need to require H1
B(M) = 0 because we have more information about the cokernel of our resolution.

From this perspective Theorem 6.3.6 says that the regularity of M is determined not only by the

Betti numbers of its virtual resolutions, but by the Betti numbers of only those virtual resolutions

that are actually minimal free resolutions of truncations of M . Thus we provide an explicit method

for checking whether M is d-regular.

Theorem 6.3.15. Let M be a finitely generated Zr-graded S-module such that H0
B(M) = 0. If

M≥d has a quasilinear resolution F• with F0 generated in degree d, then M is d-regular.

Proof. Without loss of generality we may assume that d = 0 and M =M≥0 (see Lemma 6.2.9).

Let F• be a quasilinear resolution of M , so that the twists of Fj are in Qj(0). Then the spectral
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sequence of the double complex E•,• with terms

Es,t = Čt(B,F−s)

converges to the cohomology H i
B(M) of M in total degree i. The first page of the vertical spectral

sequence has terms Ht
B(F−s), so H i+j

B (Fj)a = 0 for all j (i.e., for all (s, t) = (−j, i + j)) implies

H i
B(M)a = 0.

Therefore it suffices to show that H i+j
B (S(b))a = 0 for i ≥ 1 and all a ∈ Li−1(0) and b ∈ Qj(0),

as is done in Lemma 6.3.14.
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7 Bounds on Multigraded Regularity on Toric

Varieties

The material in this chapter originally appeared in [BCHS22].

7.1 Introduction

Building on the work of Swanson in [Swa97], Cutkosky–Herzog–Trung in [CHT99] and Kodiyalam

in [Kod00] described the surprisingly predictable asymptotic behavior of Castelnuovo–Mumford

regularity for powers of ideals on a projective space Pr: given an ideal I ⊂ K[x0, . . . , xr], there exist

d, e ∈ Z such that for n≫ 0 the regularity of In satisfies

reg(In) = dn+ e.

Due to the importance of regularity as a measure of complexity for syzygies and its geometric
interpretation in terms of the cohomology of coherent sheaves [BEL91,CEL01], this phenomenon

has received substantial attention [GGP95,Cha97,SS97,Röm01,TW05,BCH13], focused mostly on

projective spaces. See [Cha13] for a survey.

Motivated by toric geometry, we turn our focus toward ideals in the multigraded total coordinate

ring S of a smooth projective toric variety X, for which a generalized notion of regularity was

introduced by Maclagan and Smith [MS04]. In this setting the regularity of a Pic(X)-graded module

is a subset of PicX that is closed under the addition of nef divisors. A natural question is thus

whether there is an analogous description for the asymptotic shape of reg(In) ⊂ PicX.

In Theorem 7.4.1 we bound multigraded regularity by establishing regions “inside” and “outside”

of reg(In) which translate linearly by a fixed vector as n increases (see the figure in Example 7.4.2).

The inner bound depends on the Betti numbers of the Rees ring S[It], while the outer bound

depends only on the degrees of the generators of I.
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Theorem 7.4.1. There exists a degree a ∈ PicX, depending only on I, such that for each integer

n > 0 and each pair of degrees q1,q2 ∈ PicX satisfying q1 ≥ deg fi ≥ q2 for all generators fi of I,

we have

nq1 + a+ regS ⊆ reg(In) ⊆ nq2 +NefX.

It is worth emphasizing that our result holds over smooth projective toric varieties with arbitrary

Picard rank. Indeed, toric varieties of higher Picard rank introduce a wrinkle that is not present

in existing asymptotic results on Castelnuovo–Mumford regularity: in general there are infinitely

many possible regularity regions compatible with two given bounds. (In contrast, when PicX = Z,

inner and outer bounds correspond to upper and lower bounds, respectively, with only finitely

many integers between each pair.) Nevertheless, since multigraded regularity is invariant under

positive translation by NefX, an outer bound in the shape of the nef cone cannot contain an infinite

expanding chain of regularity regions.

Surprisingly, we will see in Example 7.3.2 that even on a Hirzebruch surface X the regularity of a

finitely generated module may not be contained in the union of finitely many translates of NefX.

In the case of powers of ideals, however, the absence of torsion over S implies that the regularity

has finitely many minimal elements. More generally, in Theorem 7.3.11 we construct a nef-shaped

outer bound determined by the degrees of generators of a torsion-free module (see the figure in

Example 7.3.13). We use the idea that if the truncation M≥d is not generated in a single degree d

then M is not d-regular (see Theorem 7.3.3 for a simpler case).

Theorem 7.3.11. Let M be a finitely generated graded torsion-free S-module with M̃ ̸= 0. Then

regM is contained in a translate of NefX. In particular, regM has finitely many minimal elements.

It remains an interesting problem to characterize modules with torsion whose regularity is

contained in a translate of NefX. Note that the regularity of a finitely generated module is always

contained in a translate of EffX (see Proposition 7.3.7). In fact, the existence of a module whose

regularity contains infinitely many minimal elements is a consequence of the difference between

the effective and nef cones of X. This possibility highlights a theme from [BCHS21,BKLY21] that

algebraic properties which coincide over projective spaces can diverge in higher Picard rank.
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7.2 Notation and Definitions

Throughout we work over a base field K and denote by N the set of non-negative integers. Let

X be a smooth projective toric variety determined by a fan. The total coordinate ring of X is

a Pic(X)-graded polynomial ring S over K with an irrelevant ideal B ⊂ S. Write EffX for the

monoid in PicX generated by the degrees of the variables in S.

Fix minimal generators C = (c1, . . . , cr) for the monoid NefX of classes in PicX represented

by numerically effective divisors. For λ ∈ Zr, write λ · C to represent the linear combination

λ1c1+ · · ·+λrcr ∈ PicX, and similarly for other tuples in PicX. Write |λ| for the sum λ1+ · · ·+λr.

We use a partial order on PicX induced by NefX: given a,b ∈ PicX, we write a ≤ b when

b− a ∈ NefX.

Example 7.2.1. The Hirzebruch surface Ht = P(OP1 ⊕OP1(t)) is a smooth projective toric variety

whose associated fan, shown left in Figure 7.1, has rays (1, 0), (0, 1), (−1, t), and (0,−1). For each

ray there is a corresponding prime torus-invariant divisor. In particular, the total coordinate ring of

Ht is the polynomial ring S = K[x0, x1, x2, x3] and its irrelevant ideal is B = ⟨x0, x2⟩ ∩ ⟨x1, x3⟩.

ρ0ρ3

ρ2 ρ1

x0, x2

x1 x3

Figure 7.1: Left: fan of H2. Right: the cones NefH2 (dark blue) and EffH2 (blue).

Choosing a basis for PicHt ∼= Z2, the grading on S can be given as deg x0 = deg x2 = (1, 0),

deg x1 = (−t, 1), and deg x3 = (0, 1). The effective and nef cones are illustrated on the right.

For a Pic(X)-graded S-module M and d ∈ PicX, denote by M≥d the submodule of M generated

by all elements of degrees d′ satisfying d′ ≥ d (c.f. [MS04, Def. 5.1]). Denote by M̃ the quasi-coherent

sheaf on X associated to M , as in [Cox95, §3].

We now recall the notion of multigraded Castelnuovo–Mumford regularity for an arbitrary toric

variety introduced by Maclagan and Smith.
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Definition 7.2.2 (c.f. [MS04, Def. 1.1]). Let M be a graded S-module. For d ∈ PicX, we say M

is d-regular if the following hold:

1. H i
B(M)b = 0 for all i > 0 and all b ∈

⋃
|λ|=i−1(d− λ · C+NefX) where λ ∈ Nr.

2. H0
B(M)b = 0 for all b ∈

⋃
j(d+ cj +NefX).

We write regM for the set of d such that M is d-regular.

7.3 Finite Generation of Multigraded Regularity

We begin by constructing an outer bound for the regularity of In—a subset of PicX that contains

reg(In). In [Kod00], Kodiyalam constructs this from a bound on the degrees of the generators of In.

However, more nuanced behavior can occur in the multigraded setting. The following example shows

that the degree of a minimal generator of an ideal does not bound its regularity on an arbitrary

toric variety.

Example 7.3.1. Let I = ⟨x0x3, x0x2, x1x2⟩ be an ideal in the total coordinate ring of the Hirzebruch

surface Ht, with notation as in Example 7.2.1. A local cohomology computation verifies that I is

(1, 1)-regular. However x0x2 is a minimal generator with deg(x0x2) = (2, 0) ̸≤ (1, 1).

The existence of a similar example with H0
B(M) ̸= 0 was noted by Macalagan and Smith, who

asked whether B-torsion was necessary in [MS04, §5]. Example 7.3.1 shows that it is not.

Perhaps more unexpectedly, it is also possible for the regularity of a finitely generated module to

have infinitely many minimal elements with respect to NefX, as is the case in the following simple

example pointed out by Daniel Erman.

Example 7.3.2. Let M = S/⟨x2, x3⟩ be the coordinate ring of a single point on Ht (see Exam-

ple 7.2.1). Since ⟨x2, x3⟩ is saturated we have H0
B(M) = 0. Further, since the support of M̃ has

dimension 0 we must have H i
B(M) = 0 for i ≥ 2. Thus regM is determined entirely by H1

B(M),

which vanishes exactly where the Hilbert function of M agrees with its Hilbert polynomial.

The Hilbert function of M is equal to 1 inside EffHt and 0 outside of it. Hence regM = EffHt.

When t > 0 this cone does not contain finitely many minimal elements with respect to NefX, as

illustrated in Figure 7.2.
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Figure 7.2: The multigraded regularity of M (green) is an infinite staircase contained in a translate
of the effective cone of H2 (blue).

The regularity of the module in Example 7.3.2 is contained in a translate of EffX, which does

give an outer bound. We will see in Proposition 7.3.7 that this is true for all M . At the same time

many modules, for instance S/⟨x0, x1⟩, do have regularity regions contained in translates of NefX.

Thus an outer bound in the shape of EffX would not be tight in general. In particular, we will see

in Corollary 7.3.12 that an outer bound in the shape of NefX exists for an ideal I ⊆ S and thus

reg I has finitely many minimal elements. We begin with the case I = S.

7.3.1 Regularity of the Coordinate Ring

In this section we show that the pathology seen in Example 7.3.2—a regularity region contained in

no translate of NefX—does not occur for the total coordinate ring of a smooth projective toric

variety. In particular we show that regS ⊆ NefX.

In [MS04, Prob. 6.12], Maclagan and Smith asked for a combinatorial characterization of toric

varieties X such that NefX ⊆ regS. Theorem 7.3.3 below shows that when X is smooth and

projective, NefX ⊆ regS is in fact equivalent to the a priori stronger condition that regS = NefX.

It still remains an interesting question to characterize such toric varieties. For instance, the only

Hirzebruch surface with this property is H1.

Theorem 7.3.3. Using the notation from Section 7.2, we have regS ⊆ NefX. In particular, regS

contains finitely many minimal elements.

Proof. Take d ∈ regS. By [MS04, Thm. 5.4] the truncation S≥d is generated by the monomials

of Sd, so there is a surjection Sd ⊗K S → S≥d(d) which sheafifies to a surjection Sd ⊗O → O(d).

Hence O(d) is generated by global sections, so by [CLS11, Thm. 6.3.11] d is nef.
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An application of Dickson’s lemma (e.g. [CLO15, §2.4 Thm. 5]) shows that regS has finitely many

minimal elements, finishing the proof.

Lemma 7.3.4. A subset V ⊆ NefX contains finitely many minimal elements with respect to ≤ on

PicX.

Elements of V can be written as linear combinations λ · C of the monoid generators of NefX.

The minimal elements of V must have coefficients λ ∈ Nr that are minimal in the component-wise

partial order on Nr. By Dickson’s lemma only finitely many possible coefficients exist.

Example 7.3.5. The multigraded regularity of the coordinate ring of the Hirzebruch surface H2 is

contained in the nef cone of H2, as illustrated in Figure 7.3.

Figure 7.3: The regularity of S (dark green) is contained in NefH2 (dark blue).

Though we do not directly use Theorem 7.3.3 in the next section, we do rely on the idea of the

proof. For an arbitrary module M , if d ∈ regM then the truncation M≥d is generated in a single

degree d, meaning that M̃(d) is globally generated. This no longer immediately implies that d is

nef, but Lemma 7.3.6 below connects the difference between d and the degrees of the generators of

M to monomials in truncations of S itself.

We also use the chamber complex of the rays of EffX, which is described in [MS04, §2]. By

definition, this chamber complex is the coarsest fan with support EffX which refines all triangulations

of the degrees of the variables of S. It partitions EffX into cones that govern many geometric

properties of SpecS, including its GIT quotients, birational geometry, and Hilbert polynomials (c.f.

[CLS11, Ch. 14-15], [HKP06, §5]).

For our purposes we need only the existence of a strongly convex rational polyhedral fan that

covers EffX and contains NefX as a cone. We will refer to the maximal cones as chambers and

the codimension one cones as walls. In particular, NefX is a chamber.
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Lemma 7.3.6. Let Γ be a chamber of EffX other than NefX, and let a1, . . . ,an ∈ PicX. If

ai ∈ Γ \NefX for all i, then there exist monomials mi ∈ S≥ai such that
∏
imi is not generated by

the monomials of S∑ai
.

Proof. Since Γ and NefX intersect at most in a wall of Γ and no ai lies in Γ ∩ NefX, their sum

b =
∑

ai must also be in Γ \NefX. Consider the multiplication maps

Sb ⊗K S S(b)

⊗
K S≥ai(ai).

φ

ψ

Suppose the proposition is false. Then the image of ψ must be contained in the image of φ, else

we could choose (mi) ∈
⊗

K S≥ai(ai) with image not generated by the monomials of Sb. Note that

each S≥ai(ai) sheafifies to O(ai), so sheafifying the entire diagram gives

Sb ⊗O O(b)

O(b).

φ

ψ

In particular, the image of ψ is still contained in the image of φ. Since ψ sheafifies to an isomorphism,

φ sheafifies to a surjection. This implies b ∈ NefX, which is a contradiction.

7.3.2 Regularity of Torsion-Free Modules

The goal of this section is to prove that the multigraded regularity of an ideal I ⊆ S has only

finitely many minimal elements. We will prove this more generally for finitely generated torsion-free

S-modules.

Proposition 7.3.7 shows that the regularity of an arbitrary finitely generated module is contained

in some translate of EffX. Under the stronger assumption that M is torsion-free, Proposition 7.3.8

shows that we can also eliminate degrees that are in a translate of EffX but not NefX.

Proposition 7.3.7. Let M be a finitely generated graded S-module with M̃ ̸= 0. Suppose the degrees

of all minimal generators of M are contained in EffX. Then regM ⊆ EffX.
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Proof. Take d ∈ regM and suppose for contradiction that d ̸∈ EffX. The degree d part Md

generates M≥d by [MS04, Thm. 5.4]. By hypothesis all elements of M have degrees inside EffX, so

Md = 0 and thus M≥d = 0. The modules M and M≥d define the same sheaf by [MS04, Lem. 6.8],

so M≥d = 0 contradicts M̃ ̸= 0.

Proposition 7.3.8. Let M be a finitely generated graded torsion-free S-module with M̃ ̸= 0. Suppose

Γ is a chamber of EffX \ NefX. If d− deg fi ∈ Γ \ NefX for all generators fi of M , then M is

not d-regular.

Proof. Assume on the contrary that M is d-regular. Let ai = d− deg fi for each i. By choice of d

we have ai ∈ Γ \NefX. Hence by Lemma 7.3.6 there exist monomials mi ∈ S≥ai such that
∏
imi

is not generated by the monomials of S∑ai
. Consider the elements mifi ∈M≥d.

Since M is d-regular, the degree d part Md generates M≥d by [MS04, Thm. 5.4]. Let g1, . . . , gs

with deg gj = d be generators for M≥d. Thus we must have relations

mifi =
∑
j

bi,jgj =
∑
j

bi,j

(∑
k

aj,kfk

)
=
∑
k

ci,kfk

for some bi,j , aj,k, ci,k ∈ S with deg bi,j = degmi − ai and deg aj,k = ak. These relations form a

partial presentation matrix

A =


m1 0 · · · 0

0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn

−

c1,1 c2,1 · · · cn,1

c1,2 c2,2 · · · cn,2
...

...
. . .

...

c1,n c2,n · · · cn,n

. (7.3.1)

for M . In particular, det(A) ∈ Fitt0M ⊆ annM by [Eis95, Prop. 20.7], so det(A)M = 0.

Since there are no zerodivisors on a torsion-free S-module, we must have det(A) = 0, but this

is impossible: note that det(A) contains the monomial m =
∏
imi and that det(A) ∈ m + I

for I =
∏
k⟨c1,k, c2,k, . . . , cn,k⟩, then observe that I ⊆

∏
k⟨a1,k, a2,k, . . . , an,k⟩ ⊆ S ⊗K S

∑
ak

since

deg aj,k = ak. Hence det(A) = 0 implies m ∈ I ⊆ S ⊗K S
∑

ak
and contradicts our choice of mi.

Remark 7.3.9. Example 7.3.2 shows that Theorem 7.3.11 is not true without the torsion-free

84



hypothesis. In practice, however, we only need that the element detA from (7.3.1) is a nonzerodivisor

on M for some choice of mi as in Lemma 7.3.6. Given a specific toric variety, this may be possible

to verify directly in some cases where M is not torsion-free.

We will use the following technical lemma about the walls of NefX to find a vector satisfying the

hypotheses of Proposition 7.3.8.

Lemma 7.3.10. Given a1, . . . , an ∈ NefX and d ∈ EffX \NefX, there exists a chamber Γ sharing

a wall W with NefX and w in the relative interior of W such that d+w ∈ Γ and d+w ∈ ai + Γ

for all i.

Proof. Consider the cone P defined by all rays of NefX in addition to a primitive element along d.

Since NefX ⊊ P , at least one wall W of NefX must be in the interior of P ⊆ EffX. Let Γ be the

chamber across W from NefX. Since d /∈ NefX, for each w ∈W we have d+w /∈ NefX.

d Γ

Figure 7.4: A section of a hypothetical chamber complex with P (green, horizontal) and Q (red,
vertical) inside EffX. The chamber NefX and its wall W are in blue.

Now consider the cone Q defined by all supporting hyperplanes of NefX and Γ except the

hyperplane containing W . Since W is in the intersection of the open half-spaces defining Q, it

lies in the interior of Q. Therefore we can find w in the relative interior of W ⊂ Q so that

d+w ∈ ai+Q ⊆ ai+(Γ∪NefX) for all i. By hypothesis ai+NefX ⊆ NefX so d+w /∈ ai+NefX.

Hence d+w ∈ ai + Γ for all i.

Theorem 7.3.11. Let M be a finitely generated graded torsion-free S-module with M̃ ≠ 0. Suppose

the degrees of all minimal generators of M are contained in NefX. Then regM ⊆ NefX. In

particular, regM has finitely many minimal elements.

Proof. Suppose there exists d ∈ regM \NefX. Since M satisfies the hypothesis of Proposition 7.3.7,

we can assume that d ∈ EffX. Using Lemma 7.3.10, we can find w in the relative interior of a wall
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separating NefX and an adjacent chamber Γ such that d+w ∈ Γ and d+w ∈ deg fi + Γ for all i.

It follows from Proposition 7.3.8 that d+w /∈ regM , which is a contradiction because w ∈ NefX

and regM is invariant under positive translation by NefX.

The conclusion that regM has finitely many minimal elements follows from Lemma 7.3.4.

Corollary 7.3.12. Let M be a finitely-generated torsion-free S-module. If deg fi ∈ b+NefX for

all generators fi of M then regM ⊆ b+NefX.

Example 7.3.13. Consider the Hirzebruch surface H2, with notation from Example 7.2.1, and let

M be the torsion-free module with presentation

S(3,−3)⊕ S(2,−2)⊕ S(1,−2) S(0,−4).

(
x50x1 x21x

6
2 x21x

5
2

)
T

Since the degrees of the generators are contained in (−3, 2) + NefH2, by Corollary 7.3.12 the

multigraded regularity of M is contained in a translate of the nef cone, illustrated in Figure 7.5.

Figure 7.5: The multigraded regularity (dark green) of the module M is contained in a translate
(−3, 2) + NefX (light green) of the nef cone of H2 (dark blue).

7.4 Powers of Ideals and Multigraded Regularity

Throughout this section let I = ⟨f1, . . . , fs⟩ ⊆ S be an ideal and let P be the vector with coordinates

pi = deg fi ∈ PicX. We are interested in the asymptotic behavior of the multigraded regularity of

In as n increases. In particular, we prove the following theorem:
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Theorem 7.4.1. There exists a degree a ∈ PicX, depending only on I, such that for each integer

n > 0 and each pair of degrees q1,q2 ∈ PicX satisfying q1 ≥ pi ≥ q2 for all i, we have

nq1 + a+ regS ⊆ reg(In) ⊆ nq2 +NefX.

Proof. The inner bound will follow from Proposition 7.4.8. The outer bound follows from Corol-

lary 7.3.12 by noting that deg
∏n
j=1 fij =

∑n
j=1 pij ∈ nq2 +NefX for all products of n choices of

generators of I, and such products generate In.

Example 7.4.2. Let I = ⟨x0x3, x21x42⟩ and J = ⟨x3, x30x1⟩ be two ideals in the total coordinate ring

of the Hirzebruch surface H2, with notation as in Example 7.2.1. Figure 7.6 shows the multigraded

regularity of powers of I and J along with the bounds from Theorem 7.4.1.

reg(I) reg
(
I2
)

reg
(
I3
)

reg
(
I4
)

reg(J) reg
(
J2

)
reg

(
J3

)
reg

(
J4

)
Figure 7.6: The inner (dark green) and outer (light green) bounds for powers of I and J . The circles

correspond to the degrees of the generators of each power.

Remark 7.4.3. If q2 is not nef, then the bounds in Theorem 7.4.1 will not increase with n in the

partial order on PicX. We can see that this behavior is necessary by taking I to be a principal

ideal generated outside of NefX.
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7.4.1 The Rees Ring

One way to find a subset of the regularity of a module is by using its multigraded Betti numbers.

In order to describe reg(In), we would thus like a uniform description of the Betti numbers of In

for all n. For this purpose, consider the multigraded Rees ring of I:

S[It] :=
⊕
n≥0

Intn ⊆ S[t],

which is a Pic(X) × Z-graded noetherian ring with deg ftk = (deg f, k) for f ∈ S. Let R =

S[T1, . . . , Ts] be the Pic(X)× Z-graded ring with deg(Ti) = (deg fi, 1) = (pi, 1). Notice that there

is a surjective map of graded S-algebras:

R S[It]

Ti fi t

Since R is a finitely generated standard graded algebra over S, taking a single degree of a finitely

generated R-module in the auxiliary Z grading yields a finitely generated S-module.

Definition 7.4.4. For a Pic(X) × Z-graded R-module M , define M (n) to be the Pic(X)-graded

S-module
M (n) :=

⊕
a∈PicX

M(a,n).

Following [Kod00], we record three important properties of this operation.

Lemma 7.4.5. Consider the functor −(n) : M 7→ M (n) from the category of Pic(X) × Z-graded

R-modules to the category of Pic(X)-graded S-modules.

(i) −(n) is an exact functor.

(ii) S[It](n) ∼= In.

(iii) R(−a,−b)(n) ∼= R(n−b)(−a) ∼=
⊕

|ν|=n−b S(−ν ·P− a) where ν ∈ Ns.

Since S[It] is a finitely generated module over the polynomial ring R, it has a finite free resolution.

Applying −(n) gives a resolution by (i), which has cokernel In by (ii) and whose terms are finitely

generated free S-modules by (iii). Thus we can constrain the Betti numbers of In in terms of those

of S[It].
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7.4.2 Regularity of Powers of Ideals

Given a description of the Betti numbers of In in terms of n, we obtain an inner bound on reg(In)

using the following lemma.

Lemma 7.4.6. If F• is a finite free resolution for M with Fj =
⊕

i S(−ai,j) and H0
B(M) = 0 then

⋂
i,j

⋃
|λ|=j

(ai,j − λ · C+ regS) ⊆ regM (7.4.1)

where C = (c1, . . . , cr) is the sequence of nef generators for X and the union is over λ ∈ Nr.

Remark 7.4.7. This result amounts to switching the union and intersection in the statement of

[MS04, Cor. 7.3] for modules with H0
B(M) = 0, which increases the size of the subset by allowing a

different choice of λ for each i, j.

Proof. Fix d in the left hand side of (7.4.1) and consider the hypercohomology spectral sequence

for F• (see [BCHS21, Thm. 4.14] for a description of this spectral sequence). We must show that

M is d-regular, meaning that Hk
B(M)d−µ·C = 0 for all k and all µ with |µ| = k − 1. Since F• is a

resolution for M , a diagonal of our spectral sequence converges to Hk
B(M). Thus it is sufficient to

prove that this entire diagonal vanishes in degree d− µ · C, i.e. that

Hk+j
B (Fj)d−µ·C =

⊕
i

Hk+j
B (S(−ai,j))d−µ·C = 0 (7.4.2)

for all j. This is satisfied for k = 0 by hypothesis. Now fix k > 0, µ, j, and i. By choice of d we

have d ∈ ai,j −λ ·C+regS for some λ with |λ| = j, so that d− ai,j +λ ·C ∈ regS. Call this degree

d′, and let c′ = (λ+ µ) · C, where |λ+ µ| = k + j − 1. Then by the definition of the regularity of S

we have Hk+j
B (S)d′−c′ = 0 where

d′ − c′ = d− ai,j + λ · C− (λ+ µ) · C = d− µ · C.

Hence each summand in (7.4.2) is zero for k > 0, as desired.

Proposition 7.4.8. There exists a degree a ∈ PicX, depending only on the Rees ring of I, such that

for each integer n > 0 and degree q ∈ PicX satisfying q ≥ deg fi for all homogeneous generators fi
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of I, we have

nq+ a+ regS ⊆ reg(In).

Proof. Let F• be a minimal Pic(X)× Z-graded free resolution of S[It] as an R-module, and write

Fj =
⊕

iR(−ai,j ,−bi,j) for ai,j ∈ PicX and bi,j ∈ Z. By Lemma 7.4.5, applying the −(n) functor

to F• yields a (potentially non-minimal) resolution of S[It](n) ∼= In consisting of free S-modules

F
(n)
j
∼=
⊕
i

R(−ai,j ,−bi,j)(n) ∼=
⊕
i

 ⊕
|ν|=n−bi,j

S(−ν ·P− ai,j)

,
where P = (deg f1, . . . ,deg fs) is the sequence of degrees of the homogeneous generators fi of I.

From this Lemma 7.4.6 gives the following bound on the regularity of In:

⋂
i,j

|ν|=n−bi,j

⋃
|λ|=j

[ν ·P+ ai,j − λ · C+ regS] ⊆ reg(In). (7.4.3)

Note that b0,0 = 0, as S[It] is a quotient of R, and thus bi,j ≥ 0 for all i, j, as R is positively graded

in the Z coordinate.

Take a ∈ PicX so that a ≥ ai,j for all i, j. There are only finitely many ai,j because S[It] is a

finitely generated R-module and R is noetherian. We may now simplify the left hand side of (7.4.3)

by noting three things: (i) for all |λ| = j and all j we have regS ⊆ −λ ·C+regS, (ii) if |ν| = n− bi,j

then (n− bi,j)q ∈ ν ·P+regS, and (iii) for all i and all j we have nq+ a ∈ (n− bi,j)q+ ai,j +regS.

Combining these facts gives that

reg(In) ⊇
⋂
i,j

|ν|=n−bi,j

⋃
|λ|=j

[ν ·P+ ai,j − λ · C+ regS]

⊇
⋂
i,j

|ν|=n−bi,j

[ν ·P+ ai,j + regS]

⊇
⋂
i,j

[(n− bi,j)q+ ai,j + regS]

⊇ nq+ a+ regS.
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A similar problem is to characterize the asymptotic behavior of regularity for symbolic powers of

I. Note that the symbolic Rees ring of I is not necessarily noetherian (see [GS21], for instance),

so our argument for the existence of the degree a in the proof of Proposition 7.4.8 does not work

in this case. More generally, if I = {In} is a filtration of ideals, then one may ask for sufficient

conditions so that reg(In) is uniformly bounded.
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8 Computing Direct Sum Decompositions

The material in this chapter will appear in a forthcoming joint work with Devlin Mallory.

8.1 Introduction

The problems of finding isomorphism classes of indecomposable modules with certain properties, or

determining the indecomposable summands of a module, are ubiquitous in commutative algebra,

group theory, representation theory, and other fields. Within commutative algebra, for instance, the

classification of Cohen–Macaulay local rings R for which there are only finitely many indecomposable

maximal Cohen–Macaulay R-modules (the finite CM-type property), or determining whether iterated

Frobenius pushforwards of a Noetherian ring in positive characteristic have finitely many isomorphism

classes of indecomposable summands (the finite F-representation type property) are two well-

established research problems. For both these problems, and many others, making and testing

conjectures depends on finding summands of modules and verifying their indecomposability.

Currently there are no efficient algorithms available for checking indecomposability or finding

summands of modules over commutative rings. In contrast, variants of the “Meat-Axe” algorithm

for determining irreducibility of finite-dimensional modules over a group algebra have wide ranging

applications in computational group theory [Par84,HR94,Hol98] and are available through symbolic

algebra software such as Magma and GAP [MAGMA,GAP].

The purpose of this paper is to describe and prove correctness of a practical algorithm for computing

indecomposable summands of finitely generated modules over a finitely generated k-algebra, for k a

field of positive characteristic. In particular, our algorithm works over multigraded rings, which

enables the computation of indecomposable summands of coherent sheaves on subvarieties of toric

varieties (in particular, for varieties embedded in projective space). After describing the algorithm
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and proving its correctness, we present multiple examples in the end, including some which present

previously unknown phenomena regarding the behavior of summands of Frobenius pushforwards

and syzygies over Artinian rings.

An accompanying implementation in Macaulay2 is available online via the GitHub repository

https://github.com/mahrud/DirectSummands.

Remark 8.1.1. Although the algorithm described below is only proved to result (probabilistically)

in a decomposition into indecomposable summands in positive characteristic, in practice it often

does produce nontrivial indecomposable decompositions even in characteristic 0. Moreover, if a

module over a ring of characteristic 0 is decomposable, its reductions modulo p will be as well; thus,

our algorithm provides a heuristic for verifying decomposability in characteristic 0.

We also point out that while the discussion below, and our implementation in Macaulay2, concerns

the case where R is a commutative k-algebra, many of the techniques extend beyond this case; we

plan to extend the results and algorithms to noncommutative rings such as Weyl algebras in future.

8.2 The Main Algorithm

Throughout, R will be an Zr-graded ring with R0 = k a field of positive characteristic and

homogeneous maximal ideal m. Note that if M is a finitely generated R-module, and A ∈ EndR(M),

then A acts on the k-vector space M/mM .

We begin with the observation that if A ∈ EndR(M) is an idempotent, then M decomposes as

imA ⊕ kerA; if A is nontrivial (i.e., neither an isomorphism nor the zero morphism), then M is

decomposable. The following lemma allows us to check only for idempotents modulo the maximal

ideal:

Lemma 8.2.1. Let M be an R-module, and let A ∈ EndR(M). If the induced action of A on

M/mM is idempotent, then M admits a direct sum decomposition N ⊕M/N , where N ∼= imA.

Proof. By assumption, we can write A2 = A+B, where B ∈ EndR(M) with B(M) ⊂ mM . Note

that if n ∈ mkM , then A2(n)−A(n) = B(n) lies in mk+1M .

Let N = imA. Consider the composition N ↪→M
A−→ im(A) = N . We claim that this composition

is surjective. We may complete at the maximal ideal to check this, and thus assume R and M are
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complete. Let n0 ∈ N . By assumption, n0 = A(m1) for some m1 ∈M . Applying A again, we get

A(n0) = A2(m1) = A(m1) + n1 = n0 + n1,

or equivalently n0 = A(n0)− n1 for some n1 ∈ mM . In fact, since n0 and A(n0) are both in N , we

have n1 ∈ N also, so n1 ∈ mM ∩N .

Thus, we can write n1 = A(m2) for m2 ∈ M . Now, apply A to both sides: by the assumption

that A is idempotent modulo m, we have

A(n1) = A2(m2) = A(m2) + n2 = n1 + n2,

Thus, n2 = A(n1) − n1, so n2 ∈ m2M ; clearly also n2 ∈ N as well. Combining the previous

equations, we can write

n0 = A(n0)− n1 = A(n0)−A(n1) + n2 = A(n0 − n1) + n2,

with n1 ∈ mM ∩N and n2 ∈ m2M ∩N .

Continuing in this fashion, for any k we can write

n0 = A(n0 − n1 + · · · ± nk)∓ nk+1,

with ni ∈ miM ∩N .

By the Artin–Rees lemma, there’s some positive integer k such that for n≫ 0 we can write

mnM ∩N = mn−k(mkM ∩N) ⊂ mn−kN.

That is, the terms of n0− n1 + n2− . . . are going to 0 in the m-adic topology on N . Thus, we write

n0 = A(n0 − n1 + n2 − . . . ),

with n0 − n1 + n2 − · · · ∈ N . Thus, we have that A is surjective as a map N → N .

Since a surjective endomorphism of finitely generated modules is invertible, we have that this
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composition is an isomorphism on N ; say α. Finally, we then have that

0 ↪→ N ↪→M

is split by the map of R-modules M A−→ N
α−1

−−→ N .

Lemma 8.2.2. Let k be a finite field of characteristic p, and let A be an endomorphism of a k-vector

space such that all eigenvalues of A are contained in k. If λ is an eigenvalue of A, then some power

of A − λI is an idempotent. Furthermore, if λ is not the only eigenvalue of A, then a power of

A− λI that is nonzero is an idempotent.

Proof. Since all eigenvalues of A are contained in k, we can without loss of generality put A in

Jordan canonical form, with each Jordan block having the form

ri

{

λi 1 0 . . . 0

0 λi 1 . . . 0
...

...

0 0 0 . . . λi


︸ ︷︷ ︸

ri

with each λi an eigenvalue of A. In this basis, A− λI will be block-diagonal with blocks of form


λi − λ 1 0 . . . 0

0 λi − λ 1 . . . 0
...

...

0 0 0 . . . λi − λ


Set µi = λi − λ. Then (A− λI)l is block-diagonal with blocks of the form


µli

(
l
1

)
µl−1
i

(
l
2

)
µl−2
i . . .

(
l
ri

)
µl−rii

0 µli
(
l
1

)
µl−1
i . . .

(
l

ri−1

)
µl−ri+1
i

...
...

0 0 0 . . . µli


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If l > ri and l divisible by p, then all non-diagonal terms will vanish, so all blocks will have the form


µli 0 0 . . . 0

0 µli 0 . . . 0
...

...

0 0 0 . . . µli

.

Finally, choosing l to be divisible also by pe − 1 for some e > 0, we have that

µl−1
i = (µp

e−1
i )l/(p

e−1) = 1,

since µi is contained in a finite field of characteristic p. Thus, (A− λI)l is simply a diagonal matrix

with 1 or 0 on the diagonal, hence idempotent. Note moreover that if some λi ≠ λ, then (A− λI)l

is not the zero matrix.

This leads to a probabilistic algorithm for finding the indecomposable summands of a module M :

1. Take a general element A0 of [EndM ]0, the degree-0 part of EndM , and consider the resulting

endomorphism A of the k-vector space M/mM .

2. Find the eigenvalues of A.

3. If A has at least two eigenvalues, choose one eigenvalue λ, and compute a sufficiently high

power of A (with the power explicitly as in the proof of Lemma 8.2.2). This power will be a

nonzero idempotent, and thus produce a splitting of M as imA0 ⊕ cokerA0 by Lemma 8.2.1.

4. Repeat steps (1)–(3) for both imA0 and cokerA0.

The following observation implies that if M is indecomposable, then the above algorithm should

find the decomposition of M :

Lemma 8.2.3. If M is not indecomposable, then a general degree-0 endomorphism of M reduces to

an endomorphism of M/mM with at least two distinct eigenvalues.

Remark 8.2.4. By “general” we mean that a general linear combination of a basis for [End(M)]0

over the algebraic closure of k, or equivalently over a sufficiently large algebraic extension of k.
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Proof. We may assume that the base field k is algebraically closed. Let Φ1, . . . ,Φr be a basis for

[End(M)]0, and ϕ1, . . . , ϕr their images modulo m, which we view as matrices with entries in k. Let

U ⊂ Ar be the subset of r-tuples (λ1, . . . , λr) such that λ1ϕ1 + · · ·+ λrϕr has at least two distinct

eigenvalues, i.e., such that λ1Φ1 + · · ·+ λrΦr reduces to an endomorphism of M/mM with at least

two distinct eigenvalues.

It suffices to show that U is a nonempty open subset of Ar. First, we show U is nonempty: Say

M = M1 ⊕M2, with M1 a nontrivial indecomposable summand. We may choose Φ1 to be the

projection to M1, and Φ2 the projection to M2. Then for any λ1, λ2 ∈ k, λ1ϕ1+λ2ϕ2 has eigenvalues

λ1, λ2; thus in particular there is an element of [End(M)]0 reducing to an endomorphism of M/mM

with distinct eigenvalues, so U is nonempty.

Now, we show that U is open. This is a purely linear algebraic statement: we claim that given a

matrix ϕ with at least two distinct eigenvalues, and any r matrices ϕ1, . . . , ϕr, that

Aλ1,...,λr := ϕ+ λ1ϕ1 + · · ·+ λrϕr

has at least two distinct eigenvalues for λ1, . . . , λr outside a Zariski-closed subset of Ar. The

eigenvalues of Aλ1,...,λr are the roots of det(Aλ1,...,λr − tI), which is of course a polynomial in t with

coefficients in λ1, . . . , λr. Aλ1,...,λr fails to have at least two distinct eigenvalues exactly when this

polynomial factors as a power of a linear term. This is a polynomial condition in the coefficients of

powers of t in det(Aλ1,...,λr − tI) and thus in the λi; to see this, note that if f := tnbn+ · · ·+ tb1+ b0

has an n-fold root exactly when f, ∂f/∂t, . . . , ∂nf/∂tn vanish simultaneously; the resultant of these

n polynomials in n equations gives polynomial conditions in the bi for this to occur; in our setting,

the bi are themselves polynomials in the λi, and thus we have obtained polynomial equations defining

the locus where Aλ1,...,λr fails to have distinct roots.

Remark 8.2.5. Note that the above algorithm is quite sensitive to the ground field k, because it

needs an eigenvalue of the endomorphism A of M/mM to be contained in k. While theoretically

the issue can be avoided by working over an algebraically closed ground field k, for practical use on

a computer algebra system it is better to extend k to some larger finite field. However, the general

linear combinations we take in Step 1 should be taken with respect to the prime subfield (otherwise,

as we increase the size of the finite field k, the eigenvalues of a general linear combination will live
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in higher and higher field extensions). See Example 8.3.3 for a demonstration of the necessity of

extending the base field.

If the above algorithm fails to produce a nontrivial idempotent, it does not certify that M is

indecomposable. However, there are a few sufficient conditions to be indecomposable, which in

practice often (but not always) produce such a certification. The following sufficiency condition is

immediate, but can be quite useful in practice for verifying indecomposability:

Lemma 8.2.6. Let M be a finitely generated R-module and let [EndM ]0 be the k-vector space of

degree-0 endomorphisms. Suppose that either:

1. [EndM ]0 is 1-dimensional and thus spanned by the identity endomorphism, or

2. every non-identity element of [EndM ]0, viewed as a matrix, has all entries contained in m;

then M is indecomposable.

Proof. If M decomposes non-trivially as M1 ⊕ M2, then the projections onto each factor are

nontrivial degree-0 endomorphisms not equal to the identity, and which does not have entries

contained in m.

This is the local analog of the following fact about indecomposability of coherent sheaves:

Corollary 8.2.7. Let X be a projective variety over a field k, and F a coherent sheaf on X. If

H0(EndF) = k, then F is indecomposable.

8.3 Examples

While the preceding section was written in the language of modules, by the standard translation to

global (multi)projective varieties, it works equally well to find indecomposable decompositions of

coherent sheaves. In this section, we give examples of the kind of calculations and observations the

algorithm from the previous section allows us to make.

Example 8.3.1 (Frobenius pushforward on the projective space Pn). Let S = k[x0, . . . , xn] be a

polynomial ring with char k = p and deg xi = 1 and consider the Frobenius endomorphism

F : S → S given by f → fp.
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Hartshorne [Har70] proved that for any line bundle L ∈ PicPn, the Frobenius pushforward F∗L

splits as a sum of line bundles. While the following calculations are straightforward to do by hand,

they are immediately calculated via our algorithm:

When p = 3, n = 2 :

F∗OP2 = O ⊕O(−1)7 ⊕O(−2).

When p = 2, n = 5 :

F∗OP5 = O ⊕O(−1)15 ⊕O(−2)15 ⊕O(−3),

F 2
∗OP5 = O ⊕O(−1)120 ⊕O(−2)546 ⊕O(−3)336 ⊕O(−4)21.

Example 8.3.2 (Frobenius pushforward on toric varieties). Let X be a smooth toric variety and

consider its Cox ring

S =
⊕

[D]∈PicX

Γ(X,O(D)).

Similar to the case of the projective space, Bøgvad and Thomsen [Bøg98,Tho00] showed that F∗L

totally splits as a direct sum of line bundles for any line bundle L ∈ PicX.

As an example, consider the third Hirzebruch surface X = P(OP1 ⊕ OP1(3)) over a field of

characteristic 3. We have, for example, that

F∗OX = OX ⊕OX(−1, 0)2 ⊕OX(0,−1)2 ⊕OX(1,−1)3 ⊕OX(2,−1),

F∗OX(1, 1) = O3
X ⊕OX(−1, 0)⊕OX(1,−1)⊕OX(1, 0)2 ⊕OX(2,−1)2.

In fact, Achinger [Ach15] showed that the total splitting of F∗L for every line bundle L characterizes

smooth projective toric varieties.

Example 8.3.3 (Frobenius pushforward on elliptic curves). Consider the elliptic curve

X = ProjF7[x, y, z]/(x
3 + y3 + z3).

This is an ordinary elliptic curve, hence F -split; thus OX is a summand of F∗OX . Over the algebraic

closure of F7, F∗OX will decompose as
⊕7

p=1OX(pi), where p1, . . . , p7 are the 7-torsion points of X.
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However, over F7, our algorithm calculates that F∗OX decomposes only as

F∗OX = OX ⊕M1 ⊕M2 ⊕M3,

with Mi indecomposable (over F7) of rank 2.

If one extends the ground field to F49, however, our algorithm calculates the full decomposition

F∗OX =

7⊕
p=1

OX(pi).

This reflects the fact that the 7-torsion points pi of X, and thus the sheaves OX(pi), are not defined

over F7, but they are defined over F49.

Example 8.3.4 (Frobenius pushforward on Grassmannians). Consider the Grassmannian X =

Gr(2, 4). We may work over the Cox ring S, which in this case coincides with the coordinate ring

S =
k[p0,1, p0,2, p0,3, p1,2, p1,3, p2,3]

p1,2p0,3 − p0,2p1,3 + p0,1p2,3
.

Then in characteristic p = 3 we have:

F∗OX = O ⊕O(−1)44 ⊕O(−2)20 ⊕A4 ⊕B4,

where A and B are rank-2 indecomposable bundles (c.f. [RŠV22]).

Example 8.3.5 (Frobenius pushforward on Mori Dream Spaces). Continuing with the theme of

computations over the Cox ring, the natural geometric setting is to consider the class of projective

varieties known as Mori dream spaces [HK00].

For instance, consider X = Bl4P2, the blowup of P2 at 4 general points. We will working over the

Z5-graded Cox ring

S = k[x1, . . . , x10]/(five quadric Plücker relations)
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with degrees 

0 0 0 0 1 1 1 1 1 1

1 0 0 0 −1 −1 −1 0 0 0

0 1 0 0 −1 0 0 −1 −1 0

0 0 1 0 0 −1 0 −1 0 −1

0 0 0 1 0 0 −1 0 −1 −1


.

Then in characteristic 2 we have:

F 2
∗OX = O1

X ⊕O2
X (−2, 1, 1, 1, 1)⊕O2

X (−1, 0, 0, 0, 1)

⊕O2
X (−1, 0, 0, 1, 0)⊕O2

X (−1, 0, 1, 0, 0)

⊕O2
X (−1, 1, 0, 0, 0)⊕B ⊕G,

where B,G are rank-3 and rank-2 indecomposable modules, as calculated in [Har15].

Example 8.3.6 (Frobenius pushforward on cubic surfaces). Let X be a smooth cubic surface. Aside

from a single exception in characteristic 0, X will be globally F -split, so that any F e∗OX admits

OX as a direct summand. The other summands of Frobenius pushforwards of OX have yet to be

studied, and in particular it is not known whether such rings should have the finite F -representation

type property.

The use of our algorithm to compute examples in small p and e suggest the following behavior:

F∗OX = OX ⊕M,

with M indecomposable, and furthermore F ∗
eM remains indecomposable for all e ≥ 0. In other

words, the indecomposable decomposition of F e∗OX is

F e∗OX ∼= OX ⊕M ⊕ F∗M ⊕ · · · ⊕ F e−1
∗ M.

In particular, OX will fail to have the finite F -representation type property. In fact, we believe a

similar description holds true for quartic del Pezzos, which arise as an intersection of quadrics in P 4.

Example 8.3.7 (Syzygies over Artinian rings). Let R = k[x, y]/(x3, x2y3, y5) and consider the
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(infinite) minimal free resolution of the residue field, which has rank 2n in homological index n.

In forthcoming work based in part on examples calculated using our algorithm, Dao, Eisenbud,

and Polini study the indecomposable summands of syzygy modules in examples such as this one,

showing unexpected periodicity behavior, and in particular proving that the syzygy modules are

direct sums of only three indecomposable modules: the residue field k, the maximal ideal m, and an

additional module M .

For example, the fourth syzygy module decomposes (ignoring the grading) as the direct sum

k3 ⊕m2 ⊕M3.

and the fifth syzygy module as

k8 ⊕m9 ⊕M2.

The use of our algorithm was essential to the observation that only the one additional module M

beyond the “guaranteed” summands of k and m appealrs.
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