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Abstract. A major program in algebraic geometry is the study of vector bundles on
algebraic varieties. Intuitively, vector bundles over a space are analogous to finitely generated
projective modules over a ring. In 1956, Grothendieck proved that any vector bundle E on
P1 splits as a direct sum E = ⊕r

i=1OP1(di) for some di∈Z. In contrast, for n≥3 there are
indecomposable vector bundles of rank n− 1 on Pn. Still, most of the literature in this area
is concentrated on vector bundles on the projective space.

After a short survey of the landscape, this note proposes an apparatus for resolving a
number of questions in combinatorial algebraic geometry towards studying derived categories
of toric varieties, which generalize projective spaces, and finding a splitting criterion for
vector bundles on them.
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1. Introduction

Let S be the polynomial ring in n + 1 variables over an algebraically closed field k. A
(geometric) vector bundle E of rank r on Pn = ProjS is specified by a locally free (coherent)
sheaf E on Pn associated to a finitely generated graded S-module M. This correspondence,
together with the minimal free resolution of M, provides a wealth of invariants for E, such as
the Castelnuovo–Mumford regularity, defined as the smallest twist d for which the cohomology
Hi

(
Pn,E (d− i)

)
vanishes for every i ≥ 1.

A prominent problem in the study of vector bundles is the construction of indecomposable
bundles of low rank on algebraic varieties. Classically, this is accomplished by first considering
a monad, which is a complex of vector bundles

0→ A
α−→ B

β−→ C → 0

that is exact except at B, and considering the cohomology of the monad E = ker β/ imα.
Monads were used in constructing the Horrocks–Mumford bundle [HM73; Hul95], which is an
indecomposable rank 2 bundle on P4. Existence of such a bundle on Pn, n ≥ 5 is unknown.

Such questions are often connected to commutative algebra in surprising ways. For instance,
decomposability of every rank 2 vector bundle on Pn for n ≥ 7 is equivalent to a conjecture
of Hartshorne that every smooth subvariety of codimension 2 is a complete intersection.

Beginning in the late seventies, Bernstein–Gel’fand–Gel’fand [BGG78], Beilinson [Bei78],
Buchweitz [Buc86], Gorodentsev–Rudakov [GR87], Kapranov [Kap88], Bondal [Bon90], and
Orlov [Orl93] developed an apparatus for studying the derived category of bounded complexes
of coherent sheaves on X, denoted Db(X), using collections of exceptional bundles {Ei}.
Notably, Beilinson described the derived category Db(Pn) using full strong exceptional
collections which generate the derived category, one given by twists of the structure sheaf

OPn , OPn(1), . . . , OPn(n)(1.1)
and the other by the collection consisting of exterior products of the cotangent bundle

OPn , ΩPn(1), . . . , Ωn
Pn(n).(1.2)

The point of view of Bondal [Bon90] involves representations of a bound quiver (Q,R)
arising from the endomorphisms of a tilting sheaf T ∈ Coh(X) satisfying ExtiX(T, T ) = 0 for
i > 0. The direct sum of objects in a full strong exceptional collection, for instance, is a tilting
bundle which generates Db(X); i.e., the smallest thick subcategory of Db(X) containing T is
all of Db(X). In this case, there is an equivalence of categories between Db(X) and Db(Aop),
the category of bounded complexes of finite-dimensional right modules on the path algebra

A = kQ/R = EndX(T ) =
n⊕

i,j=1

HomX(Ei, Ej),

given by a pair of adjoint functors called the derived Hom and the derived tensor product
RHomX( T , − ) : Db(X) −→ Db(Aop)

− ⊗L
A T : Db(Aop) −→ Db(X).

These functors will be made explicit in Section 7 through the lens of Fourier–Mukai theory,
using a resolution of the diagonal as the kernel of a Fourier–Mukai transform Db(X)→ Db(X),
where complexes on each side are written in terms of different exceptional collections.

2



Another perspective on Db(Pn) comes from the Bernstein–Gel’fand–Gel’fand (BGG) corre-
spondence [BGG78], which compares complexes of S-modules with complexes of modules
over the associated exterior algebra E. This correspondence defines a natural and explicit
exact equivalence of triangulated categories

L : Db(E) 
 Db(S) :R

where Db(E) denotes the category of bounded complexes of graded, finitely generated
right modules over E. Remarkably, this machinery provides a method for calculating the
cohomology of all twists of a coherent sheaf F via a resolution whose i-th term is isomorphic
to ⊕

j∈Z

Hi+j
(
Pn,F (−j)

)
⊗ Ωj(j).(1.3)

The information about all twists of F can be read from a doubly infinite complex over
the exterior algebra known as the Tate resolution [DE02; EFS03]. This technique gives an
efficient algorithm for evaluating the following criterion for splitting of vector bundles.

Theorem 1.1 (Horrocks’ splitting criterion). Let E be a vector bundle on Pn corresponding
to a locally free sheaf E . If the cohomology modules Hi

(
Pn,E (d)

)
for all twists are equal to

the cohomology of positive sums of line bundles, then E splits as a direct sum of line bundles.

The overarching goal of this note is to view the results above through the lens of toric
varieties and generalize the techniques for studying vector bundles using the language of
derived categories. A first question is captured in a conjecture of A. King in [Kin97].

Conjecture 1.2 (King’s Conjecture). Let X be a smooth complete toric variety. Then X
has a tilting bundle whose summands are line bundles.

Eisenbud, Erman, and Schreyer generalized the theory of Tate resolutions to products of
projective spaces and, under an additional hypothesis, extended Horrocks’ splitting criterion
to that setting [EES15]. Since products of projective spaces can be interpreted as a sequence
of projectivizations of line bundles, as in Example 2.8, a natural question is whether there is
a splitting criterion for vector bundles over any such toric varieties. Promising evidence in
this direction is given by Costa and Miró-Roig’s proof that King’s conjecture 1.2 holds true
for this class of toric varieties [CM04]. This result motivates the following project.

Problem 1.3. Extend Horrocks’ splitting criterion to sequences of projectivizations on Pn.

In a forthcoming paper, Brown, Eisenbud, Erman, and Schreyer extend the BGG corre-
spondence to simplicial projective toric varieties by taking advantage of a Fourier–Mukai
transform, which opens the door to generalizations of this problem to Mori Dream Spaces.

1.1. The Commutative Algebra Perspective. Another direction in exploiting the theory
of exceptional collections is investigating when classical theorems in commutative algebra,
such as the Hilbert Syzygy Theorem or the Auslander–Buchsbaum formula, can be generalized
to simplicial toric variety X. For instance, consider a Pic(X)-graded module M on the Cox
ring S of X. While a minimal free resolution F• for M can be explicitly computed using
Gröbner methods, it does not provide as faithful a reflection of geometry: when X has
Picard rank higher than one, F• may be longer than the dimension of X. To bridge this gap,
Berkesch, Erman, and Smith introduced virtual resolutions [BES20].
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Definition 1.4. A Pic(X)-graded complex of free S-modules F• is a virtual resolution of M
if the locally free complex F̃• of vector bundles on X is a resolution of the sheaf M̃ .

This definition better reflects the geometry when X is a smooth projective toric variety,
and motivates the following project in extending the theory of virtual resolutions.

Problem 1.5. Are there sufficient conditions on an exceptional collection for a variety X
which ensure that a virtual Hilbert Syzygy Theorem holds for any coherent sheaf on X?

Berkesch, Erman, and Smith gave a positive answer to this problem when X is a product
of projective spaces. Their proof uses a Fourier–Mukai transform that relates the exceptional
collections (1.1) and (1.2) to produce a short virtual resolution whose i-th term is given by⊕

|a|=i

H|a|−i
(
X, M̃ ⊗ Ωa(a)

)
⊗O(−a).(1.4)

Comparing with (1.3) illustrates the point that Fourier–Mukai transforms are the underlying
machinery applicable in a range of problems depending on the choice of the kernel for the
transformation. An ongoing project on studying the spectral sequence that computes the
Fourier–Mukai transform with kernel K as in [BES20] has lead to a generalization of a result
of Eisenbud and Goto [EG84] to products of projective spaces.

Theorem 1.6 (Heller–S.). Let S be the Cox ring of a product of projective spaces with
irrelevant ideal B. A finitely-generated B-saturated S-module M is d-regular if and only if
the Fourier–Mukai transform π1∗(π

∗
2M̃ ⊗K) yields a quasi-linear free resolution of M≥d.

This theorem gives an efficient algorithm for computing the multigraded Castelnuovo–
Mumford regularity in the sense of Maclagan and Smith [MS04], eliminating the need for
computing higher cohomology as in [ABLS20].

1.2. The K-Theory Perspective. Let K◦(X) denote the Grothendieck group of X, defined
as the quotient of the free abelian group generated by all the coherent sheaves on X, by the
subgroup generated by all expressions F −F ′ −F ′′, whenever there is an exact sequence
0→ F ′ → F → F ′′ → 0 of coherent sheaves on X. Similarly, K◦(X) is defined using vector
bundles (i.e., locally free coherent sheaves) on X [Har77, Ch.II Ex. 6.10]. Note that the map
K◦(X)→ K◦(X) is an isomorphism whenever X is a smooth quasi-projective scheme.

When X is a toric variety with an action from the torus T, the T-equivariant K-theory of
X is denoted by KT

◦ (X) and K◦
T (X) for the Grothendieck group of T-equivariant coherent

sheaves and toric vector bundles on X. Note that the tensor product gives a ring structure
on K◦

T (X), and that KT
◦ (X) has the structure of a module on this ring.

The relationship of these groups is an interesting area of research. For instance, the
restriction maps from T-equivariant K-theory to the ordinary, non-equivariant K-theory for
vector bundles and coherent sheaves is captured in a commutative diagram.

K◦
T (X) K◦(X)

KT
◦ (X) K◦(X)

Merkurjev showed that the restriction of coherent sheaves is always surjective [Mer97;
Mer05], while Anderson, Gonzales, and Payne recently gave projective toric threefolds X for
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which the restriction map from the K-theory of T-equivariant vector bundles vector on X to
the ordinary K-theory of vector bundles on X is not surjective [AGP20, §7].

K-theory can also be viewed through the lens of exceptional collections. In particular, the
existence of a full strong exceptional collection for Db(X) is equivalent to finite generation
of K◦(X). A natural question is whether K◦

T (X) is finitely generated by a collection of
T-equivariant bundles. This motivates the following modification of King’s conjecture.

Conjecture 1.7. Let X be a simplicial toric variety. Then X has a T-equivariant tilting
bundle whose summands are line bundles.

The restriction to simplicial toric varieties is motivated by Cox’s theorem on the equivalence
of quasi-coherent sheaves on X and graded modules over the corresponding Cox ring S.

1.3. The Combinatorial Perspective. A closely related research direction is inspired by
A. Klyachko’s classification of toric vector bundles using filtrations of a vector space defined
in terms of the rays in the polyhedral fan ∆ of a toric variety X [Kly90].

Theorem 1.8 (Klyachko’s filtrations). The category of toric vector bundles on a toric variety
is naturally equivalent to the category of finite-dimensional k-vector spaces V together with a
decreasing filtration V ρ(i) for each ray ρ ∈ ∆(1) satisfying a certain compatibility condition.

Klyachko’s filtrations have been used in [DJS18] to specify a toric vector bundle E as a
collection of convex polytopes P(E) and study the positivity of E. These results light a path
towards finding combinatorial conditions for a toric vector bundle to be a tilting bundle,
providing evidence for Conjecture 1.7.

Problem 1.9. Are there sufficient conditions on Klyachko’s description of a toric vector
bundle which ensure that it is a T-equivariant tilting bundle?

A natural first step in this direction is determining a vanishing criterion for ExtiX(E,E).

1.4. Outline of the paper. Sections 2 through 4 summarize necessary definitions and
notation for working with toric varieties, representations of quivers, and derived categories of
toric varieties. Sections 5 and 6 present results on exceptional collections and tilting bundles.
Section 7 introduces the machinery of Fourier–Mukai transforms as relevant to this note,
including Beilinson’s resolution of the diagonal, which is then used in Section 8 to compute
the Beilinson spectral sequence. Finally, Section 9 concludes the discussion.
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2. Simplicial Toric Varieties

Toric varieties are a prime crucible for interesting examples in algebraic geometry, owing
both to their intrinsic combinatorial structure and to the structure of torus equivariant vector
bundles. In this section we briefly recall the terminology for normal toric varieties and toric
vector bundles. At the end of the section a number of key running examples of toric varieties
are given. More in depth exposition may be found in [CLS11] and [Ful93].

Definition 2.1. A toric variety of dimension n over C is a variety X that contains an
algebraic torus T = (C∗)n as a dense open subset, together with an action of T on X that
extends the action of T on itself.

The structure of an affine toric variety can be characterized by a strongly convex rational
cone. Concretely, let N be a lattice in Zn and σ a cone in N , then the dual cone σ∨ in
M = HomZ(N,Z) is the set of vectors in M ⊗Z R with non-negative inner product on σ.
This gives a commutative semi-group Sσ = σ∨ ∩M = {η ∈M : η(ν) ≥ 0 for all ν ∈ σ}, and
an open affine toric variety Uσ = Spec C[Sσ] corresponding to its group algebra. The gluing
data for a general toric variety comes from a fan of cones.

Definition 2.2. A fan ∆ of strongly convex polyhedral cones in NR = N ⊗Z R is a set of
rational strongly convex polyhedral cones σ ∈ NR such that:

(1) each face of a cone in ∆ is also a cone in ∆;
(2) the intersection of two cones in ∆ is a face of each of the cones.

With this information in hand, a normal toric variety X is fully characterized as follows:
given a fan ∆, X(∆) is assembled by gluing the affine toric subvarieties Uσ for each σ ∈ ∆.
If every cone σ ∈ ∆ is generated by a subset of a Z-basis of N then X is smooth, and it is
simplicial if every cone is generated by a subset of an R-basis of NR.

Let ∆(i) denote the set of i-dimensional cones in ∆. A 1-dimensional cone ρ ∈ ∆(1) is
referred to as a ray and corresponds to an irreducible T-invariant Weil divisor Dρ on X.
Hence we identify Div(X) = Z∆(1) and define CDiv(X) to be the subgroup of T-invariant
Cartier divisors on X. To any Cartier divisor D on a normal variety X we can associate an
invertible sheaf L = OX(D) which is a locally free sheaf of sections of a line bundle L→ X.
Isomorphism classes of such line bundles on X define the Picard group Pic(X).

The relationship between these groups is captured in a commutative diagram of Z-modules

(2.1)
0 M CDiv(X) Pic(X) 0

0 M Div(X) An−1(X) 0,

div

where div(m) =
∑

ρ〈m,nρ〉Dρ with nρ ∈ N the generator of ρ ⊂ NR computes the orders of
poles and zeros along the divisors Dρ. See [Cox95] or [Har77, Ch.II §6] for further context.

Definition 2.3. For a toric variety X, the homogeneous coordinate ring is the polynomial
ring S = Cox(X) = C[xρ : ρ ∈ ∆(1)] where each divisor D =

∑
ρ aρDρ is represented by a

monomial xD =
∏

ρ x
aρ
ρ with deg(xD) = [D] ∈ An−1(X).

The data of the fan determine an exceptional set Z(∆) ⊂ C∆(1) which is the zero set of the
irrelevant ideal B(∆) = 〈x̂σ : σ ∈ ∆〉 generated by the square-free monomials x̂σ =

∏
ρ 6⊂σ xρ.
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2.6 P1 2.7 P2 2.8 P1× P1 2.9 Fa

Table 1. Examples of fans on a plane

Theorem 2.4 (Thm. 3.2, [Cox95]). Every quasi-coherent sheaf on a simplicial toric variety
X corresponds to a finitely generated Pic(X)-graded S-module.

This theorem is central to the algebraic geometry dictionary of a simplicial toric variety:
nonempty closed subvarieties of X correspond to a B-saturated radical homogeneous ideals in
S and every quasi-coherent sheaf on X arises as the sheafification of a graded S-module M .

Toric varieties can be equivalently defined via a quotient construction.

Theorem 2.5. Let X = X(∆) be a toric variety and write G = HomZ (An−1(X),C∗). Then:
(1) X is the universal categorical quotient

(
C∆(1) − Z(∆)

)
//G.

(2) X is a geometric quotient
(
C∆(1) − Z(∆)

)
/G if and only if ∆ is simplicial.

Note that while the Cox ring S and the group G depend only on the rays ∆(1), the
exceptional set Z(∆) depends on the entire fan. In particular, when X is simplicial, Z(∆)
can be described in terms of primitive collections, which are subsets P ⊂ ∆(1) with the
property that any proper subset of P generates a cone in ∆ but P does not. Taking the union
over coordinate subspaces A(P) determined by {xρ : ρ ∈ P}, we can write Z(∆) =

⋃
P A(P).

Primitive collections were introduced by V.V. Batyrev in [Bat91] to classify d-dimensional
smooth projective toric varieties. For such X, he conjectured that the number of primitive
collections is bounded by a constant depending only on the Picard number of X.

2.1. Key examples.

Example 2.6. The Projective Line P1

Let V be an 2-dimensional k-vector space with dual space W = V ∗. Classically, the
projective space P1= PV is defined to be the set of 1-dimensional subspaces in V .

As a projective variety, P1 is the simplest case of the Proj construction: let S = SymW be
the symmetric algebra on W and E =

∧
V the exterior algebra on V ; the set P1= P(W ) =

ProjS is the set of all homogeneous prime ideals that are strictly contained in the irrelevant
ideal m = 〈x0, x1〉. Note that S is a polynomial ring with generators corresponding to a set of
coordinates on W , while E is a skew symmetric algebra with generators corresponding to the
dual basis. In particular, observe that H0

(
P1,OP1(1)

)
= W and Hn

(
P1, ωP1

)
= V . Crucially,

since Homk(E,k) ' E, the exterior algebra is Gorenstein and has finite dimension over the
field. Section 8.2 explains the BGG correspondence between Db(S) and Db

Sing(E).
As a toric variety, P1 is the simplest non-affine example. let ∆ be a fan with cones R≥0,
{0}, and R≤0, corresponding to the affine toric varieties C, C∗, and C, respectively, which
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are glued to form P1 as

C

[
x0

x1

]
↪−→ C

[
x0

x1

,
x1

x0

]
←−↩ C

[
x1

x0

]
.

In this case the total coordinate ring Cox(P1) coincides with S and is graded by Z, hence
P1 has Picard group Pic(P1) = Z1 and Picard rank 1. Generalizing this definition yields Pn

as the set of lines in a vector space of dimension n+ 1.
Example 2.7. The Projective Plane P2

A second way of constructing a toric variety is through the quotient construction:
let C∗ act on C3\{0} by scalar multiplication; since the C∗-orbits are closed, P2= (C3\{0})/C∗

is a geometric quotient. This construction extends to arbitrary n as Pn = (Cn+1 \ {0})/C∗.
See [Cox95, Thm. 2.1] or [CLS11, Ch.5] for the quotient construction of toric varieties.
Example 2.8. Product of Projective Spaces P1× P1

The Proj construction of a projective variety can be extended to the relative case:
let S = OP1[y0, y1] be a sheaf of graded algebras over P1 with deg yi = 1; the projectivization
P1× P1 = ProjS is a rational ruled surface which also carries the structure of a toric
variety induced by the equivariant morphism π1 : ProjS → P1. In particular, the pullback
π∗
1(OP1(1)) yields the invertible sheaf O(1, 0) on P1× P1.
Seen through this lens, the definition of P1 as the Proj of a graded ring is a relative Proj

of the sheaf OSpecC[x0, x1]. Repeating this construction yields products of projective spaces
with higher Picard rank, such as P1× P1× P1 =: P(1,1,1), while increasing the number of
generators in S increases the dimension of each projective space factor.

Recall that a vector bundle on variety X is a locally free sheaf on X. An important class of
varieties, called projective bundles, arise as projectivizations of vector bundles. A toric vector
bundle on X is a vector bundle E together with a T-action compatible with the action on X.
Example 2.9. The Hirzebruch Surface Fa

Another construction is the projective bundle P(E ) associated with a locally free sheaf E :
let E = OP1(a)⊕OP1 be a locally free coherent sheaf on P1, and consider the sheaf of graded
algebras S =

⊕
m≥0 Sym

m E ∨. The projective bundle Fa = P(E ) = ProjS is the Hirzebruch
surface of type a. In particular, there is a projection π : P(E )→ P1 which induces a natural
surjection π∗E → OP1(1). See [Har77, Ch.II §7] for further context on this construction.
Remark 2.10. Every line bundle on a toric variety X is also a toric line bundle. However,
in general not all vector bundles over X are toric vector bundles.
Remark 2.11. While projectivization of a toric vector bundle on a toric variety yields a
variety with a T-action, it is not a toric variety unless the vector bundle splits as a sum of
line bundles [OM78, §7].
Theorem 2.12 ([Bat91]; Theorem 4.3 and Corollary 4.4). The following are equivalent for
a smooth projective toric variety X with fan Σ:

• there exists a sequence X = Xr, . . . , X0 = Pn of toric varieties such that for each
0 < i ≤ r, Xi is the projectivization of a decomposable vector bundle on Xi−1;
• any two primitive collections of Σ are disjoint (i.e., Σ is a splitting fan).

This criterion, in conjunction with Lemma 5.5, provides a large class of toric varieties for
which full strong exceptional collections are known [CM04].
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3. Representations of Bound Quivers

A quiver Q is a directed graph consisting of a finite set Q0 of vertices and Q1 of arrows.
Notably, the category of representations of a quiver of a field k is equivalent to the category of
finite dimensional left modules over a k-algebra. This equivalence is significant to the study
of bounded derived categories of certain toric varieties, hence this section reviews the basic
terminology for quivers and their representations. See Section 3.1 for examples of quivers
corresponding to the running examples. See [Cra07, §1] for further details.

To each arrow x
α−→ y, the maps t, h : Q1 → Q0 correspond a tail t(α) = x and head

h(α) = y such that a sequence of arrows p = αl · · ·α1 form a path of length l whenever
h(αi) = t(αi+1) for 1 ≤ i < l. By convention, for each vertex x there is a trivial path x

ex−→ x.

Definition 3.1. A representation W of a quiver Q over a field k consists of
• a k-vector space Wx for each vertex x ∈ Q0;
• a k-linear map wα : Wtα → Whα for each arrow α ∈ Q1.

A representation W is finite dimensional if each Wi has finite dimension over k. More
generally, a representation may be defined over any ring, but here working over a field suffices.

A key object in this note is the path algebra associated to a quiver.

Definition 3.2. The path algebra kQ of a quiver Q is the graded k-algebra where
• (kQ)l is a k-vector space with basis the set of paths of length l, and
• multiplication is defined by concatenation of paths, when possible, or zero otherwise.

The path algebra is an associative algebra with identity
∑

x∈Q0
ex and it is finite dimensional

when it is acyclic. Moreover, the subring (kQ)0 generated by the trivial paths ex is a semi-
simple ring with ex as orthogonal idempotents; that is, exey = ex when x = y and zero
otherwise.

Our interest in quiver representations stems from the construction of tilting algebras as
the quotient of a path algebra with vertices corresponding to the exceptional objects and
arrows corresponding to homomorphisms between them.

Definition 3.3. A bound quiver (Q,R) is a quiver Q together with a finite set of relations
R, given as k-linear combinations of paths of length at least 2 with the same head and tail.
Note that R can be identified with an ideal in kQ.

A representation of (Q,R) is a representation of Q where for each p− p′ ∈ R the homomor-
phisms associated to p and p′ coincide; that is, Hom(Wtp,Whp) = Hom(Wtp′ ,Whp′). Note that
for each quiver representation W we may associate a kQ/R-module

⊕
x∈Q0

Wx. Conversely,
for any left kQ/R-module M we have a quiver representation given by the k-vector spaces
Wx = exM for x ∈ Q0 and maps wα : Wtα → Whα given by m 7→ α(m) for α ∈ Q1.

Proposition 3.4. The category Repk(Q,R) of representations of bound quivers is equivalent
to the category of finitely generated left kQ/R-modules.

Observe that if (kQ)op is the opposite algebra with product a · b = ba, then (kQ)op ' kQop

where Qop is the opposite quiver with arrows reversed. In particular, the proposition above
gives an equivalence of mod(Aop) and Repk(Q

op, R).
9



3.5 P1 3.6 P2 3.7 P1× P1 3.8 F2

• •x

y • • •
z̄ z

x̄
ȳ

x
y

• •

• •

ā1
b1b̄0

a1

ā0

a0
b̄1 b0

• •

• •

ā1
bb̄

a1

d2

ā0

a0
d1

Table 2. Examples of Beilinson or Bondal quivers of toric varieties

3.1. Key examples.
Example 3.5. Kronecker quiver

This is the unique acyclic quiver with two vertices and two nontrivial arrows. A representa-
tion W of this quiver consists of a pair of vector spaces (W0,W1) and maps w,w′ : W0 → W1.

Beilinson’s exceptional collection for P1 proved the equivalence Db(P1) = 〈O,O(1)〉. The
importance of the Kronecker quiver, also known as the Beilinson quiver or Bondal quiver
for P1, is due to the isomorphism kQ ' Endk(O ⊕ O(1)); that is, Q encodes the data of
endomorphisms of the tilting bundle T = O ⊕O(1). Writing P1= Projk[x, y], the arrows of
Q correspond to the maps O(1) ·x−→ O and O(1) ·y−→ O.

Recall that a vector bundle E on P1 splits as a direct sum E = ⊕r
i=1OP1(di) for di ∈Z,

hence E has a trivial locally free resolution consisting only of twists OP1(di). However, the
existence of Beilinson’s exceptional collection Db(P1) = 〈O,O(1)〉 implies that there is also
a locally free resolution consisting only of those two twists, though a priori this resolution
may be longer. This observation points to the fact that the fixing an exceptional collection
amounts to limiting permissible representations of objects in the derived category.
Example 3.6. Beilinson quiver for P2

This quiver is the first example of a Beilinson quiver for which the tilting algebra of interest
is isomorphic to a quotient of the path algebra. Therefore we introduce an ideal of relations

R = 〈x̄y − ȳx, x̄z − z̄x, ȳz − z̄y〉.
We can then write kQ/R ∼= Endk(O ⊕O(1)⊕O(2)) as before.
Example 3.7. Quiver of sections for P1× P1

Consider the collection of line bundles {O,O(1, 0),O(0, 1),O(1, 1)}, with O(1, 0) and
O(0, 1) the pullbacks of OP1(1) along the first and second projection P1× P1→ P1.

The quiver of sections of this collection is the quiver with vertices corresponding to the
bundles Li and an arrow i→ j for each indecomposable T-invariant section

s ∈ H0(P1× P1, Lj ⊗ L−1
i ).

A T-invariant section is indecomposable if the divisor div(s) does not split as a sum div(s′) +
div(s′′) for nonzero sections s′, s′′ of Lj ⊗ L−1

k and Lk ⊗ L−1
i .

Example 3.8. Quiver of sections for F2

The path algebra of this quiver, modulo the ideal of relations, represents the homomorphisms
among the bundles {O,O(D1),O(D4),O(D1+D4)}, where Di are the T-invariant irreducible
divisors of X. For more complicated examples, such as this one, the ideal of relations is easier
to write as having generators coming from the composition rule; i.e., the relations that arise
are of the form p− p′ ∈ R.
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4. The Derived Category of Coherent Sheaves

Let X be a smooth projective variety, and Coh(X) the Abelian category of coherent
sheaves on X. Every morphism f : X → Y between such varieties induces two functors:

• the inverse image functor f ∗ : Coh(Y )→ Coh(X) (pullback), and
• the direct image functor f∗ : Coh(X)→ Coh(Y ) (pushforward).

However, these two functors are not exact, in the sense that exact sequences are not preserved.
To preserve functoriality, Cartan and Eilenberg introduced the notion of derived functors.

The derived category of coherent sheaves on X, denoted D(X), contains geometric in-
formation about X. In some cases one can even recover X from D(X), but there are also
examples of different varieties, for instance non-isomorphic K3 surfaces, with equivalent
derived categories. This section provides an introduction to the derived category theory used
in the rest of this note. See [Huy06] or [Orl03] for further context and topics.

Definition 4.1. We denote by Kb(X) the homotopy category on Coh(X), where the objects
are bounded chain complexes of coherent sheaves on X modulo the relation of homotopy and
chain maps as morphisms. The bounded derived category on Coh(X), denoted Db(X), has
the same objects as Kb(X), but each quasi-isomorphism is endowed with an inverse morphism.
Explicitly, morphisms in the derived category can be expressed as roofs A← A′ → B where
A′ → A is a quasi-isomorphism. Note that caution is needed in order to check whether a
morphism A→ B in Db(X) can be lifted back to Kb(X).

Unlike Abelian categories, short exact sequences do not exist in derived categories, and
kernels and cokernels of morphisms are not defined. However, derived categories are endowed
with the structure of a triangulated category, formalized by Verdier.

Definition 4.2. A category D is a triangulated category if for any morphism f : A→ B in
D there exists a distinguished triangle A→ B → C → A[1], where C = Cone f is the cone of
the morphism f , satisfying certain axioms.

A triangulated subcategory is a full subcategory D that is closed under the shift functor
and taking the mapping cone of morphisms. In other words, if two objects of some triangle
belong to a triangulated subcategory, then so does the third object. We say that D is thick (or
epaisse) if it is further closed under isomorphisms and direct summands of objects. The thick
envelope of an object E in D is the smallest thick triangulated subcategory of D containing
E. When the thick envelope is equal to D we say that E generates D.

Remark 4.3. The derived category Db(X) is a triangulated category, with the shift E• 7→
E•[1] given by E•[1]i = Ei+1 and diE[1] = −d

i+1
E , and the cone of morphism f : E• → F •

given by Cone f i = Ei+1 ⊕ F i.

There is a fully faithful functor Coh(X) ↪−→ Db(X) that guarantees Exti(E•, F •) '
HomDb(X)(E

•, F •[i]), hence we will identify the two going forward.
Derived categories of coherent sheaves appear in many other areas of algebraic geometry

as well. For instance, the Homological Mirror Symmetry Conjecture states that there is an
equivalence of categories between the derived category of coherent sheaves on a Calabi–Yau
variety and the derived Fukai category of its mirror. While this is beyond the scope of this
note, it is worth mentioning that a large number of Calabi–Yau manifolds are realized as
subspaces of toric varieties, in particular weighted projective spaces.
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In the next two sections the structure of Db(X) is determined using two related approaches:
exceptional collections and tilting bundles.

5. Exceptional Collections

Studying the structure of the derived category is an important step towards studying
the underlying scheme. Recall that an object E in a triangulated category D generates the
category D if any full triangulated subcategory containing it is equivalent to D. In this
section, this idea is generalized to that of a full strong exceptional collection for Db(X), the
existence of which implies that Db(X) is freely and finitely generated. Refer to [Kuz14] for
further details on semiorthogonal decompositions.

Consider a full triangulated subcategory B in a triangulated category D. The right (resp.
left) orthogonal to B is the full subcategory B⊥ ⊂ D (resp. ⊥B) consisting of the objects
C such that Hom(B,C) = 0 (resp. Hom(C,B) = 0) for all B ∈ B. Both right and left
orthogonal subcategories are also triangulated.

A sequence of triangulated subcategories (B0, . . . ,Bn) in a triangulated category D is a
semiorthogonal sequence if Bj ⊂ B⊥

i for all 0 ≤ j < i ≤ n.

Definition 5.1. A semiorthogonal decomposition D = 〈B0, . . . ,Bn〉 is a semiorthogonal
sequence that generates D as a triangulated category.

The first examples of semiorthogonal decompositions arise from full exceptional collections.

Definition 5.2. Let D be a k-linear triangulated category.
• An object E ∈ D is exceptional if

Hom(E,E[l]) =

{
C if l = 0

0 if l 6= 0.

Equivalently, using the notation of the derived functors, the condition states
Hom(E,E) = C and Ri Hom(E,E) = Exti(E,E) = 0 when i 6= 0.
• An exceptional collection is an ordered sequence E1, . . . , En of exceptional objects

such that Hom(Ei, Ej[l]) = 0 for all i > j and all l.
Equivalently, R•Hom(Ei, Ej) = Ext•(Ei, Ej) = 0 when i > j.

• An exceptional collection is strong if, in addition, Hom(Ei, Ej[l]) = 0 for all i < j.
Equivalently, R•Hom(Ei, Ej) = Ext•(Ei, Ej) = 0 when i < j.

• An exceptional collection is full if D is generated by {Ei}; that is, any full triangulated
subcategory containing all objects Ei is equivalent to D via inclusion of Ei.

There is mutative structure available on such sets, including an action by the braid group,
which we will not need for the purposes of this note.

Example 5.3 ([Bei78]). The projective space Pn has a full strong exceptional collection
consisting of twists of the structure sheaf,

Db(Pn) =
〈
O,O(1),O(2), . . . ,O(n)

〉
,

as well as one consisting of exterior products of the cotangent bundle Ω1(1),

Db(Pn) =
〈
O,Ω1(1),Ω2(2), . . . ,Ωn(n)

〉
.

12



Observe that while the first exceptional collection is comprised of symmetric products
of O(1), any collection of n + 1 consecutive twists of the structure sheaf is a full strong
exceptional collection for Db(Pn).

Remark 5.4. The existence of a full strong exceptional collection of size n+ 1 consisting
of coherent sheaves on a smooth projective variety X implies that the Grothendieck group
K◦(X) is isomorphic to Zn+1.

5.1. Exceptional Collections for Projective Bundles. Let E be a vector bundle of
rank r corresponding to a locally free coherent sheaf E on a smooth projective variety X.
Then there exists a projective bundle P(E ) with invertible sheaf OE (1). The projection map
p : P(E )→ X induces a canonical surjection p∗E → OE (1) [Har77, Ch.II Prop. 7.11].

Lemma 5.5 ([Orl93], Corollary 2.7). Let p : P(E ) → X be the projectivization of a vector
bundle E of rank r over a smooth projective variety X equipped with a full exceptional
sequence Db(X) = 〈E0, . . . , En〉, then the derived category Db(E) := Db(P(E )) also has a
full exceptional sequence

Db(E) = 〈p∗E0 ⊗OE (−r + 1), . . . , p∗En ⊗OE (−r + 1), . . . ,

p∗E0 ⊗OE (−r + 2), . . . , p∗En ⊗OE (−r + 2), . . . , p∗E0, . . . , p
∗En〉.

Proof sketch. Let d = dimX and consider the fiber square over X:

P(E )×X P(E )

P(E ) P(E )

X

p1 p2

pp

Recall that F �G = p∗1F ⊗p∗2G is the external tensor product with respect to the projections
p1 and p2. The proof involves the following steps.

(1) Consider the Euler sequence 0→ OE (−1)→ p∗E ∨ → Q→ 0;
(2) Construct W = OE (1)�Q as a rank r vector bundle on P(E )×X P(E );
(3) There is a canonical section s ∈ H0(P(E )×X P(E ),W ) whose vanishing cuts out the

diagonal subscheme ∆ ⊂ P(E )×X P(E );
(4) There is an exact Koszul resolution K for O∆

0→ ∧r−1W∨ → · · · ∧2 W∨ → W∨ → OP(E )×XP(E ) → O∆ → 0;

(5) Given arbitrary F ∈ Coh(P(E )), pullback to p∗2F and tensor with K;
(6) From this complex, a spectral sequence with E1-term is constructed;
(7) Observe that the spectral sequence converges and each term belongs to a subcategory

of Db(E) generated by a term in the exceptional collection above.
�

Example 5.6 ([CM04], Example 3.2.(1)). Consider the Hirzebruch surface Fa from Example
2.9, identified as a projective bundle

p : P
(
O(a)⊕O

)
→ P1.

The bundle structure endows Fa with a full strong exceptional collection
Db(Fa) =

〈
O, O(D1), O(D4), O(D1 +D4)

〉
,
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where D1, . . . , D4 are all toric divisors of Fa, corresponding to the rays ρ1, . . . , ρ4.

In the next two sections we will use full strong exceptional collections to construct equiva-
lences of bounded derived categories.

6. Tilting Bundles

Bondal’s work established a correspondence between the category of coherent sheaves on
a projective space and the category of finitely generated representations of a bound quiver
(Q,R) through an equivalence of their bounded derived categories. See [Cra07] for the details
and proofs of theorems cited.

Borrowing terminology from representation theory (cf. [Bae88]), the notion of a tilting
sheaf on a scheme X aims to generalize Beilinson’s result in the following sense: a tilting
sheaf is a sheaf T of OX-modules that induces an equivalence of triangulated categories
Db(X)→ Db(Aop) which sends T to A = EndX(T ), its endomorphism algebra.

Recall that the global dimension of an algebra A is defined to be the maximal projective
dimension of its right modules.

Definition 6.1. A sheaf of OX-modules is a tilting sheaf (resp. bundle) if the following hold:
(i) T has no higher self-extensions, that is, ExtiX(T, T ) = 0 for i > 0,
(ii) the endomorphism algebra A = HomX(T, T ) has finite global dimension, and
(iii) T generates the bounded derived category Db(X).

More specifically, Bondal showed in [Bon90] that a triangulated category generated by
a strong exceptional collection is equivalent to the derived category of right modules over
the algebra of homomorphisms of the collection, which we represented as a bound quiver in
Section 3.

Theorem 6.2 ([Bae88; Bon90]). Let T be a tilting sheaf on a smooth projective variety X,
with associated tilting algebra A = EndX(T ). Then the functors

HomX( T , − ) : Coh(X) −→ mod(Aop) and
−⊗A T : mod(Aop) −→ Coh(X)

induce derived equivalences of triangulated categories

RHomX( T , − ) : Db(X) −→ Db(Aop) and
−⊗L

A T : Db(Aop) −→ Db(X)

which are quasi-inverse to each other.

Corollary 6.3. Suppose T is a coherent sheaf on X satisfying (i) and (ii), then T satisfies
(iii) if and only if for any E ∈ Db(X) we have RHomX(T,E)⊗L

A T ∼= E.

Establishing that a sheaf is a tilting sheaf on X is essentially done in two steps: first find a
strong exceptional collection on X, then show that the exceptional collection is full. With this
information, the tilting sheaf can be constructed simply as a direct sum of the exceptional
collection. When the exceptional collection contains only vector bundles, then T is a tilting
bundle, and if it contains only line bundles, then T is a particularly useful invariant of the
derived category.
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Proposition 6.4 ([Cra07], Prop. 2.7). Let T = ⊕n
i=0Ei be a locally-free sheaf on X with each

Ei a line bundle (in particular, HomX(Ei, Ei) = 0 for all i). Then
(1) if T satisfies (i) and (ii), then (E0, . . . , En) forms a strong exceptional collection.
(2) if T satisfies (iii), then (E0, . . . , En) is a full strong exceptional collection.

Conversely, every full strong exceptional collection defines a tilting sheaf.
The connection with Beilinson’s work is apparent from the following theorem, which can

be seen as a strengthening of Corollary 6.3.
Theorem 6.5 ([Kin97], Theorem 1.2). Let X be a smooth projective variety and T be a
bundle satisfying conditions (i) and (ii). Then T is a tilting bundle if and only if the map
T∨ �L

A T → O∆ is an isomorphism in Db(X ×X).
Once again, the notion of a resolution of O∆ as an object in Db(X ×X) appears to have a

close relationship with the derived category of X. In the next two sections, this relationship
is formalized and expanded upon.

7. Fourier–Mukai Transforms

Let X and Y be smooth projective varieties. Every morphism f : X → Y induces two
exact derived functors:

• the inverse image functor Lf ∗ : Db(Y )→ Db(X) (pullback), and
• the direct image functor Rf∗ : Db(X)→ Db(Y ) (pushforward).

Moreover, any object E ∈ Db(X) defines an exact tensor functor · ⊗L E : Db(X)→ Db(X).
A Fourier–Mukai transform is a functor Db(X) → Db(Y ) represented by an object of
Db(X×Y ) and constructed as a composition of the above functors. In particular, it turns out
that any equivalence between Db(X) and Db(Y ) arises in this way. See [Huy06] or [Orl03]
for further exposition.

Consider the two projections from X × Y :

X × Y

X Y.

pq

Then p and q induce functors on the corresponding derived categories.
Definition 7.1 ([Huy06] Definition 5.1). A Fourier–Mukai transform is a functor

ΦP : Db(X) Db(Y ),

given by F Rp∗
(
Lq∗F ⊗L P

)
.

The object P ∈ Db(X × Y ) is called the Fourier–Mukai kernel of the functor ΦP .
Remark 7.2. In this situation, the pull-back Lq∗ : Db(X)→ Db(X × Y ), the direct image
functor Rp∗ : Db(X×Y )→ Db(Y ), and the tensor product · ⊗LP : Db(X×Y )→ Db(X×Y )
are viewed as derived functors between the derived categories. However, since q is flat, Lq∗
is the usual pull-back q∗, and if P is a complex of locally free sheaves, then · ⊗L P is the
usual tensor product. Moreover, since all three functors are exact, ΦP is also exact.
Remark 7.3. The analogy to the classical Fourier transform is roughly that L2-functions
are replaced by complexes of coherent sheaves.
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An active area of research is whether every functor between derived categories can be
represented by a Fourier–Mukai transform induced by an object on the product. Orlov gave a
positive answer for equivalences of derived categories of coherent sheaves on smooth projective
varieties.

We are interested in the case where Y = X and P ∈ Db(X × X) is a resolution of the
structure sheaf O∆ of the diagonal subscheme ∆

ι−→ X × X. Such P is referred to as the
resolution of the diagonal. In particular, the following calculation shows that ΦO∆

is simply
the identity in the derived category:

ΦO∆
(F ) = Rp∗(q

∗F ⊗O∆)

= Rp∗(q
∗F ⊗ ι∗OX)

∼= Rp∗(ι∗(ι
∗q∗F ⊗OX)) (projection formula)

∼= R(p ◦ ι)∗(q ◦ ι)∗F ∼= F .

That is to say, the Fourier–Mukai transform with a resolution of the diagonal as its kernel
produces quasi-isomorphisms.

Two constructions for resolutions for the diagonal have been mentioned in this note so far:
• Koszul resolution of the diagonal in proof of Lemma 5.5;
• Bar resolution of the diagonal in Theorem 6.5.

From the point of view of derived categories any resolution of the diagonal induces a
Fourier–Mukai transform that produces quasi-isomorphisms. Other constructions for a
resolution of the diagonal have been used in the literature to accomplish different goals:

• Priddy resolution of the diagonal for Koszul algebras [Fab+20];
• Cellular resolution of the diagonal from a toric cell complex [CQ12].

Moreover, Orlov’s result that for smooth projective varieties X and Y any equivalence of
Db(X) and Db(Y ) is a Fourier–Mukai transform implies that many results in commutative
and homological algebra can be restated in terms of special resolutions of the diagonal. For
instance, the content of Theorem 1.6 is that for a 0-regular graded module M on a product
of projective spaces, resolution of any truncation M≥d is a Fourier–Mukai transform that
produces a virtual resolution.

To avoid excess abstraction, in the following sections applications of Beilinson’s resolution
of the diagonal, which is itself a Koszul resolution on a projective space Pn, are explored.

8. The Beilinson Spectral Sequence

Returning to coherent sheaves on the projective space Pn, in this section we detail the
construction of Beilinson’s resolution of the diagonal and the spectral sequence that computes
the corresponding Fourier–Mukai transform. See [OSS80, §3.1] for a geometric exposition
and [Huy06, §8.3] or [AO89, §3] for an algebraic exposition on the spectral sequence.

Let p1, p2 : : Pn ×Pn → Pn be the two projections, and consider the rank n vector bundle

W = OPn(1)�Q = p∗1OPn(1)⊗ p∗2Q
∼= HomPn×Pn (p∗1OPn(−1), p∗2Q) ,(8.1)

where Q = TPn(−1) is a twist of the tangent bundle as in the cokernel of the Euler sequence

0→ OPn(−1)→ On+1
Pn → Q→ 0.
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There is a canonical section s ∈ H0 (Pn × Pn,W ) whose vanishing cuts out the diagonal
subscheme ∆ ⊂ Pn × Pn. This section yields an exact Koszul complex

K : 0→ ∧nW∨ → · · · ∧2 W∨ → W∨ → OP(E )×XP(E ) → O∆ → 0.

Note that as objects in Db(Pn ×Pn), K is isomorphic to the sheaf O∆. The corresponding
Fourier–Mukai transform ΦO∆

: Db(Pn)→ Db(Pn) yields the Beilinson spectral sequence, an
important instrument for studying coherent sheaves on Pn.

Theorem 8.1 (Beilinson). Let F be a coherent sheaf on Pn. There exist two spectral
sequences

Er,s
1 = Hs

(
Pn,F ⊗O(r)

)
⊗ Ω−r(−r) ⇒ Er+s =

{
F if r + s = 0,

0 otherwise,

and

Er,s
1 = Hs

(
Pn,F ⊗ Ω−r(−r)

)
⊗O(r) ⇒ Er+s =

{
F if r + s = 0,

0 otherwise.

Historically, Beilinson used the resolution of the diagonal to represent a vector bundle via
the cohomology of its twists, hence the classical application of constructing vector bundles
with prescribed cohomology.

Remark 8.2. The structure sheaf O∆ for more complicated varieties, such as K3 surfaces,
cannot be resolved by sheaves of the form F � G .

In the next two subsections we describe a number of applications relevant to the problems
in this note, including two cases when the Beilinson spectral sequence can be extended to
more complicated toric varieties.

8.1. Virtual Resolutions. Let X be a product of r projective spaces, so the Picard group
of X is Zr. In [BES20, §2], Berkesch, Erman, Smith construct a short virtual resolution
whose length is at most the dimension of a product of projective spaces. Given a graded
module M on the Cox ring of X, the construction involves four steps:

(1) find a twist d ∈ Zr such that Ωu(u+ d)⊗ M̃ has no higher cohomology;
(2) compute a Koszul resolution of the diagonal in X ×X given by

K : OX(−n)� Ωn
X(n)→ · · · →

∧
|ei|=k

(
OX(−ei)� Ωei

X(ei)
)
→ · · · → OX×X → O∆ → 0

(3) find the image of M under the Fourier–Mukai transform with kernel K
(4) apply the global sections functor on the resulting complex.

Step (3) relies on the convergence of a spectral sequence, which follows from a variation for
the case of products of projective spaces on the theme of Beilinson’s resolution of the diagonal.
However, apart from being a resolution of the diagonal, the existence of a Koszul resolution
for the diagonal subscheme in Step (2), whose codimension is equal to the dimension of the
scheme, implies that the length of the resolution will be bounded by the dimension. In fact,
any other resolution of the diagonal with the appropriate length would yield the same result
here.
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Remark 8.3. Short virtual resolutions constructed by the method above have the conse-
quential property of being linear free complexes; i.e., all the differentials are represented by
matrices of linear forms. In particular, on the projective space, this is the same as a linear
free resolution of a truncation M≥d for d at least the Castelnuovo-Mumford regularity [EG84].
Theorem 1.6 generalizes this characterization to products of projective spaces.

In experiments, the Bar resolution constructed via a bound quiver in [Kin97, §5] has
simpler differentials, though finding such a resolution that is also minimal is more involved.

8.2. Tate Resolutions. Let E be the exterior algebra and ω = Homk(E,k), which is “non-
canonically” isomorphic to E(−n−1). The Tate resolution for sheaves over the projective space
and products of projective spaces was defined and constructed using the BGG correspondence
in [EFS03] and [EES15], respectively.

However, in a forthcoming paper by Brown, Eisenbud, Erman, and Schreyer, this construc-
tion is reinterpreted as the Fourier–Mukai transform

Db(Pn × E)

Db(Pn) Db(E)

π1 π2

ΦK

with the resolution of the diagonal K in Db(Pn × E) given by
K : · · · → O(−1)⊗ ω(1)→ O(1)⊗ ω(−1)→ · · · .

9. Concluding remarks

Fourier–Mukai transforms have been implicitly used to prove various results in commutative
algebra. While the exceptional collection and kernel of transformation used in each case is
different, contrasting different applications of Fourier–Mukai transforms can shed light on the
respective results and improve understanding of the use of derived categories in commutative
algebra. Moreover, better understanding of the necessary conditions for each of these results
in terms of the exceptional collection and kernel used or bridging this theory with the BGG
correspondence can potentially lead to further generalizations.

For the case of toric varieties, understanding how the derived category is reflected in the
polyhedral geometry of the fan and representation theory arising from quivers of sections can
lead to more explicit computational methods for working in the derived category. This will
provide researchers with computational methods for testing conjectures and practitioners
with better algorithmic tools.

Lastly, extending older techniques to toric varieties, such as using monads for constructing
vector bundles with prescribed cohomology, has the potential to reinvigorate classical problems
with new tools. As mentioned in the introduction, one example is the question of constructing
indecomposable bundles of low rank, which motivates many of the themes explored here.
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