Using the Gatekeeper Concept to Design and Assign
Multiagent Teams

Marie D. Manner
University of Minnesota
Minneapolis, MN, USA

manner@cs.umn.edu

ABSTRACT

There are environments where multiple agents can take on differ-
ent roles, but where any single agent may not have all the required
capabilities for a role. We need a way to group agents appropri-
ately such that the combination of their capabilities forms a team
which satisfies the role requirements. We extend the Gatekeeper
concept not only to interact with agents and decide if any of them
can fulfill a role, but also to reason about role dependencies, gather
subsequent information, and group agents into teams when needed
to satisfy a role. We further extend the team-building abilities by
adding a Monitor agent which monitors team member behavior and
alerts the Gatekeeper of agent failures which may require member
reassignments. Finally, we design abstract protocols for the interac-
tions of Gatekeeper, Monitor, and other agents in any environment.

1. INTRODUCTION

Imagine a team of agents scattered in an environment — a set of
Search and Rescue robots, for example — that each want to be help-
ful and do a particular job such as put out fires, rescue people, and
clear blockades from roads. In the interest of scalable architectures
which allow for failure of some agents, we try to veer away from
set hierarchies of leadership and make small teams, instead. Be-
cause each agent may have different abilities or may change abil-
ities throughout its lifetime (for example, if a small portion of a
robot agent’s hardware broke but most of the agent is fully func-
tional), we also want to dynamically group teams based on abil-
ity. Now, how can we best make sure that the job gets done with
this heterogeneous combination of agents? More specifically, if
none (or few) of the agents is actually able to accomplish the task
it wishes to do, how can we make sure the task gets done?

To make sure the task is finished with whatever partially-capable
agents we have, we propose building an agent team based on agent
abilities. Each agent must be self-aware, in that it can reason about
its own abilities, such as the ability to go to a place or pick up
an object [1]. Any team capable of accomplishing the task must
collectively have the required capabilities for doing the task, and
some team members may have additional requirements needed to
coordinate with other agents in the team.

To properly form the team, we extend the Gatekeeper concept [1,
2] — an agent which identifies agents in an environment, evaluates
the agent’s suitability for some particular role, and assigns that role

Appears in: Proceedings of the Workshop on Multiagent Inter-
action Networks (MAIN 2013), held in conjunction with AAMAS
2013, May 7, 2013, Saint Paul, Minnesota, USA.

Copyright (©) 2012, the authors. All rights reserved.

M. Birna van Riemsdijk
TU Delft
Delft, The Netherlands

m.b.vanriemsdijk@tudelft.nl

Catholijn M. Jonker
TU Delft
Delft, The Netherlands

c.m.jonker@tudelft.nl

to the agent. The expanded Gatekeeper assigns multiple agents
to the same role by assigning agents to each subrole in the main
role. This necessitates all agents being able to communicate with
the Gatekeeper to request a role and discuss abilities, and possibly
coordinate with future teammates. The Gatekeeper must then be
able to reason about agent capabilites, agent ability to satisfy the
role, and collective agent abilities that might satisfy the role. The
Gatekeeper will need a reasoning scheme, an interaction protocol,
and the discretion to assign agents to a team as needed.

Because the Gatekeeper agent requires a very different knowl-
edge set than workers in the environment, we also consider what
happens if the Gatekeeper agent needs to leave the environment for
some time — for example, to work with a different set of agents
and structure other teams. In case agents become disabled while
the Gatekeeper is gone, we also implement a local agent called the
Monitor, who monitors all team agents and is equipped with the
ability to notify the Gatekeeper of significant changes in a team
member’s ability or total agent failure. The Gatekeeper, thus armed
with new knowledge, can determine if the current team is still vi-
able and assign new teammates or recognize that the role’s goal(s)
will be left unfinished.

Our contributions are the abstract protocols and design specifica-
tion used for any Gatekeeper, Monitor, and agent set within an en-
vironment. These abstracted, environment-independent rules arise
from the related work described in Section 2 and the formal prob-
lem description in Section 3. We outline the design for the Gate-
keeper and Monitor agents in Section 4, implement an example in
the BlocksWorld for Teams test bed in Section 5, and explain re-
sults in Section 6. Concluding remarks and future work is given in
Section 7.

2. RELATED WORK

We build on previous literature in organization modelling, team-
work, and shared mental models. We use an organizational mod-
elling language to specify roles, subroles, the organizational struc-
ture, and environment norms [3]. The organizational structure al-
lows us to abstract from the actual agents that will eventually func-
tion in the system, which means the organization must have rules
that an entering agent (of varying design, purpose, or designer)
must accept and roles that an agent can take. Reasoning agents
that can interpret the organizational constraints and adopt roles are
called organization-aware agents, and we require all of our agents
to have a firm grasp of the organizational norms so that they can
communicate and, later, coordinate. The roles in the environment
may also be described as adopting a goal; the goal of an agent is
to accomplish some task. Any task must be accomplished only by
an agent with the appropriate capability [4], in which the agent has
the ability to act rationally towards acheiving a goal and the oppor-

tunity (at some point).

We desire not only an abstract organizational structure, but an
idea of the team structure and each individual agent’s reasoning
model. The team work literature is a well-known force for accom-
plishing tasks better or faster, and organizing the agents into teams
adds the cooperative element that lets an agent request roles it may
not be entirely suited for. Research has inspired self-organized and
distributed teams, human-inspired robot teams, and human teams
modelled with robots [5, 6, 7, 8, 9, 10]. Previous work also shows
that a smoothly-functioning team can structure team information
and action processes in the so-called “team mental model,” which
includes communication, understanding, shared goals, technolog-
ical abilities, intention and need prediction [11, 12, 13]. A team
mental model is the particular schema used by each agent in a team,
whether the agent is human or robot; as an agent experiences the
world, its personal mental model becomes populated with data or
beliefs. The better the team mental model, the more easily agents
can understand each others’ actions or interests, enabling the agents
to interact and cooperate more smoothly.

An environment may contain heterogeneous agents for two im-
portant reasons: the agents were designed differently to begin with,
or the agents became different through various on-the-fly adjust-
ments or malfunctions. Using organization-aware agents allows
us to ignore the reasons behind such heterogeneity; however, this
means the team-organizing Gatekeeper must be able to request and
receive information on applying agent’s capabilities. Requiring
agents able to self-reason as in [1] allows agents to understand their
own capabilities and reply honestly when queried.

3. PROBLEM DESCRIPTION

To summarize the problem, we have an environment with one
or more heterogenous, autonomous but reasoning robots with or
without physical bodies. Each robot, or agent, must perform a task
in an environment, which it may not be able to do; we seek a way
to formally assign these agents to a team to perform the task. Each
agent can reason about itself enough to determine what it can or
cannot do. Such capabilities may be based in the physical (move
forward, pick up item) or mental (reason about what task must be
done next). An agent’s capabilities may be stored internally in the
format used in [1]; e.g. the tuple capability(ableTo(parameters)).
For example, consider an agent tasked with delivering car parts to
stationary robots inside an automotive manufacturing plant. This
agent has a body for moving around, finding and delivering parts to
the proper robot. This agent would at least have abilities:

e cap(ableToDo(goTo,[place]))
e cap(ableToReason(nextBox, []))

Additionally, actions or events in the environment may contain
dependencies. For example, if the agent must move a particular
box of parts from the factory floor to a table near a specific welding
robot, it must first determine the correct box, find it, pick it up, then
move with the box in hand to the table; this particular task may
be called box-moving. The agent which performs it takes on the
role of boxMover, and the activity may be split into separate tasks,
which could be thought of as subroles:

role(boxMover)

subrole(boxMover, determineTargetBox)
subrole(boxMover, searcher)
subrole(boxMover, deliverer)

To determine the target box, the agent requires some prior knowl-
edge — perhaps which box of parts in a sequence of parts must be

delivered. Knowing which box is required allows the agent to look
for it; finding the box’s location allows the agent to pick it up and
deliver it. Thus, there is a flow of information from each task to
the next. If different agents claim each subroles, they must coordi-
nate and share information (namely, which box must be found and
where it is). A required capability to deliver the proper box may be
encoded as reqCap(deliverer, ableToDo(goToBox, [boxID])) and
the information flow from determining the target box (using an in-
dex into a box sequence) to the next box may be encoded as:

e roleLink(determineTargetBox, [(sequencelndex,[index]), (se-
quence, [])], nextBox)
e roleLink(searcher, nextBox, locBox)

The interesting problem arises if an agent cannot do everything
the boxMover role requires; our solution is to create an organized
team of coordinated agents, and we implement the Gatekeeper to
assign and organize this team. A second and simpler agent, the
Monitor, may be useful to keep an eye on the newly formed team.
In the next section we describe the interaction protocols for the
agent-to-agent communications needed to learn about agent capa-
bilities and design and assign a team.

A single agent performing all the tasks required in the environ-
ment may not need to know about the information flow given above.
However, for a Gatekeeper to determine if a combination of agents
can satisfy the role, it must know the capabilities required for each
role and whether an agent assigned to one subrole is able to send in-
formation needed by a different agent taking another subrole, and
that the second agent is able to receive it — thus, the Gatekeeper
must know the reqCap and roleLink knowledge given above. This
information flow also cues agents to target other agents for certain
data; the Gatekeeper may alert one agent to send information out-
put to another agent(s) based on the information result of the first
agent and required input knowledge of the second agent.

4. PROTOCOL DESIGN

The agents in this organization require at least three basic conver-
sations, for which we design three interaction protocols. First, the
Gatekeeper interacts with agents to determine if teams are possible
or required; second, the Gatekeeper sends those details to the Mon-
itor and receives updates during task execution; third, the Monitor
agent monitors the assigned agent teams for partial or total fail-
ure. Because hostile environments may totally disable agents, the
Monitor periodically polls team members; non-responsiveness is
considered total agent failure. Finally, the assigned Agents do the
task while possibly interacting with each other. The Gatekeeper
knows before assigning teams whether additional communication
between team members is required, and that communication will
vary by environment; therefore, we do not design a separate pro-
tocol for those smaller member-to-member interactions. Instead,
note that the Gatekeeper can alert each agent which other agent re-
quires as input the information output it generates from an assigned
subrole; this means an agent can communicate information directly
to the agent that requires it.

After receiving updates from the Monitor, if the Gatekeeper de-
termines the task can still be accomplished with the current set of
Agents, nothing need occur. If the team requires a member addition
and a suitable agent already exists in the environment, the Gate-
keeper notifies the Monitor, who relays that new role assignment to
the new teammate. If all else fails, the agent team will continue to
execute with the assumption that it is better to accomplish part of
the task than stop completely (alternatives exist, varying by envi-
ronment — see comments in Section 7). The Gatekeeper, however,
is aware at all times that the task can (no longer) be completed.

In this way, the Gatekeeper (a robust, role-knowledgeable agent)
can move about the environment and accomplish other task assign-
ments, leaving only the fairly simple Monitor agent to keep track
of its agent team in the environment. This enables the Gatekeeper
agent to interact with a small subset of agents (any Monitors within
the environment) during execution, and allows us to equip only the
Monitor agent with any robust hardware or software necessary to
interact with the Gatekeeper, possible at long distances (or around
other difficulties) within the environment. This keeps the number
of Gatekeeper agents low, keeps local agent abilities simpler (no
long-distance communication required), and adds only very small
costs associated with the Monitor agents. The Gatekeeper may also
press a local agent into service as the Monitor, in which case we do
not require any more agents than are already present.

We format the communication as in [1], taking or slightly mod-
ifying several formalizations from that work. First, agent capabil-
ities are defined as follows: actions (ableToDo, specific actions an
agent can take, such as pick up an item), percepts (ableToPerceive,
information sent from the environment and received by some sens-
ing from the agent and possibly stored in a knowledge base), and
communication (ableToComm, a message to or from an agent). As
in the same work, a goal is the state an agent wants to reach; a goal
can be adopted and reached (and thereafter discarded). Internally,
an agent’s capabilities are stored as cap(<Cap>), and having an
ability also means an agent knows it has that ability (by virtue of
reasoning about the agent’s own code). We also use the following
message notation from [14]: “!” means an imperative (request),
“?” means a question, and “:” means information. In the inter-
action protocols, some messages are optional or are alternatives;
therefore, Figures 1, 2, and 3 use arrows with solid lines to indicate
communications that always occur but dotted lines to indicate com-
munication may not occur. If two alternative responses may occur,
both are listed with dotted lines.

The interaction protocol between Gatekeeper and Applicant agents
in Figure 1 requires the most dialogue between agents, as well as
several points of internal Gatekeeper reasoning. After agents re-
quest a role, the Gatekeeper must determine if this role needs to
be filled, asks if the Applicant agent has required capabilities, and
makes assignments. Assignments are based on the capability infor-
mation as well as an internal calculation that determines if, with the
current set of agents, the task can be satisfied at all, potentially by
filling subroles of the main role. If an Applicant is assigned a role,
the Gatekeeper notifies it of the assignment.

The initial contact between agent and Gatekeeper is the request
to become a role-enacting agent, or rea, for some role Role: !rea
(agt_x, Role). Here, the x indicates only that any number of
agents may enter into discussion with the Gatekeeper at a time; fu-
ture work will focus on the maximum number of agents can coordi-
nate with a Gatekeeper at one time. If the Gatekeeper has already
filled the role, it may immediately deny the agent’s request with
a rejection notice. Alternatively, if the Gatekeeper knows about
another role role (NewRole) that the agent may want to take, it
may suggest this role, after which the agent can stop responding or
send a new !rea message. If the Gatekeeper considers allowing
the agent to take the role, then for each initially known required
capability reqCap (Role, Cap), the Gatekeeper asks if the agent
has the capability with ?cap (agt_x, Cap), which the agent must
confirm or deny. If the agent has all required capabilities, the Gate-
keeper may assign the role immediately and confirm role accep-
tance. If the agent does not have all the required capabilities, the
Gatekeeper must wait and communicate with other agents.

If the Gatekeeper determines a set of agents can perform the role
(by assigning agents to one or more subroles) with possible ex-

tra coordination requirements (as determined in Section 4.1), the
Gatekeeper must confirm those extra capabilities by repeating the
capability-affirming conversation. Extra coordination may be any
ability such as explicit communication, ableToComm, Or an action,
ableToDo. A coordination capability is no different than any other
capability to the agent; only the Gatekeeper considers this capa-
bility as required for coordination. At the same time, if an agent
must communicate information to another agent, the Gatekeeper
can leverage its knowledge of role input and output information to
notify an agent which other agent(s) should be on the receiving end
of that in-between information: e.g., by sending al the message
sendTo (a2). This allows the sending agent to reduce extrane-
ous message passing by sending messages only to the appropriate
agent(s) instead of the entire group. After this capability discus-
sion, the Gatekeeper may still reject an agent (if the role is satisfied
with other team members) or it may assign the agent to the role
with teammates :rea (agt_x, SRole), teammates (<agt_x0
co)

The Monitor interaction protocol with Agents, shown in Figure
3, is straight-forward and simple by comparison — Agents are re-
sponsible for notifying the Monitor if they have lost any capabili-
ties with a : lost (Cap) message. If the capability was on the en-
forcement list sent to the Monitor by the Gatekeeper, the Monitor
will pass on that message. As mentioned earlier, we also require
that the Monitor pro-actively and periodically communicate with
each teammate to verify the agent is still functional. This message,
?stillAlive (Time) is sent at some interval, which may be any
unit such as minutes, hours, or after small task completions.

The Monitor interacts with the Gatekeeper, shown in Figure 2,
and the Gatekeeper uses the new information to make any new
team, role, or subrole assignments. The Gatekeeper requires the
Monitor keep track of specific agents and capabilities with :enforce
(agt_x, Cap),meaning the Monitor should notify the Gatekeeper
when agt_x loses capability Cap.

g - GateKeeper agt x : Applicant

- Irea(agt x, Role)
| _ [cannotPlay(agt x, Role)] reject - ~
| _ _Irole(NewRole]] ?[interestedin(NewRole)] _ _ _)

Loop

GK makes intemal decisior | _ lforalireqCap(RoleCap) __________ N

[reqCap(Role.Cap)] 7cap(agt_x. Cap)

| _[cap(Cap) hasCaplagt x. Cap) __ |
[notCap(Cap)] :notCap(agt_x, Cap)

GK makes internal decisiont

[canPlay(agt_x. Role)] :rea(agt_x. Role)
,,,,,,,,,,,,,,,,,,,,,,,,,,, 5

Loop

[for all subrole(Rale,Subrole), roleLink(S1, 1, O).
roleLink(S2, 0, 02), reqCoordCap(l, $1, S2J]

[reqCoordCap(Subrole.Cap)] ?cap(agt_x. Cap)

|- [cap(Cap)] :haveCaplagt x, Cap) _ |
[notCap(Cap)] :notCap(agt_x, Cap)

[canPlay(agt_x, Role), teammates{<agt_x0, agt_x1..>)
‘rea(agt_x, SRole), teammates(<agt_x0, agt_x1..>)
[” TeanndtPlay(@gt_ X, Ralg)[sfgject — ~ ~~~~~ ~ " &

Figure 1: The Gatekeeper / Applicant interaction protocol.

We now define the high-level knowledge requirement for any

g - GateKeeper,

GK processes team)

m : Monitor

Loop

[for all (agt_x. Role), reqCap(agt x, Cap)]
:enforce(agt_x, Cap)

o [forall lost(agt x, Cap)] ost(agt x, Cap) _____ |

CK processes teary

|- lforallfailure(agt »)) |
:fail(agt_x. Role)

| [canPlay(agt_x. Role), teammates(<agt _x0. agt x1...2

rrea(agt_x, SRole), teammates(<agt_x0, agt_x1..>)
[cannotPlay(agt_x, Role]] :reject

Figure 2: The Gatekeeper / Monitor interaction protocol.

m : Monitor agt x : Agent

|- [foralllostcap(Cap))] |
“lost(Cap)

Loop

Monitor/Ge
interaction

[for all team (Role, Agentist). member(Agent, Agentiist}
2stilAlive(Time)

e yesAlive(Time)

rea(agt_x, SRole), teammates(<agl_x0, agt_x1..>)
[cannotPlay(agt_x, Role]] -reject

Figure 3: The Monitor / Agent interaction protocol.

agent who might want to be in a team:

e Communication. An agent must determine what to commu-
nicate about, given the capability division (from Gatekeeper).

e Reasoning. An agent must be able to reason about capabil-
ities in relation to role-capabilities and agent interaction in
relation to role-capabilities.

e Organization formation.

— Done before task execution, by the Gatekeeper:

+* Knowledge of what capabilities agents have

+ Knowledge of dependencies between capabilities:
those which come due to interaction between agents
in different roles, and those which come from per-
formance requirements for one agent from its role

— Done during task execution, by each agent:

+ Knowledge of who is going to employ which ca-
pability (the internal ‘organization’ per team)

* Ability and follow-through of communicating rel-
evant information, based on dependencies, ‘task
division,” and current state

+ Knowledge of the Monitor, such that agents can
monitor performance and reorganize if needed; each
Agent must take instructions from the Monitor

4.1 Gatekeeper

Because team members may have to coordinate, the Gatekeeper
must be aware of roles, subroles that compose the role, and any
dependencies between subroles. If two different Applicants have
the required capabilities for two different subroles, the agents may
have to coordinate action or information from one subrole to the
other because of a dependency (for example, send each other infor-
mation about the contents of a room or building). To that end, the

Gatekeeper must be able to reason about information dependencies
between the two agents and verify they have the capabilities needed
to pass along the required information or perform the additional
actions. This verification must happen after realizing the poten-
tial subrole assignments but before finalizing any assignments. For
added robustness, the Gatekeeper should first verify if role depen-
dency information might instead be gathered from the environment,
using perception, to minimize additional agent-to-agent communi-
cation. The Gatekeeper will not check references or verify capa-
bilities. We assume each Applicant has accurate knowledge about
his capabilities and does not lie about his wishes to play a role or
his capabilities. We assume that if an agent requests a role from
the Gatekeeper, it is willing to follow the instructions it receives,
and continues to communicate and act in the best interests of the
assigned role.

To properly determine if agents can fulfill a role, the Gatekeeper
requires some initial structured information about the roles. All
agent roles should contain input, actions, and output. A reasonable
form would be:

e required input: [y
e required actions: [action, actiona, ...]
o delivered results: I, state-change.

Such definitions should ignore matters of internal policy; e.g., in-
puts (the collection of all information required to execute actions),
actions (tasks or processes done by the agent to or in the environ-
ment), and results (information creation or changes within the en-
vironment caused by the agent) should ignore which actions are
alternatives for unexpected behaviors or strategies for accomplish-
ing tasks. We simply desire all inputs, all actions, and all results
of actions (or outputs). In addition, note that the required input for
some actions may be the expected output or result of another ac-
tion. Thus the required actions speak to the needed capabilities for
the agent performing the role, especially if extra coordination will
be needed. We may also implement the role as a series of subroles,
possibly based on a one-to-one or one-to-many association with the
actions required of the role.

Consider a Gatekeeper that is aware of agent abilities and po-
tential subrole assignments potAsgn (agent, subrole) foreach
agent (an agent with all required subrole capabilities could perform
the subrole). Now we have the input of potential assignments — for
sake of brevity, given as three subroles of the role, of which one
agent al satisfies the first and second, and another agent a2 satis-
fies the third. The Gatekeeper’s mental model of the world at this
point should look like:

Input:

e Agents al and a2 have some list cap[ci, 2, ...c], Where ¢ is
a capability

potAsgn(al, subrolel)

potAsgn(al, subrole2)

potAsgn(a2, subrole3)

role-description(role, specification)

Actions:

e team-formation(al, a2): because cap(al) U cap(a2) is a su-
perset of goals(Goal)

e role-creation: role(newrolel), role(newrole2) — name of new
roles is arbitrary but sensible, taken from knowledge of agents’
capability(ies)

e role-assignment: assigned(al, newrolel), assigned(a2, new-
role2)

e for all goals in Goal, match input to results — determine if an
information flow exists such that every subtask can receive
the required input so that the over-all goal is accomplished;
this includes reasoning that multiple agents may require ad-
ditional dependencies, such as extra communication, to sat-
isfy the goal

— if input(G2, I) && result(G1, I) then poss-dep-on(Gl1,
G2)

— if poss-dep-on(G1, G2) && role-assignment(al, G1)
&& role-assignment(a2, G2) && al # a2 then sharing-
req(output(G1l), a2, al) && req-cap(al, send-comm(l))
&& req-cap(a2, receive-comm(I)))

— Here, goal G'1 outputs information I that is the same
information required for input to G2. Thus, G2 has a
possible dependency on GG1, which requires any role
assignments of, say, al to G1 and a2 to G2, that al is
capable of communicating I and that a2 is capable of
receiving that communication.

Results:

e Send messages to agents, al (Agentl) and a2 (Agent2), ask-
ing whether they have the required communication capabili-
ties. If they do, then actualize the role assignments.

o Gatekeeper informs agents about role assignments; if the agents

accept, the role may be finalized.

o Gatekeeper informs the Monitor of all agent-capability pairs
that are required in this team.

o If Gatekeeper receives information about agent partial or to-
tal failure from the Monitor, it may recompute the informa-
tion flow and send any new role assignments to the Monitor.

4.2 Monitor

The Monitor agent is much simpler — given a series of capabil-
ities and agents to enforce, the Monitor listens for any reported
failures. In volatile environments, we also want to ensure agents
are still functioning, and the Monitor must periodically poll each
team member.

Input:

e enforce(al, cap(Cap))
e enforce(al, cap(Cap2))
e enforce(a2, cap(Cap3)) ...

Actions:

e notification: if believe (lost (a1, cap(Cap))), notify Gate-

keeper of loss, lost (al, cap(Cap))
e notification: if believe failure (al), notify Gatekeeper of
total failure, failure (al)

e notification: if believe (newAssignment (aX)) and enforce (aX,

cl),enforce (aX, c2) .., notify team of new assignments
(may include reassignment of existing team members).

Results:

e The notification may trigger a response from the Gatekeeper
(a new enforcement message), in which case the Monitor
adds that input.

In this way, the Monitor is removed from the decision process,
and only needs to be as complex as is required for locally commu-
nicating with the nearby agents and communication with the Gate-
keeper (possibly at long distances).

S. BW4T IMPLEMENTATION

BlocksWorld for Teams (BW4T) from Delft University of Tech-
nology [15] adds complexity to the standard BlocksWorld problem
by expanding the environment from a simple agent and tabletop to a
map with multiple rooms, limiting visibility of block locations, and
varied numbers of robotic or human players on a map. The map
contains rooms, hallways, zero or more blocks of various colors in-
side a room, a non-zero number of agents, and a target sequence of
blocks to find throughout the rooms and deliver to a target location.

(2] BwaT =TT
LeftHalla Frontal FrontAz FrontAs RightHalla
LeftHalls FrontE1 FrontEz FrontE3 RightHallE
LeftHallC FrontC1 FrontC2 Front' RightHallC

John
LeftHallD FrontDropZone RightHallC:

Figure 4: BlocksWorld For Teams (BW4T)

Figure 5: An agent (black) in a room; it can see objects (a white
box and a blue box) in this room, see that its current room is
occupied, and see that neighboring rooms are unoccupied.

The agent’s goal is to deliver a sequence of blocks in the as-
signed order. To accomplish the goal, an agent must explore the
rooms, find the blocks, and deliver them in the required order to the
DropZone. The complete agent which does this is a BlocksWorld
for Teams Player, or BW4T Player, and we will expand this speci-
fication in the next section.

BWA4T allows up to one agent in a room at a time, any number of
agents in a hallway, and any goal color sequence of blocks for the

agents to find and deposit in the DropZone on the south end of the
map. Boxes that are dropped outside rooms and outside the Drop-
Zone disappear. Agents cannot see other agents, but they can hear
other agents’ messages, and they can see when a room is occupied.

Figure 4 shows nine rooms, RoomC1 — C3, RoomB1 — B3, and
RoomA1l — A3, as well as the DropZone. Underneath the Drop-
Zone, the user sees the required sequence of blocks to be delivered,
as well as which blocks have been delivered. In this case the se-
quence is blue, white, red, cyan, orange, and magenta; the blue
block has been delivered (indicated by a green triangle). Agent
Smith has picked up a white block in RoomC3, indicated by the
agent’s change in color from black to white. An agent cannot see
blocks until it moves inside of the room, as shown in the cross sec-
tion of the environment in Figure 5.

If the agents have memory, they can remember what blocks they
have seen and where, enabling them to retrieve specific colored
blocks without repeating the exploration phase. Obviously when
multiple agents run around looking for blocks and do not share
all information they have about the blocks found, memory has a
limited value. Another agent could go into a room and pick up a
block, rendering the information stored in an agent’s memory out
of date. Agents are able to communicate with each other through
predefined questions, answers, and statements, such as “Who is in
RoomB27?”, “I am in RoomB2,” and “Someone, we need a Blue
block.” [15]. Humans can participate in the BW4T world by con-
trolling one agent, which has the same environmental constraints
as any other agent; the human-controlled agent will communicate
messages the same way.

An agent starts without knowing where any blocks are, so it must
choose a room to look in for the next color block. If it finds the cor-
rect color, it can pick up the block and carry it to some location
(either the DropZone to deposit, or to a nearby room for storage).
Then the agent decides again — is the task finished? Should it ex-
plore another room? Does it know where the next color is? When
other agents communicate information, an agent’s job is easier be-
cause it no longer needs to explore some rooms (if it just heard what
blocks are in a particular room) or because it no longer needs to get
every block in the sequence (if another agent has just informed the
team it will pick up the next block or has delivered a block).

5.1 Gatekeeper and Monitor implementation

We now demonstrate the Gatekeeper and Monitor agents in the
BWA4T environment. The previous two sections give a generic ver-
sion of the specifications required; we will now outfit the speci-
fication with BW4T specific roles, subroles, and linking informa-
tion. Because the goal is to solve the BWA4T task by finding and
delivering blocks in a specific order to a predefined location, we
first require a BW4T Player specification for the Gatekeeper which
contains role and subrole information, required capabilities, and
role-checking rules. We are conerned with demonstrating how the
BWA4T Player task can be accomplished when no single agent has
all the abilities required to find and deliver a block; therefore, we
implement the Gatekeeper, Monitor, and protocols with two dif-
ferent agent types. One agent type can only reason about the next
block and identify blocks; it has no *picking-up’ abilities. The sec-
ond agent type can only pick up a block and deliver the block; it
has no abilities to reason out the target color or to identify block
colors.

First, we populate some of the mental model of the Gatekeeper
and agent knowledge with BW4T specific information, such as the
goal and subgoals. Next, we discuss the actual implementation.

The BW4T-player role can be described by three subroles:

e determineTargetColor:

— input: capabilities to perceive task sequence, perceive
current index in task sequence

— actions: calculate from index and goal sequence

— result: target-color (next color in sequence)

— input: target-color (next color in sequence)

— actions: goTo roomR; if unknown what blocks are in
room R; until color seen

— result: [block(id, color, roomR)]

e deliver:

— input: rooms that contain a block of the target-color
— actions: select room R that has target-color

* goToroom R
* pickUp block with target-color
* goTo dropzone
* drop target-color
— result: environmental trigger used by the determineTar-
getColor subrole (new index in task sequence)

The Gatekeeper mental model looks much like the generic ver-
sion given in Section 4 — only we can change the Input section to
include some specified list of abilities that result in, for example,
agent al being able to do the determineT argetColor and find
roles, and agent a2 being able to do the deliver subrole).

The BWA4T specification must include, for the purpose of team
formation:

e input (determine-target-color, []), result(determine-target-color,
info(next-target-color, (C)))

e input (find, [info(next-target-color(C))]), result([block(X, C,
roomR)])

o input (deliver, [info(next-target-color(C)), [block(X, C, roomR)]]),

result(deliver, state(done(C)))

We use this as input to the Actions section. Together with the
Input of al and a2 abilities, we have new role-creation and role-
assignment information:

e role-creation: role(determine-target-color-find), role(deliver)

e role-assignment: assigned(al, determine-target-color-find),
assigned(a2, deliver)

e for all goals in BW4T-player, match input to result — each
role link is defined as “roleLink(subrole, input, output (re-
sults))” or as “roleLink(subrole, input)”

— roleLink(determineTargetColor,
[sequencelndex, sequence], nextBlock).

— roleLink(searcher, nextBlock, locBlock).

— roleLink(deliverer, locBlock).

— if links exist,
roleLink(Subrolel, Inputl, Outputl),
roleLink(Subrole2, Outputl, _),
then
insert(reqCap(Subrolel, send-comm(I))),
insert(reqCap(Subrole2, receive-comm(l))) or
reqCap(determineTargetColor,
receive-comm([sequencelndex, sequence])),
reqCap(determineTargetColor, send-comm(nextBlock))),
reqCap(searcher, receive-comm(nextBlock)),
reqCap(searcher, send-comm(locBlock)),
reqCap(deliverer, receive-comm(locBlock)).
(In this environment, a successful block delivery trig-
gers an environmental index change, which determine-
TargetColor uses as input.)

5.2 Example code

We implemented the Gatekeeper, Monitor, and two agents in
BWA4T environment using the GOAL IDE which uses Prolog, and
give a few code snippets here. For example, the role-subrole rela-
tion subrole(bw4tPlayer, determineTargetColor) input — actions —
result information is captured by the Prolog clause roleLink (deter-
mineTargetColor, [(sequencelndex, [index]), (sequence, [blocks])],
nextBlock) The sequence of blocks tells the agent the sequence
of required blocks; the current sequencelndex at value index
tells the agent which block in the sequence is next. Note that the
determineT argetColor subrole input — action — result sequence
is just one input for the Gatekeeper. It must know required capabil-
ities for each subrole; e.g., its knowledge base will also contain

o reqCap(determineTargetColor, ableToPerceive (sequenceln-
dex, [index]))

o reqCap(determineTargetColor, ableToPerceive (sequence, [blocks])

o reqCap(determineTargetColor, ableToReason (nextBlock, []))

The subroles searcher and deliverer have similar subrole and
roleLink rules. As another example, take agents a/ and a2. Some
of al’s capabilities are

e cap(ableToPerceive(sequencelndex, [index]))

e cap(ableToDo(goTo,[place]))

e cap(ableToComm(send, [at, blockID, color, room]))
e cap(ableToReason(nextBlock, []))

A few of a2’s capabilities are

cap(ableToDo(goToBlock,[blockID]))
cap(ableToDo(pickUp,[]))

cap(ableToComm(send, [at, blockID, color, room]))
cap(ableToComm(receive, [locBlock, blockID, room]))

These two agents are affected by role links

e roleLink(searcher, nextBlock, locBlock)
e roleLink(deliverer, locBlock, na)

Initially there were no communication requirements (if an agent
can perform all tasks alone, it does not need to talk to itself). How-
ever, the agents assigned to searcher and deliverer are different,
which triggers additional requirements:

o reqCap(searcher,ableToComm(send,locBlock))
o reqCap(deliverer,ableToComm(receive,locBlock))

6. RESULTS

Using the protocols illustrated above, we performed several ex-
periments to demonstrate the Gatekeeper, Monitor, and agent inter-
actions:

o A Gatekeeper with a single agent able to accomplish all tasks

e A Gatekeeper with two agents which, when combined, can
accomplish all tasks

o A Gatekeeper and Monitor with four agents (2 that can deter-
mine target color and search, and 2 that can deliver blocks)
able to accomplish all tasks

o A Gatekeeper and Monitor with four agents (as above) able
to accomplish all tasks, in which one agent fails in mid-task

e A Gatekeeper and Monitor with four agents able to accom-
plish all tasks, in which both agents able to search for colors
fail in mid-task

Overall, the experiments showed that the Gatekeeper and Mon-
itor were able to determine a potentially-successful team, monitor
the capabilities of agents, and determine when a team would or
would not be able to finish the goal.

A sample of the Monitor agent’s beliefs after receiving Gate-
keeper enforcement notices can be seen in Figure 6, and a sample
of beliefs of an agent assigned to search and determine-target-color
can be seen in Figure 7.

TEREEr]

Beliefs | Goals | Mails | Percepts | Knowledge

ﬁ agent (deliverl)

i[zg=nt (e

; agent (deliver)

agent (search)

; agent (searchl)

; enforce (search, reqgCap (ableToDo(goToBlock, [blockID])))

E enforce (search, reqCap (ableToReason (nextBlock, [1)))

ﬁ enforce (deliver, reqCap (ableloReason (nextBlock, [1)))

5 enforce (deliverl, reqCap (ableToDo (pickUp, [1)))

E enforce (deliver, reqCap (ableToPerceive (sequencelndex, [index])))
; enforce (search, reqCap (ableToDo(putDown, [1)))

f enforce (search, reqCap (ableToPerceive {color, [blockID, color])))
ﬁ enforce (searchl, reqCap (ableToPerceive (sequence, [blocks])))

; enforce (deliver, reqCap (ableToDo (putDown, [1)))

; enforce (searchl, reqCap (ableToDo (pickUp, [1)))

Figure 6: The Monitor agent’s beliefs after receiving Gate-
keeper messages.

rgkx rmonx rsearchx rsearclnx |

Beliefs |/Goals |/Mails rPercepts |/I(n0wledge |

rea (bwdtPlayer)
agent (searchl)
e {searchl)
agent (3earch)
agent (deliver)
agent (deliverl)

sendliext
sequencelndex {0}
aveTeamBole (bwitPlayer)
aveRole (bwdtPlayer)
checking ("RoomCl")

3tate (traveling)

at {"FrontCl')

Figure 7: A Searcher’s beliefs before exploring.

The two simple tests, a Gatekeeper with a single agent able to
accomplish all tasks, and a Gatekeeper with two agents that ac-
complish all tasks, proved the basic concept that the Gatekeeper
can analyze agent ability and assign teams. The next test, a Gate-
keeper and Monitor with four agents, was also able to accomplish
the BW4TPlayer role. For this test, note that we could approach
the agent combination in several ways. First, we might have one
determine-target-color agent, one searcher agent, and two deliverer
agents. However, this means one agent would sit idle until the time
came to announce the next color block to fetch, which is a waste of
resources. Second, we could use two determine-target-color agents
assigned to the searcher subrole, along with two deliver agents.

sequenceToFetch (["Blue’, "White", "Red", "Green"', "Yellow', '"Magenta'])

This means that the two agents who were able to determine-target-
color and search were each assigned both roles. This is the method
that we used. A third and simpler team structure could have only
assigned one agent to the determine-target-color subrole and two
agents to the searcher subrole (with two deliverer agents). A fourth
method might be to have two pairs of searcher-deliverer agents, in
which each agent searches out and delivers a subset of the target se-
quence, like the odd or even indices. As mentioned earlier, we are
more concerned with initial interactions and targeting messages to
agents that need specific input.

More interesting are the last two tests, in which agents break
mid-task. The first, in which a Gatekeeper and Monitor with four
agents (2 determine-target-color plus search, 2 deliverers) able to
accomplish the BW4TPlayer role, with one agent that fails in mid-
task, tested the Monitor’s behavior. We were able to properly con-
trol the information (an agent capability failure) flow from Agent
to Monitor to Gatekeeper. One of the agents with determine-target-
color plus search was no longer able to identify blocks (analogous
to camera failure in the field, for example) after the first block was
delivered. That means that as soon as the failure occured, the agent
was no longer able to assist in searching out blocks, because it
could no longer identify block colors (which is how the required
block sequence is defined). Because at least one agent was still
able to perform each role (searching for blocks), the over all BW4T
player goal was accomplished, and no further action was required.

The last test, in which a Gatekeeper and Monitor with four agents
able to accomplish all tasks, in which both agents able to search for
colors fail in mid-task, was the most illustrative. We accidentally
discovered that since the searcher agents’ failure occured after they
had already explored most of the rooms, the deliverer agents were
still able to finish the task. Because the agents were still able to
find the blocks already known about and know the next block to
fetch (because this ability was not impacted), the task ended in suc-
cess. This occurred even though role requirements during run-time
would have declared the agents unable to satisfy the role. Thus,
in some cases, continuing to do the task even under a few agent
failures can be a useful approach. There are some cases, how-
ever, when continuing to do a task even under partial system failure
would be horrible — for example, during a surgery, a robot system is
probably better off stopping the surgery completely than continuing
to cut into a person even though the goal, installing a pace-maker,
would not be satisfied.

7. CONCLUSIONS AND FUTURE WORK

Our results suggest the Gatekeeper and Monitor combination
makes team formation more robust to agent failure, but more work
remains to be done. After assigning the teams, the Gatekeeper
agent should output the new role specifications for the new roles
(in the previous examples, these would be the two new roles that
accomplish the determine-target-color and search subroles, and the
delivery subrole). During any particular sample environment run,
the Gatekeeper should be able to store, print, or otherwise record
the agent and role assignments as well as agent capabilities and
failures. This would allow humans to determine what went well
before and during the task execution.

Our results also suggest that we need to be more aware of when
continuation in the face of agent failure is still helpful. There may
be domains (robotic surgery) in which agents should stop in case
of partial failures, but in others (humanitarian de-mining) agents
should continue as long as possible. We also must add agents into
the environment in the middle of the task, especially if one of the
team members has become disabled and the new agent would be
able to replace the broken agent. In this way we can fine-tune the

Gatekeeper reassignment abilities to ensure goal success.

Acknowledgments
This material is based upon work supported by the National Sci-

ence Foundation under Grant No. NSF/IIS-1208413, NSF/IIS-1216287,

and NSF/IIS-1216361. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.

8. REFERENCES

[1] M. van Riemsdijk, V. Dignum, C. Jonker, and
H. Aldewereld, “Programming role enactment through
reflection,” in Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2011 IEEE/WIC/ACM International
Conference on, vol. 2, aug. 2011, pp. 133 —140.

[2] H. Aldewereld, V. Dignum, C. Jonker, and M. van
Riemsdijk, “Agreeing on role adoption in open
organisations,” K1 - Kiinstliche Intelligenz, vol. 26, pp.
37-45, 2012, 10.1007/s13218-011-0152-5. [Online].
Available: http://dx.doi.org/10.1007/s13218-011-0152-5

[3] J. F. Hubner, J. S. Sichman, and O. Boissier, “Developing
organised multiagent systems using the MOISE+ model:
programming issues at the system and agent levels,”
International Journal of Agent-Oriented Software
Engineering, vol. 1, no. 3, pp. 370-395, 2007.

[4] L. Padgham and P. Lambrix, “Formalisations of capabilities
for BDI-agents,” Autonomous Agents and Multi-Agent
Systems, vol. 10, no. 3, pp. 249-271, 2005.

[5] X. Fan and J. Yen, “Modeling and simulating human
teamwork behaviors using intelligent agents,” Physics of Life
Reviews, pp. 173 — 201, 2004.

[6] S. M. Fiore, E. Salas, H. M. Cuevas, and C. A. Bowers,
“Distributed coordination space: toward a theory of
distributed team process and performance,” Theoretical
Issues in Ergonomics Science, vol. 4, pp. 340-364, 2003.

[7]1 A.Howard, L. E. Parker, and G. S. Sukhatme, “Experiments
with a large heterogeneous mobile robot team: Exploration,
mapping, deployment and detection,” The Int’l Journal of
Robotics Research, vol. 25, no. 5-6, pp. 431-447, 2006.

[8] A.Rosenfeld, G. A. Kaminka, S. Kraus, and O. Shehory, “A
study of mechanisms for improving robotic group
performance,” AlJ, vol. 172, no. 6-7, pp. 633-655, 2008.

[9] P. Salmon, N. Stanton, R. Houghton, L. Rafferty, G. Walker,
D. Jenkins, and L. Wells, “Developing guidelines for
distributed teamwork: Review of literature and the HFI
DTC’s distributed teamwork studies,” HFIDTC, 2008.

[10] K. Sycara and G. Sukthankar, “Literature review of
teamwork models,” Robotics Institute, Carnegie Mellon
University, Tech. Rep. CMU-RI-TR-06-50, November 2006.

[11] G. Dedre and A. L. Stevens, Eds., Mental models.
Lawrence Erlbaum Associates, London, 1983.

[12] P. N. Johnson-Laird, Mental models. Harvard University
Press, Cambridge, 1983.

[13] R. Klimoski and S. Mohammed, “Team mental model:
Construct or metaphor?” Journal of Management, vol.
20:403, 1994.

[14] K. Hindriks and M. van Riemsdijk, “A computational
semantics for communicating rational agents based on
mental models,” Programming Multi-Agent Systems, pp.
31-48, 2010.

[15] BWA4T2 Specification, Delft University of Technology, 2011.

