

<image><image><image><equation-block><equation-block><text><text><text><text>

16

Math 5421 Stefan-Boltzman Law $\Rightarrow F = \sigma T^4$ power flux (W/m²) temperature (K) Stefan-Boltzmann constant $\sigma \approx 5.67 \times 10^{-8} \,\mathrm{W/m^2} K^4$ surface temperature of the Sun: 5772K power flux: 5.67x10⁻⁸ x (5772)⁴ = 6.29x10⁷ W/m² total solar power output: $6.29 \times 10^7 \times 4 \pi (r_s)^2$, where $r_{\rm S}$ = radius of the sun = 6.96x10⁸ m total solar output: 3.83x10²⁶ W 260 nanoseconds = time it takes for the Sun to produce the equivalent of the annual global electricity production. Math 5421 1/30/2025

22

34

36

