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Atmosphere - Ocean Surface Interaction AT
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system of ar = 40 =l initial DYNAMICAL SYSTENS
differential as condition
equations ;:kS(SA -8)=-kg(S-S,), S§(0)=S5,.

Matrix Notation

differential d T\ {~k 0 |T-T, T )= T, initial
equation darls| | o kg || S-5, ] s - S, | condition
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Basic idea: Basic idea:
The dependence of the solution on initial conditions is The dependence of the solution on initial conditions is
just as important as its dependence on time.

just as important as its dependence on time.
Inital value problem General notation:
dot notation

differential d| T _ k0 |[T-T, T 0)= T
equation  dr|S| | 0 k| Ss-5,] |s s, r 0 r-T, T, [
x= S(x)= &= r=— ¥=[(x)
. t Ls 0 k|| S-S, ils dt t
T,+(L, =T, )e ™ } state variable vector field initial condition differential equation

. ™ -[70]
solution SISO S+ (S8, )
flow

g om0

T,
flow (p[{ "],t :{ e
S, S, +(S, =8, )e™ o(c0)=0| ¢ S8y
A 0 A

initial condition time
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The dependence of the solution on initial conditions is Example
just as important as its dependence on time. a7 [k -7,
xeR", £eR", f:R" >R’ EM:{ 0 %J{LSJ

K initial value problem
x=/(x)

intital value problem x(0)=¢
- p(n.5)=0(&.1+5)

The initial value problem generates a flow T,
¢9:R"xR >R flow w([sj” B

with properties

I
—
o3
+
Pl
|
-~
=

iy

= W o ke (tss
intital condition w(f,O):f n=0(51) T, | TH(T,-T,)e He) | T+ -T,)e A
rou| s, )7 s(rs) | (o)
"group property"  (p(&,1),s)=p(&,t+5) 4 prgope:’ty o Si+(So=S4)e S, +(S=S,)e
If we start the system at state ¢ and follow the solution for time ¢, then t/{w[{r“ [] s] | T(T +(T,-T,)e™ -1, )e (-1 )e
restart the system at the new state and follow the solution for time s, Sy S, (S, +(S=8,)e ™ =8, )e | [, +(S,-8,)e )

we end up at the same state as starting at £ and following for time #+s.

Math 5421 Math 5421

Dynamical Systems Dynamical Systems
Dynamical Systems "Phase Plane"

Example Example

dx

E:‘” i{x]:{fl 0 ]{x] X=-x

x diy 0 -1y y=-y Hxﬂ] ] {xoe”}
4 =
a=0

x] ©= {x“} x(0) i X, v e
y Yo 2(0) =y,

x
a<0
t t y % |_[1
[ \'\ Yo 1
"Lyapunov stable" X 1
"unstable" -

—_————
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"Phase Plane" "Phase Plane"
Example Example

d|x -1 0 |[x X=-x d|x -2 0 |[x X=-2x
dtly] [0 -2]» y==2y X, xe” dt|y 0 -1y y=-y X, xe”
4 L= @ =
x X x(0)=x, Yo yoe™ x X x(0)=x, Yo yoe!
0= 0=
y Yo y(0)=y, y Yo »0)=y,

| M L

12 13

Richard McGehee, University of Minnesota 2



Math 5421

Math 5421
Dynamical Systems

"Phase Plane"
Example: "stable nodes"

i{x} _{a 0][1 X=ax
dt|y] |0 by y=by on] ] {x‘,z“']

¢ o= b
x X x(0)=x, Yo Vo€
Co-L]
y Yo ¥(0)=y,
a<b<0 a=b<0 b<a<0
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"Phase Plane"
Example: "saddles"
X=ax
y=by
x(0)=x,
»(0)=y,

unstable
manifold

stable
manifold

a<0<b b<0<a
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T
dT atmosphere
Lk (T, -T),
@ (T, =T). - X
B _ks,-5) —
s shallow ocean! T(t), s(t) P
\/ phase portrait -=== X
N
' To. So
ky > k>0
T, T
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"Phase Plane"
Example: "unstable nodes"

d

X=ax
y=by
x(0)=x,
(0) =y,
y

Xo

Yo

JH

a=b>0

a>b>0
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Xy€
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}

b
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0<a<bh
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Welander's Model
The interaction between the shallow atmosphe;
ocean and the atmosphere is modeled
as a dynamic transfer of relaxation to
equilibrium:
dT
a kp (T, =T),
ds

dt
where k;and kg are positive constants.
This system has a stable equilibrium
point at

ks (S, =),

deep ocean

.Tn E
kr  |ks
T(t), 5(tl_|

k

To. So

(7.8)=(T..5.)-

17
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Welander's Model

The interaction between the shallow
ocean and the deep ocean is both
simpler and more complex. The
coordinates are chosen so that its
temperature and salinity at both zero.
The complication is that the mixing is
determined by the density, which is a
function of the temperature and
salinity.

shallow ocg

Welander simplified this complexity
down to an assumption that the mixing
is either zero (when the density of the
shallow ocean is large) and one (when

deep oc

atmosphere

T(e), 5(tl_|

k

an

To. So
Ty=5=0

4an

the density is low).

19
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atmosphere

mixing with

deep ocean .

temperature — . l
T=—k(pT shallow ocdan T(1), s(1)
salinity = §=-kp)s P
p=—al+yS
density To. So
Ty=8y=0
. ky, p<e deep ocdan
mixing rate k(p) =
k, p>¢
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Math 5421

Discussion
[ = atmosphere
7.'——k(p)T k(p)= ko, p<e
S=-kp)s KO o, 7
p=—al+yS
shallow ocdan T(t), s(t)
What do solutions look - k_ ==
like if ky=0and k, =1?
To. So
Ty=8,=0
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deep ocdan

\—
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dT

;f’fr(TA )

ds

E:ks(sn -5)

dr

- k(pr
@ (p)

ds

S - k(p)S
@ (p)
p=—al+yS

dT

=T D) =kT
ds
k(8. -5)-kp)S

p=-al +pBS
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atmosphere

T(t), S(tl_|

shallow ocdan

k

altogether

To. So

Ty=5y=0
deep ocdan 0 0

k. p<e

k(p):{

k, p>¢
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T =—k(p)T ko p<s atmosphere
$=-k(p)S k(p):{k’ e _
p=-al+yS — | — _|
1.2 shallow ocgan T(t), S(v)
| K=k '
discontinuity
08
o pP=E \ To. sD
Ty=8,=0
o deep ocdan 0 0
04
02
02 04 06
T
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Discussion
T= —k(p)T 0. p<e atmosphere
S =—k(p)S k(p)={l’ poe 7
p=—al+yS —|
shallow ocgan T(t), S(t)
everything decays | Te——
exponentially to the origin k
To. So
T=-T = T, =8,=0
deep ocdan 0 0
=-S5 =
nothing moves
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Welander's Model

Welander further simplified the model
by scaling the variables and choosing
scientifically reasonable constants to

25

g
atmosphere E
kr ks

arrive at
ar 0, p<e shallow ocean T(t), S(t)
=TT k(p)z{’ --_-1___--
't 1, p>¢ k
B 1-8)-k(p)S =08
d 505
p=-al+S - To. So
Ty=8,=0
deep ocean 0 0
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scientifically reasonable constants to

” By &5 ” .
Welander's Model Scaling Idea
o 7 || 34
Welander further simplified the model atmosphere . ﬁ = —ax+bx? two parameters
by scaling the variables and choosing dt
k¢ kg

arrive at equilibria:  —ax+ > =0 x=0, and x=a/b
ar 0, pde shallow ocean T(1), s(1) —_————————— ¥
—=1=-T—k(p)T kp)=1’ e = = = S g 0 afb
dt I, p>e& k
le: =
BLB-5)-kp)s  a=08 saler x=cg %: c§: —ax+by? = —acg +bA3E?
't
p=05
= +5 To. S
) o e g ibes?
Ty=8y=0 dt
deep ocean choose scaling d
Three essential parameters: constant: c=alb 75 ——a (: _52) only one essential
o,f,and & dt parameter
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dr 0, p<e¢ T=1-T-k(p)T
o 1-T-k(p)T k(p)= :
ar ) ) {1, p>e §=p(1-8)-k(p)S k(p)z{?’ Ziz
B -5 -k(p)S a=08 p=-al+s '
p=—al+$ p=05 12 Rest point for k=0:
equilibria (1,8)=(11
1-T~k(p)T =0 1
BA=8)-k(p)S=0
two cases 08
p<e, so k(p)=0 p>e, so k(p)=1 @ os
ﬂ](;TSTOO 5 1(7/;27‘1:;) 0 Rest point for k =1:
_8§)= _(B+1)S=
04 (T,8)=(1/2,8/0+ B)) =(1/2,1/3)
77 T [ y2 ] [y2
L}:L} s BB+ |13 *%2 o4 os 08 1 12
T
@ Math 5421 = @ Math 5421 3/
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Welander's Model Welander's Model
T=1-T—k(p)T T=1-T-k(p)T
. 0, p<e . 0, p<e
$=p(1-8)-k(p)s k(p)z{l poe §=p(1-5)-Kp)s k(p):{l p>e
p=—al+S ’ p=—al+S ’

[ Il
At M:H, p=-a+l=l/5. At m{m p=—af2+1/3=-2/5+1/3=1/I5. At M:H, p=-a+l=1/5. At m{:@ p=—af241/3=-2/5+1/3=1/I5.

Wait a minute!!

The computation yielding an equilibrium at (7,S) = (1,1) is valid only if
p <&, but the density at that pointis p = 1/5.

The computation yielding an equilibrium at (7,S) = (1/2,1/3) is valid only if
p > &, but the density at that pointis p=—1/15.

If € is small, neither condition holds.

No equilibrium points!

@ Math 5421 25 @ Math 5421 3/
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T =1-T~k(p)T
$=p(1-S)-k(p)S k(p)z{
p=—al+S

0, p<e
1, p>¢

Rest point for k =0:
T,8=01D

Valid only if £ >1/5.

Rest point fork =1:
(1.8)=(1/2,8/0+ B)) =(1/2.1/3)

Valid only if & <—1/15.

0.4
02 Since ¢ is small, neither rest point
02 04 06 08 1 12 is located where it is valid.
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T=1-T—k(p)T

A 0, p<e¢ a=0.8
$=p(1-5)-k(p)S k(p)={1, poe 505
p=-al +S

First consider the case k(p) = 1,

ie,p>e¢.
T=1-2T
For k(p)=1: .
or ko) S=p-(B+DS

%KHM(]ZUHLZ —</J?+l)]m

d[T| _[1/2] [-2 o T What is the phase portrait for this
ar| S|z o -32 equation?

@ Math 5421
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T=1-T—k(p)T

0, p<e¢ a=0.8
e (o) =
$=p(1-5)-k(p)S (2] {l. poe 505
p=-al +S

1.2

First consider the case k(p) = 1,
ie,p>e. 1

S S

Actually, it looks like: ————

The solid lines are above the the line
p =&, where the equation is valid,
while the dotted lines show where 0.2

S 02 04 06 08 1 12
the equation is invalid.

@ Math 5421
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T=1-T~k(p)T
. 0, p<e
$=p(1-5)-k(p)S k(p)= 1
. p>e
p=—al +8
12 Rest point for k =0
(7,5)=(L1)
! Valid only if £ > 1/5.
0.8

Rest point fork =1:
(T.8)=(1/2,8/0+ B)) =(1/2.1/3)

0.6
Valid only if & <—1/15.
0.4
,
0»20 2 04 06 08 1 12 Let's proceed anyway.
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T:]*T*k(P)T 0, p<e a=08
$=p(1-8)-k(p)S k(p)= L pse £=05
p=—al+S

Since T decreases to equilibrium
faster than S, the decay to

First consider the case k(p) = 1,

ie,p>e¢.
F=1-2T equilibrium looks like:
For k(p)=1: .
S=p-(B+DS N
d[T] [ v2 ][22 o T
alls| [p/p+n] L0 ~B+n]s T

AR Sl
@ Math 5421 3/
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r.:pr—k(p)r . 0 p<e we08
$=pB(1-8)-k(p)S p)= L pee =05
p=—al+S
12
1
Starting above the discontinuity line
p = &, solutions of Welander's model
try to asymptotically approach the 0.8
equilibrium at (1/2,1/3). Before they n
arrive, they hit the discontinuity line, 0.6
and the system changes to the case
k(p)=1. 0.4
0.2
02 04 06 08 1
T

37
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7.':1—T—k(p)T 0, p<e¢ a=038
$=pB(1-5)-k(p)S k(p) = L pse =05
p=—al+S

Now consider the case k(p) =0,
ie,p<e.
T=1-T
S=p-pS

o SJ5]

For k(p)=0:

]7[*1 0 ][T] What is the phase portrait for this
0 -1/2 equation?
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T_:]’T’k(p)r k)= 0, p<e a=08
$=p(1-5)-k(p)S p)= L pe =05
p=-al+8§
1.2
Now consider the case k(p) = 0,
ie,p<e. 1
d|T] [t] [-1 o |[T 08
ar|s| 1] [0 -12]s ”
0.6
Actually, it looks like: ———
The solid lines are below the line 04
p =&, where the above equation is
valid, while the dot.ted.llr)es show 0-20‘2 07 05 o8
where the equation is invalid. T
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Welander's Model
T.:]—Tfk(P)T . 0 pee w08
$=p(1-5)-k(p)S P L pe =05
p=-al+8§
back and fort
12 1.2
1 -
0.8 0.8
(%} 2]
0.6 0.6
04 0.4
e
0.2 0.2
0.2 0.4 1.2 0.2 0.4 0.6 0.8
T

Richard McGehee, University of Minnesota
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Welander's Model

T_zlfok(p)T 0, p<e a=08
S=p(-8)-kp)s  KP=) =05
p=—al+S

Now consider the case k(p) =0, As before, T decreases to equilibrium
ie, p<e. faster than S, so the decay to
F=1-T equilibrium looks like:

S=p-pS N

alsHH Sl

For k(p)=0:
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Welander's Model
T =1-T~k(p)T

. K(p) = 0, p<e a=08
$=pB(1-8)-k(p)S P L pee =05
p=—al+S
1.2
1
Starting below the discontinuity line
p =&, solutions of Welander's model 08

try to asymptotically approach the
equilibrium at (1,1). Before they arrive, @

they hit the discontinuity line, and the 0.6
system changes back to the case
k(p)=1. 0.4
0.2
02 04 06 08 1 12
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T =1-T~k(p)T 0 pe<s wo0g
$=p(1-8)-k(p)S k(p):{l, poe B=05
p=—al+S

together narrative

The temperature and salinity both start above the
line. The shallow ocean density is higher than the
deep ocean density, so an overturning circulation
decreases both the temperature and salinity of the
shallow ocean, bringing the density down until the
system hits the discontinuity line, at which point
the overturning circulation stops, and the
temperature and salinity then start moving toward
that of the atmosphere, until they hit the
discontinuity line.

Repeat.

Math 5421
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YT:I—T—k(P)T . 0 pes w08
§=p(1-8)-k(p)$ A=, p>e =05
p=-al+S$
together
12 12 red = temperature
blue = salinity
1 start
0.8
0.6
0.4
0.2 ..
0.2 0.4 0.6 0.8 1 1.2 0 2 4 6 8
T
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T=1-T—k(p)T
$=p(1-5)-k(p)S
p=-al+8§

0, p<e¢ a=0.8
k(p)=
1, p>¢ p=05

together narrative

The temperature and salinity both start below the
line. The shallow ocean density is lower than the
deep ocean density, so there is no overturning
circulation. Instead, the temperature and salinity
both increase as they move toward equilibrium with
the atmosphere. Before the equilibrium is reached,
the system hits the discontinuity line and the density
become high enough so that the overturning
circulation starts and continues until the density
becomes so low that the circulation stops.

0.8

0.6

0.4

T : Repeat.
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Welander's Model

T=1-T—k(p)T

A 0, p<e a=0.8
$=p(1-5)-k(p)S k(p):{l, poe f=05
p=-al+8§

The details are easier to see if we introduce a salinity anomaly
measuring the deviation of the salinity from that along the
discontinuity line.

AS=S—-al-e=p-¢

Note that this anomaly also measures the density of the sytem
above the critical density & .

Richard McGehee, University of Minnesota
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Welander's Model
T =1-T—k(p)T

) B _ 0, p<e a=038
§=5(1-5)-Kp)S D= poe £=05
p=—al+S
together narrative
2 The temperature and salinity both start above the
1 start line. The shallow ocean density is higher than the
deep ocean density, so an overturning circulation
08 decreases both the temperature and salinity of the
shallow ocean, bringing the density down until the
06 system hits the discontinuity line, at which point
the overturning circulation stops, and the
04 temperature and salinity then start moving toward
that of the atmosphere, until they hit the
02 discontinuity line.
02 04 06 08 1 1.2

T Repeat.
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7.‘:17T*1((P)T k()= 0, p<e a=08
$=B(1-8)-k(p)S A2 pse £=05
p=-al+S§
2 together 12 red = temperature
blue = salinity
4
0.8
0.6
0.4
0.2
02 04 06 08 1 12
T
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7.‘:]*7'*1((0)7‘ k(o) = 0, p<e a=038
$=pB(1-8)-k(p)S p)= L pee =05
p=—al+S
AS=S-al-¢=p-¢ better picture
12 0.05
1
0.8
@ 0
2
0.6
0.4
0.2 -0.06
0.2 0.4 0.6 0.8 1 12 0.5 0.6 0.7 0.8 0.9 1
T T
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Welander's Model
T=1-T-K(pT [0 pee wo0g
S=pB(1-5)-k(p)S (p)= L poe f=0s
p=—al+S
0.05
1
looks like an
08 equilibrium
@ 0
<
06
0.4 oscillations die out
0.05
0.5 0.6 0.7 0.8 0.9
T

Math 542

0.5 0.6 0.7 0.8
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Welander's Model

T=1-T—kp)T 0, p<e a=08
$=p(1-5)-k(p)S k(p)={1, poe 505
p=-al +S
0.05 12
! approaching
periodic solution
08
2 0
06
04 oscillations continue
-0.05 02
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Welander's Model
T =1-T—k(p)T w0 P w08
$=p(1-5)-k(p)S A= poe 505
p=-al +S
0.05
Note that the solution started
outside the periodic orbit and
spiraled down to it. The amplitude of
20 N the oscillations decrease
asymptotically to that of the periodic
orbit.
0.05
0.5 0.6 0.7 0.8 0.9 1
T

Math 54

Richard McGehee, University of Minnesota
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Welander's Model

?‘:I—T—k(P)T K- 0, p<e a=08
S§=p(1-8)-k(p)S P)= L poe =05
p=—al+S
12
! approaching
equilibrium
08
06
04
02
06 07 08 09 1 0 2 4 6 8
T

Math 5421
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Welander's Model
T =1-T~k(p)T

X Kp) = 0, p<e a=08
S=p(1-8)-k(p)S A2 pe £=05
p=-al+S§

periodic orbit 1 approaching

periodic solution

0.8

0.6

0.4
oscillations continue

Math 542

AS
o
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T:]*T*k(P)T (o)~ 0, p<e a=08
S=p(1-5)-k(p)S A2 pse £=05
p=—al+S

periodic orbit 1 approaching

periodic solution

0.8

0.6

04
oscillations continue

Math 5421
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Welander's Model
T =1-T-k(p)T o
. , p<é& a=038
$=p(1-5)-k(p)S k(p):{l’ poe p=05
p=-al+S$

0.05

periodic orbit 4 approaching
periodic solution

0.8

0.6

0.4
oscillations continue

0.5 0.6 0.7 0.8 0.9 1 0 2 4 6 8
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Recent (last 400 Kyr) Temperature Cycles

Vostok Ice Core Data
Explained by Welander?

as0 a0 50 00 %0 <200 150 ) 30 °
tiene e}

J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature 399, 429-436.
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A.F. Filippov*

Kluwer Academic Publishers

Published in Russian in 1985.

60

*https://alchetron.com/Aleksei-Fedorovich-Filippov
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What caused the Dansgaard-Oeschger oscillations?

They could be self-oscillations in the natural dynamics
of ocean circulation.

Welander constructed a simple
(conceptual!) box model of ocean
circulation and showed that the
interactions of temperature and
salinity with the atmosphere, the
surface ocean, and the deep ocean
could create self-oscillations.

Pierre Welander, A simple heat-salt oscillator, Dynamics of
Atmospheres and Oceans 6 (1982) 233-242.
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Welander's Model
Mathematical Note
The mathematical tools to actually prove that

Welander's model behaves in the way he
described were not fully developed in 1982.
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Mathematical Note

Welander assumed that the self-oscillations he found in
his discontinuous model would hold held for a nearby
smooth system.

Juliann Leifeld, PhD 2016:
Welander's assumption

was correct.
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