The Lorenz Equations

The Lorenz attractor arises in a simplified system of equations describing the two-dimensional flow of fluid with uniform depth and imposed temperature difference between the upper and lower surfaces.

$$
\Delta T=T 1-T 2=\text { constant }
$$

- sigma is called the Prandtl Number: the ratio of momentum diffusivity (Kinematic viscosity) and thermal diffusivity.
- r is called the Rayleigh Number: determine whether the heat transfer is primarily in the form of conduction or convection.
- b is a geometric factor.
- A typical value of the three parameters

$$
\sigma=10, b=8 / 3, r=28
$$

Assume the Lorenz equations is the weather we want to predict.
Question: How confident we are???
Answer: Certainly NOT 100\%
Reasons: Because the initial condition and model parameters are imperfectly known by the predictors.

Solution: by construction probabilistic models of dynamical systems, one of them is the parametric probabilistic approach.

Parametric probabilistic models incorporate uncertainty by modeling certain parameters and initial condition of a prediction model by random variables. In this case, the output of the probabilistic model will also be random variables. The mean values of the output random variables is often interpreted as the best estimates, while the standard deviations can be viewed as a measure of the uncertainty in the prediction.

A parametric probabilistic model of the Lorenz equations.

$$
\begin{aligned}
& \frac{d x}{d t}(t, a)=\sigma(a)(-x(t, a)+y(t, a)) \\
& \frac{d y}{d t}(t, a)=r(a) x(t, a)-y(t, a)-x(t, a) z(t, a) \\
& \frac{d z}{d t}(t, a)=-b(a) z(t, a)+x(t, a) y(t, a)
\end{aligned}
$$

A fundamental problem (in the practical construction): The choice of the probability density functions of the random variables.

For convenience of computation, we simply choose uniform distribution

```
Computation with the probabilistic model
    Fix sigma=10, r=28, and b=8/3.
    Step 1: choose a time step }\Deltat\mathrm{ and a number }\mp@subsup{n}{T}{}\mathrm{ of total time steps.
        choose a number }\mp@subsup{\textrm{n}}{s}{}\mathrm{ of Monte Carlo samples.
    Step 2: simulate a set {\mp@subsup{x}{s}{0},\mp@subsup{y}{s}{0},\mp@subsup{z}{s}{0}|1\leqs\leq\mp@subsup{n}{s}{}}\mathrm{ of independent and identic-}
        ally distributed samples of random variables }\mp@subsup{x}{}{0},\mp@subsup{y}{}{0},\mp@subsup{z}{}{0}\mathrm{ .
    Step 3: for each 1\leqs\leq ns,}\mathrm{ , solve the deterministic Lorenz equations with
    the initial condition }\mp@subsup{x}{s}{0},\mp@subsup{y}{s}{0},\mp@subsup{z}{s}{0}\mathrm{ , using first-order Euler time stepping
        algorithm
    Step 4: statistical estimation of quantities, like mean value and standard
        deviation, etc.
    Now, choose }\Deltat=0.01\mathrm{ and }\mp@subsup{n}{T}{}=2500
```


Contours of the joint probability density function of $x(t, a)$ and $y(t, a)$

This figure shows the large sensitivity of the response of the Lorenz system to small uncertainties in the initial conditions.

95%-confidence regions for $x(t, a)$ as a function of time

We can observe $\bar{D}(t, a)$ is much less sensitive to the uncertainty introduced in the model than $\hat{D}(t, a)$, suggesting the slow component of the response can be predicted with good accuracy, whereas the fast component cannot.

From a climate change perspective, we may consider r as the CO 2 concentration in the atmosphere: we know that it is increasing, but we don't know by how much. And its increasing rate is highly dependent on the decision we made in future. So when we try to predict weather or climate a random variable may be a better choice.

Furthermore we may view the slow component as the climate response and the fast component as the weather response. The results obtained above Illustrate that accurate long-term predictions may be feasible for the climate, even when they are not for the weather.

