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What Causes Glacial Cycles?

Widely Accepted Hypothesis

The glacial cycles are driven by the variations in the Earth’s orbit
(Milankovitch Cycles), causing a variation in incoming solar
radiation (insolation).

This hypothesis is widely accepted, but also widely regarded as
insufficient to explain the observations.

The additional hypothesis is that there are feedback
mechanisms that amplify the Milankovitch cycles. What these
feedbacks are and how they work is not fully understood.
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Eccentricity

Warael aasinen

o ey a0

S

Jean 1

Aopnali
g 7

Faewd
Chatas f llipss’

http://ww.crrel .usace.army.mil/permafrosttunnel/lce_Age_Earth_Orbit.jpg




Milankovitch Cycles

Obliquity

http://upload.wikimedia.org/wikipedia/commons/6/61/AxialTiltObliquity.png
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Precession

Precession

http://earthobservatory.nasa.gov/Library/Giants/Milankovitch/milankovitch_2.html
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Eccentricity
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Global Annual Average Insolation

Solar output: K Watts

Solar intensity at distance r from the sun:
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Global Annual Average Insolation

Specific angular momentum (angular momentum per unit mass):
Q=r’0 m’s*

Total annual solar input:
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Mean annual solar intensity on the Earth’s surface:
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Global Annual Average Insolation

Kepler’s Third Law:
p~ag¥ a = semimajor axis
Derived from Kepler:

1—e? ~aQ? € = eccentricity

Mean annual solar intensity:

K Ka”a‘/z= Ka’

8PQ  J1-e? 1-¢’

Wm™2




Milankovitch Cycles

Global Annual Average Insolation
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Semi major axis does not change much.
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Eccentricity

The effect due to eccentricity is more significant.

Note periods of about 100 Kyr and 400 Kyr.

Zachos, et al, "Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present"".
Science 292 (2001), 687.
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Obliquity
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Precession

Note period of about 41 Kyr.

Zachos, et al, "Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present".
Science 292 (2001), 687.

Note period of about 23 Kyr.

Zachos, et al, "Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present".
Science 292 (2001), 687.
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Solar Forcing (Hays, et al)
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Climate Response, Hays, et al
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Three different temperature proxies from sea sediment data.

Hays, et al, Science 194 (1976), p. 1127
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Hays, et al, Summary

1) Three indices of global climate have been monitored in the
record of the past 450,000 years in Southern Hemisphere
ocean-floor sediments.

2) ... climatic variance of these records is concentrated in three
discrete spectral peaks at periods of 23,000, 42,000, and
approximately 100,000 years. These peaks correspond to the
dominant periods of the earth's solar orbit, and contain
respectively about 10, 25, and 50 percent of the climatic
variance.

Hays, et al, Science 194 (1976), p. 1131
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Hays, et al, Summary

3) The 42,000-year climatic component has the same period as
variations in the obliquity of the earth's axis and retains a constant
phase relationship with it.

4) The 23,000-year portion of the variance displays the same periods
(about 23,000 and 19,000 years) as the quasiperiodic precession
index.

5) The dominant, 100,000-year climatic component has an average
period close to, and is in phase with, orbital eccentricity. Unlike the
correlations between climate and the higher-frequency orbital variations
(which can be explained on the assumption that the climate system
responds linearly to orbital forcing), an explanation of the correlation
between climate and eccentricity probably requires an assumption of
nonlinearity.

Hays, et al, Science 194 (1976), p. 1131
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Hays, et al, Summary

6) It is concluded that changes in the earth's orbital geometry are
the fundamental cause of the succession of Quaternary ice ages.

7) Amodel of future climate based on the observed orbital-climate
relationships, but ignoring anthropogenic effects, predicts that
the long-term trend over the next seven thousand years is toward
extensive Northern Hemisphere glaciation*.

*Quoted by George Will, Washington Post, February 5, 2009

Hays, et al, Science 194 (1976), p. 1131
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Climate Response (Zachos, et al)
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The cycles have not changed much.
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The cycles have not changed much.
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Summary

The solar forcing, defined as the maximum insolation at latitude 65° N,
is dominated by precession, followed by obliquity, followed by
eccentricity.

The climate response is dominated by
eccentricity, followed by obliquity, followed by precession (Hays)
OR
obliquity, followed by eccentricity, with negligible precession (Zachos).

The explanation is that there are nonlinear feedbacks.

The total annual solar input depends mainly on eccentricity, and a little
bit on semimajor axis, but not at all on obliquity or precession.

Is there another explanation?
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Budyko’s Ice Line Model

1-a(T)(y)=HT)(y)+H(T)(y)

The annual global average insolation is Q .
The annual average insolation as a function of latitude 6,
where Yy =sing, is Qs(y) .
Q is largely determined by the eccentricity, but S(y) is determined
from a combination of the other orbital elements.

What is s(y) as a function of obliquity and precession?

Stay tuned.
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Climate Response (Zachos, et al)
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