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Table of Models

Identifying which type of model is the best choice for modeling the MPT is just
as important as the actual fit of the model. The underlying mathematical
structure might teach us something about the underlying drivers of the
system.

MPT modeling options:

Dynamic Hopf Bifurcations
Relaxation Oscillators
Threshold/bursting models
Excitable System with Slow Manifold

W e

We will focus on the Dynamic Hopf Bifurcation as possible tool to uncover the
secrets of the 100,000 year Problem. We will not consider methods 2-4.*

To learn more about these systems | recommend Michel Crucifix’s “Oscillators and
relaxation phenomena in Pleistocene climate theory” 2012.



Dynamic Hopf Bifurcation
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Dynamic Hopf Bifurcation
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Maasch & Saltzman [1990]
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Maasch & Saltzman [1990]

Obliquity Eccentricity

Figure 3.2: Circular statistics of the last 1.2 million years. Obliquity phase angle is on
the left, eccentricity is on the right. Radial line shows mean angle with magnitude R
showing relative cohesion of angles. The inner solid circle is the magnitude R must be
exceed to reject Hy. Stars along the outer circle are individual phase angle differences.
A radial line pointing straight up would show the model is in phase with the local
maxima of the forcing term. A radial line pointing straight down would show the model
is in phase with the local minima of the forcing term.


Presenter
Presentation Notes
Identifying which types of model is the best choice for modeling the MPT is just as important as the actual fit of the model. The underlying mathematical structure might teach us something about the underlying drivers of the system.



%ynamic Hopf Bifurcation
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?mproving Maasch and Saltzman

We incorporate the Budyko-Sellers-Widiasih Model into the Maasch & Saltzman model:
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%ynamic Hopf Bifurcation
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Figure 4.3: Phase angle analysis between model ice line output and orbital forcing for

early (3 My - 1.2 My) and late (1.2 My to present) Pleistocene. The reader is referenced
to Zar (1999) and Upton and Fingleton (1989) for details on the circular statistics used

to produce these diagrams [31] 32]

process |8].

. Lisiecki (2010) also presents a concise review of the
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%ynamic Hopf Bifurcation

And it got worse. ..
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Initial Conditions of Dynamic Hopf

2 ! !
X 0N a—
- | |
0 10 20 30
2 | |
> o%—
P | | | | | | |
0 10 20 30 40 50 60 70 80
T
IC X=0.25 with Y = [-1,-0.5, 0, 0.5, 1]
2

A bifurcationat A, =0

Sensitivity to Initial Conditions



Presenter
Presentation Notes
Identifying which types of model is the best choice for modeling the MPT is just as important as the actual fit of the model. The underlying mathematical structure might teach us something about the underlying drivers of the system.



Initial Conditions of Dynamic Hopf
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One example of Sensitivity to Initial Condition at the neck.
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Initial Conditions of Dynamic Hopf
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What comes next?

There are complicated issues happening in this model.
How do we understand this mathematically?

By reducing the complexity of the problem we will
highlight the real connection between the phase angle
of the model and the forcing.

Next up: a generalized forced oscillator with a dynamic
Hopf bifurcation.

Goal: To show phase correlation is unpredictable and
ubiquitous to all dynamic Hopf bifurcation models.
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What comes next?

To do a general study of Hopf bifurcation on a
periodically forced oscillator, we will analyze an
equivalent system.

We analyze a periodically forced Hopf bifurcation of
maps which is tractable and can be analyzed with
computer.

We use the principle first employed in:

Richard P. McGehee and Bruce B. Peckham. Resonance Surfaces for Forced Oscil-

lators. FErperimental Wathematics, 3(3):221-244, 1904,
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McGehee Peckham Model

H o 3y = ga © hg as follows:

; (i = (1= r2) /(14 1)

L g 4 - 7 :
| fip1 =273+ (1 —12)/(1+ 1)
( rit1 = a(l — x;)

Ya \
| Yit alY;

This is a discrete period map. That is, the discrete steps move the system
forward exactly one period whose simulated period is based on LI

1

Note: The h equation is in Polar coordinates while the g equation is in

Cartesian coordinates. This is done for clarity of communicating what each
map does.

Richard P. McGehese and Bruce B. Peckham. Resonance Surfaces for Forced Oscil-

lators. Erperimental Mathematics, 3(3):221-244, 1994,
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McGehee Peckham Model

H o 3y = ga © hg as follows:

) riv1 = (ri(1—17))/(1+17)
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For alpha =0:
The unit circle is invariant with a rigid rotation with rotation number beta.
For 1 >> alpha>0:
The circle distorts but remains invariant.
For alpha near 1:
There is only an attracting fixed point at (x,y) = (1,0).
Beta:
The rotation number of the invariant circle.
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McGehee Peckham Model

Our planet has a period of 100 kyr
and obliquity has a period of 41
kyr.

We chose to only consider one
external forcing to reduce the
complexity of the forcing from
quasi-periodic to periodic.

Obliquity is chosen because it is
the most dominant influence on
the planet of the external forcing
terms.

We expect a planetary resonance
of 4:10 (or 2:5). So in phase space:
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McGehee Peckham Model
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By plotting all time steps on the phase place, one can determine if the trajectory

converge to a finite number of point(s) in the phase plane. Each circle represents a
40 kyr simulated time step.

If so, then the trajectory has a stable cycle that repeats every 40,000n simulated
years, where n is the number of distinct clusters of trajectories on the phase place.

Earlier times are colored green and later times are colored red.
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McGehee Peckham Model
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Revised McGehee Peckham Model
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o = Forcing amplitude
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[ T = (L= 12)/(1 4 1)

| Oip1 =218+ (1 —72) /(1 +77)
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B = Ratio of natural frequency to forcing frequency

v = Bifurcation Parameter

We can now create Arnold Tongue diagrams for:

~ € {—=0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}
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cGehee Peckham Model

Resonance Diagram
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McGehee Peckham Model
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Phase portrait of period map with =1 for two initial conditions (0.04, 0.39) on the
left and (0.44, 0.14) on the right. Earlier times are colored green and later times are
colored red.
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McGehee Peckham Model
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Phase portrait of period map with =1 for two initial conditions (0.04, 0.39) on the
left and (0.44, 0.14) on the right. Earlier times are colored green and later times are
colored red.
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McGehee Peckham Model
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But this period map with 40 kyr period is not a very good way
to get a time series, or phase angle statistics.
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Revised McGehee Peckham
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Fylteintroduces the variation which takes place on time scales smaller than 40 kyr.

This is a period map with time step of 1 kyr instead of 40 kyr.
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Revised McGehee Peckham
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Revised McGehee Peckham
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table Trajectory of a Dynamic System

Definition: A stable trajectory is one for which the largest Lyapunov
exponent, [l _, is negative. The largest Lyapunov exponent, [I
mathematically defined as:

max’ IS

\ I TR [0Z(t))
— 1111 111l — LT —
T 16Z(0)|—»0t—o0 t |6Z(0))

where U = [[x, Uy] are vanishing perturbations around x and y.

For further reading on stable trajectories of dynamic Hopf bifurcations, see De Saedeleer
(2012) and Wieczorek (2012) which offers good insights into identifying and counting
stable trajectories.

Goal: To partition the domain into basins of attraction or resonance regions.
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Basins of Attraction

Resonance Diagram
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Method:

1. For a given (o, B) there exist n convergence points on the Poincaré map as
determined by the Arnold Tongue diagram.
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Basins of Attraction

2. Given an initial condition (x*,y*)...
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Basins of Attraction
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2. Given an initial condition (x*,y*), we integrate to find T ,« .« for a
predetermined number of simulated years.

3. We determine the (x,y) values of the last peak of simulated T ,: .
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Basins of Attraction
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4. We identify which convergence point on the Poincaré section the last
peak of T« + is closest to. The closeness criterion is satisfied if the
Euclidian distance is less than some small threshold to guarantee closeness.
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Basins of Attraction
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5. Finally, (x*,y*) is assigned the color associated to the nearby
convergence point.

Thus, we will complete this process for a grid of initial conditions to
color code the domain based on the relative phase of T, .
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Basins of Attraction
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5. Finally, (x*,y*) is assigned the color associated to the nearby
convergence point.

Thus, we will complete this process for a grid of initial conditions to
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Presenter
Presentation Notes
Identifying which types of model is the best choice for modeling the MPT is just as important as the actual fit of the model. The underlying mathematical structure might teach us something about the underlying drivers of the system.



.\ .._. ..... r# ....1 t... .....l/...l.....
\‘.vo\\.vss\.v.vv.\.oo. / e ..._ T i .Hﬁ_.._' \ e !ﬂfﬂr WA ......_I.f..lf.fn o
7 ,\&%\3 il R RN
L %ﬁ.”.“.v.w.._.."___.M___ W TR
i .% RN

AR

-0.6

Basins of Attraction

0
0

-0

0.4}

06

081

-0.4

-0.8


Presenter
Presentation Notes
Identifying which types of model is the best choice for modeling the MPT is just as important as the actual fit of the model. The underlying mathematical structure might teach us something about the underlying drivers of the system.



Mathematical Conjecture

Let H be a system of equations which contains a dynamic Hopf bifurcation with
constant parameters p in R", bifurcation parameter, y, and initial condition, (x,

y).

Conjecture. If, for a given p and time span, y;,,., yields a system state for which
multiple stable trajectories exist then the phase of T, ,after v is sensitive to
initial conditions.

Corollary. If the planet's underlying structure is a Hopf bifurcation, then the
phase of the planet's recent 100 kyr cycles has no meaningful relationship to
the external forcing.
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%\pplied Climate Conjecture

Assume, by way of contradiction, that the planet is well modeled by a dynamic Hopf

bhifurcation. Then:

1. We must assume there is an internal cycle on the planet that has exactly 100
kyr period. There is no evidence for such a cycle in the biosphere, cryosphere,

hydrosphere, or atmosphere.

2. We must also assume that after the system underwent the Hopf bifurcation that
there exists a stable trajectory which correlates with the external forcing and that
Traren landed on that trajectory. This would be a cosmic coincidence with a small

probability.

3. Despite the stochastic and chaotic features of the planet, we must further assume

Traren has not moved from one stable trajectory to another over the last 1.2 myr.

While there is no perfect contradiction, the probability of any (much less all) of these
statements being true is quite small. Thus it is reasonable to assume that the planet

does not have the underlying structure of a Hopf bifurcation.
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Conclusion

The post-MPT phase angle results can not be predicted for a dynamic Hopf
bifurcation model. Thus, it is a matter of chance and choice of initial condition
that the model results will match the 680 data analysis.

Thus, this work strongly suggests that a dynamic
Hopf bifurcation will not successfully model the
mid-Pleistocene transition.

Thanks!

Questions?
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