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Dansgaard-Oeschger Events

• Oscillations in North Atlantic climate with an average period of
1.5kyr

• Rapid warming: ∼ 10o C over a few decades

• Longer cooling period

• Correspond with changes in the Atlantic Meridional Overturning
Circulation

3/46



Dansgaard-Oeschger Events

Figure: Oxygen isotope data from Greenland (NGRIP). Orange arrows indicate
thermal maxima of Dansgaard-Oeschger cycles over the last 100,000 years.
Figure obtained from Saha (2011).

-Rapid transitions indicate relaxation behavior or that the underlying
model should have multiple time scales.
-Also indicates system should have two “stable” states.
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Stommel’s Experiment

Figure: Schematic of Stommel’s model (1961)—from Saha (2011).
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Stommel’s Model

The equations for the model are:

dT

dt
= RT [(TA

e − TA
p )− T ]− |ψ|T

dS

dt
= RS [(SA

e − SA
p )− S ]− |ψ|S ,

where

• T = Te − Tp,

• S = Se − Sp, and

• ψ = ρ0(−αT + βS) is the circulation variable.

Since RS � RT , we want to capitalize on a separation of time scales.
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Stommel’s Equations

Glendinning (2009) shows the model has a dimensionless form:

εẋ = 1− x − εA|ψ|x
ẏ = µ− y − A|ψ|y ,

where

• ψ = x − y is the circulation variable,

• x is scaled temperature difference,

• y is scaled salinity difference, and

• µ is considered the “freshwater flux” parameter (but really it is a
ratio of salinity forcing to temperature forcing).

This is a singularly perturbed system that reduces to

ẏ = µ− y − A|1− y |y .

The system has a unique stable equilibrium for A < 1, but will be bistable
for some range of µ values if A > 1.
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Bistability and Hysteresis
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Figure: Bifurcation diagram (with ψ) from Stommel’s model for A > 1.
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Bistability and Hysteresis
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Figure: Bifurcation diagram (with ψ) from Stommel’s model for A > 1.
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Hysteresis

Definition
Hysteresis is the dependence of a system not only on its current
environment but also on its past environment. This dependence arises
because the system can be in more than one internal state.

Figure: Hysteresis loop.
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Abrupt Changes in Dynamical Systems

Simple, classic example: Saddle-node bifurcation
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Abrupt Changes in Dynamical Systems
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Fast/Slow Dynamics

ẋ = f (x ;λ)

• x is the state variable

• λ is the bifurcation parameter

• λ varies independent of x

x ′ = f (x , y , ε) εẋ = f (x , y , ε)

y ′ = εg(x , y , ε) ẏ = g(x , y , ε)

• x is the fast variable

• y is the slow variable

• ε� 1 (fixed) is a small parameter

• y variation prescribed—depends on state variables
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Relaxation Oscillations

Figure: Blue curve is the fast nullcline—called the critical manifold.
Red line is the slow nullcline

Behavior depends on location of the slow nullcline.
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Globally Attracting Equilibrium

Figure: Blue curve is the fast nullcline—called the critical manifold.
Red line is the slow nullcline

In this case, the critical point is attracting.
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Canard Point

Figure: Blue curve is the fast nullcline—called the critical manifold.
Red line is the slow nullcline

Here the critical point is a canard point, and the system undergoes a
Hopf bifurcation.
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Introduction to Canards

History:

• Discovered by Benoit, Callot, F. Diener, and M. Diener (1981) using
non-standard analysis

• Eckhaus (1983) examined canards using matched asymptotics

• Dumortier and Roussarie (1996) used center manifold and blow-up
techniques

• Krupa and Szmolyan (2001) generalized the blow-up techniques

Recently, the generalized blow-up techniques have allowed for canards to
be examined in higher dimensions (Wechselberger, Krupa, Szmolyan,
Brons, Guckenheimer, Desroches, and others).
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Canards in the Singular Limit
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(a) Headless canard cycle.

x

y

(b) Maximal canard.
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y

(c) Canard with head. (d) A duck!
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Canard Cycles for ε > 0

Figure: Image from Desroches et al. (2013)
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Back to Stommel
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Figure: Bifurcation diagram (with ψ) from Stommel’s model for A > 1.

22/46



Goal

Hypothesis: D-O events relate to hysteresis loop in the bifurcation
diagram.

Question: What mechanisms can make that hysteresis loop dynamic
(i.e., a relaxation oscillation)?
From the literature:

• Intrinsic Ocean Dynamics (de Verdiére)

• Periodic freshwater forcing (Ganopolski and Rhamstorf)

• Stochastic freshwater forcing (Cessi)

• Thermal effects (Saltzman, Sutera, and Evenson)

• Sea-ice feedback mechanism (Saha)
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Occam’s Razor Approach

Make µ a dynamic slow variable!
We look at the three time scale model:

x ′ = 1− x − εA|x − y |x
y ′ = ε(µ− y − A|x − y |y)

µ′ = εδf (x , y , µ, δ, ε),
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Linear µ′ Equation

Assuming µ′ depends linearly on x and y , we get

x ′ = 1− x − εA|x − y |x
y ′ = ε(µ− y − A|x − y |y)

µ′ = εδ(1 + ax − by),

where ε, δ � 1 are small parameters and a, b > 0.

Using GSP (Glendinning’s reduction), the equations reduce to:

ẏ = µ− y − A|1− y |y
µ̇ = δ(1 + a− by).
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A < 1

y

Μ

(a)
1 + a

b
< 1
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Μ

(b)
1 + a

b
> 1

Figure: Possible phase spaces for A < 1. The red line is the µ nullcline. The
black arrows indicate fast dynamics, and the blue arrows indicate slow
dynamics.
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Goal for A > 1

y

Μ

Figure: Limit cycle in the singular (δ = 0) limit.

Question: What happens when the µ-nullcline (red) is close to the fold
or the corner?
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Canards in Piecewise Smooth Systems

We consider systems of the form

ẋ = −y + F (x)
ẏ = ε(x − λ)

(1)

where

F (x) =

{
g(x) x ≤ 0
h(x) x ≥ 0

with g , h ∈ C k , k ≥ 1, g(0) = h(0) = 0, g ′(0) < 0 and h′(0) > 0, and
we assume that h has a maximum at xM > 0. The critical manifold

N0 = {y = F (x)}

is ‘2’-shaped with a smooth fold at xM and a corner along the splitting
line x = 0.
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Shadow Systems

We will assume that h(x) can be extended (as far as necessary) into the
region where x < 0 and define the shadow system to be

ẋ = −y + h(x)
ẏ = ε(x − λ).

(2)

Lemma (Roberts and Glendinning (2013))
Consider the trajectory γn(t) = (xn(t), yn(t)) of (1) that cross the y-axis
entering the left half-plane x < 0 at γn(0) = (0, yc). Also consider the
analogous trajectory γs of the shadow system (2). Then, the distance
from the origin of γn is bounded by that of γs .
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Figure for Shadow System Bound Lemma

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5
x

-2.0

-1.5

-1.0

-0.5

0.5

1.0

y

Figure: The dashed curve is a periodic orbit of the shadow system. The bold
curve is the trajectory in the nonsmooth system. There is a positively invariant
set enclosed by the bold curve and the y -axis.
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Canards at the Smooth Fold

Theorem (Roberts and Glendinning (2013))
Fix 0 < ε� 1. In system (1), assume g(0) = 0 = h(0), h′(0) > 0, and
g ′(0) < 0. Then there is a Hopf bifurcation when λ = xM . If the Hopf
bifurcation is non-degenerate, then it will produce canard cycles.
Furthermore, these canard cycles are bounded by the stable canard orbits
of the shadow system.
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Corner Canards and Super-explosion

Theorem (Roberts and Glendinning (2013))
In system (1), assume g(0) = 0 = h(0), h′(0) > 0, and g ′(0) < 0. The
system undergoes a bifurcation for λ = 0 by which a stable periodic orbit
Γn(λ) exists for 0 < λ < xM . There exists an ε0 such that for all
0 < ε < ε0 the nature of the bifurcation is described by the following:

(i) If 0 < h′(0) < 2
√
ε, then canard cycles Γn(λ) are born of a Hopf-like

bifurcation as λ increases through 0. The bifurcation is subcritical if
|g ′(0)| < |h′(0)| and supercritical if |g ′(0)| > |h′(0)|.

(ii) If h′(0) > 2
√
ε, the bifurcation at λ = 0 is a super-explosion. The

system has a stable periodic orbit Γn(λ), and Γn(λ) is a relaxation
oscillation. If |g ′(0)| ≥ 2

√
ε, the bifurcation is supercritical in that

no periodic orbits appear for λ < 0. However, if |g ′(0)| < 2
√
ε the

bifurcation is subcritical, in that a stable periodic orbit and stable
critical point coexist simultaneously for some λ < 0.
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Super-explosion Figures
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(a) Supercritical super-explosion
λ = 0.014.
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(b) Subcritical super-explosion
λ = −0.05.

Figure: Positively invariant sets demonstrating the existence of attracting
periodic orbits for super-explosion.
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Possible Canard-related Periodic Orbits
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(a) Nonsmooth canard cycles in the
supercritical case.
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(b) The stable orbit of a
super-explosion (blue) for ε = 0.2.
The line x = λ (red) is the slow
nullcline. Here λ = 0.001.

Figure: Canard orbits and super-explosion in nonsmooth systems.
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Back to the Modified Stommel Model

Recall: The equations for the model are

ẏ = µ− y − A|1− y |y
µ̇ = δ(1 + a− by).

To simplify the analysis, we reformulate them as

ẏ =µ− y − A|1− y |y
µ̇ =δ0(λ− y),

where δ0 = bδ and λ = (1 + a)/b.
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Dynamics in Modified Stommel Model: A > 1

Theorem
Assume A > 1, 0 < δ � 1, and λ > 0 is fixed in the modified Stommel
model. Then the following statements hold:

(A) For λ ≥ 1, there is a globally attracting equilibrium in the haline
state.

(B) For (1 + A)/(2A) < λ < 1 the equilibrium is unstable and
surrounded by a unique stable periodic orbit created through a
non-smooth bifurcation at λ = 1.

(i) When A < 1 + 2
√
δ, the bifurcation creates non-smooth

canard cycles.
(ii) When A > 1 + 2

√
δ, the bifurcation is a super-explosion

and the periodic orbit is a relaxation oscillation for

1 + A + 2
√
δ

2A
< λ < 1.

(C) For λ ≤ (1 + A)(2A) there is an attracting equilibrium in the thermal
state.

36/46



Oscillatory Behavior in the Modified Stommel Model
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(a) Stable periodic orbit when
A = 5, λ = 0.8, and δ = 0.1
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(b) Time series for ψ.

Figure: Relaxation Oscillations
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Oscillatory Behavior in the Modified Stommel Model
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(a) Canard trajectory when
A = 1.1, λ = 0.995, and
δ0 = 0.01.
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(b) Time series for ψ.

Figure: Canard Cycle
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Oscillatory Behavior in the Modified Stommel Model
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(a) Super-explosion when
A = 5, λ = 0.995, and
δ0 = 0.1.
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(b) Time series for ψ.

Figure: Super explosion - Relaxation Oscillations

39/46



For Comparison

(a) From Saha (2011).
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(d) Super-explosion.
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An Extra Dimension

Previously, we examined a modified version of Stommel’s model with 1
slow variable (a ratio of forcing terms). Separating the forcing terms
produces the model:

dx

dt
= z − x − εA |x − y | x

dy

dt
= ε(u − y − A |x − y | y)

dz

dt
= εδ(ay − bx + c)

du

dt
= εδ(px − qy + r).

This is again a 3 time-scale model with x fast and y intermediate.
However, now there are two slow variables z and u.
Goal: Again, we would like to prove that there is an attracting periodic
orbit.
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Conditions for ROs in R3

Theorem (Szmolyan and Wechselberger (2004))
Assume a smooth fast/slow system with small parameter 0 < ε� 1
satisfies the following conditions:

(A1) The critical manifold is ‘S’-shaped,

(A2) the fold curves L± are given as graphs (y±(z), z , u±(z)) for y ∈ I±

for certain intervals I± where the points on the fold curves L± are
jump points,

(A3) the reduced flow near the fold curves is directed towards the fold
curves,

(A4) the reduced flow is transversal to the curve P(L±)|I± , and

(A5) there exists a hyperbolic singular periodic orbit Γ.

Then there exists a locally unique hyperbolic relaxation orbit close to the
singular orbit Γ for ε sufficiently small.
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An Extra Dimension
Question: Can we prove analogous theorems for ROs in an MMOs in
higher dimensional nonsmooth systems?
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(e) Projection of the singular orbit
onto the critical manifold, with
projections of the fold lines.
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(f) Singular orbit Γ in the full 3D
phase space. Colored lines
correspond to those in (a).

Figure: Attracting singular periodic orbit in a more complex modification of
Stommel’s model.
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Evidence for ROs in More Complex Model

(a) The stable periodic orbit in
phase space.
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(b) Time series for ψ for the orbit
in (a).

Figure: Example of the stable periodic orbit for δ = 0.1, γ = 1, α = 0.5,
β = 1.75, m = 2, ρ = 0.5, and k = 1.5.
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Conclusion

Accomplished:

• Analyzed a large-scale ocean circulation model to find conditions for
ROs

• Developed a theory for canards and super-explosion in nonlinear
piecewise-smooth planar systems

• Nonsmooth nature of the model plays a role in the asymmetry
between warming/cooling

Future Motivation:

• Generalize theorem for ROs in R3 to nonsmooth systems.
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Thank you!!!
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