Permafrost Melt and the Heat Equation

María I. Sánchez Muñiz

Department of Mathematics University of Minnesota

October 4, 2022

- The permanently frozen soils of the Arctic, known as permafrost, store large amounts of organic carbon, which accumulated over millennia due to slow decomposition in the cold Arctic region.
- Soil taxonomists define permafrost as material that remains at or below 0°C for two or more consecutive years.
- Permafrost thickness can range from one meter to more than 1,000 meters.
- Permafrost is composed of soil, organics, rock, and sand often with large blocks of iced mixed in.

Permafrost

Source: Natural Resources Defense Council

Permafrost: Source: Biskaborn, et al. 2019

Permafrost and Global Carbon Cycle

Source: National Snow and Ice Data Center.

Modeling Permafrost thawing and effects on the Global Carbon Cycle

- 1. Budyko's Earth Energy Balance Model
- 2. Potential Carbon Emissions
- 3. Explicit model for permafrost melt
- 4. Future Work

Budyko's Earth Energy Balance Model

The differential-integral equation

$$R\frac{\partial T(y,t)}{\partial t} = (1 - \alpha(y,\eta))Qs(y) - (A + BT(y,t)) + C(\bar{T}(t) - T(y,t))$$

Budyko's Earth Energy Balance Model

$$\frac{R}{\partial T(y,t)} = (1 - \alpha(y,\eta))Qs(y) - (A + BT(y,t)) + C(\overline{T}(t) - T(y,t))$$
heat capacity albedo insolation OLR heat transport

Latitudinal distribution function (1), Albedo (2) and Global Mean Temperature (3)

$$s(y) \approx 1 - s_2(\frac{1}{2}(3y^2 - 1))$$
 (1)

$$\alpha(y) = \begin{cases} \alpha_1 & y < \eta \quad [\text{ice}] \\ \alpha_2 & y > \eta \quad [\text{no ice}] \end{cases}$$
(2)

$$\bar{T} = \int_0^1 T(y) dy \tag{3}$$

Variables and Parameters

The differential-integral equation

$$Rrac{\partial T(y,t)}{\partial t} = (1 - lpha(y,\eta)) Qs(y) - (A + BT(y,t)) + C(ar{T}(t) - T(y,t))$$

Variable	Value	Units	Description		
t	-	year	Time		
у	-	-	Sine of Latitude		
T(t,y)	-	C°	Surface Temperature		
Parameter	Value	Units	Description		
R	-	$\frac{W seconds}{m^2 C^{\circ}}$	Planetary Heat Capacity		
Q	343	$\frac{W}{m^2}$	Insolation		
<i>s</i> ₂	0.482	dimensionless	Estimate on the effect due to obliquity on insolation		
A	202	$\frac{W}{m^2}$	Temperature-independent outgoing longwave radiation		
В	1.9	$\frac{W}{m^2 C^{\circ}}$	Temperature-dependent outgoing longwave radiation		
C	3.04	$\frac{W}{m^2 C^{\circ}}$	Heat transport coefficient		
α_1	.32	dimensionless	Albedo for latitudes south of snow line		
α2	.62	dimensionless	Albedo for latitudes north of snow line		
T _c	-10	C°	Critical temperature at the snow boundary		
η	sin(72)	sine of 72°N	Sine of Latitude of snow line		

Equilibrium Temperature Profile

Budyko's Earth Energy Balance Model

$$R\frac{\partial T(y,t)}{\partial t} = (1 - \alpha(y,\eta))Qs(y) - (A + BT(y,t)) + C(\bar{T}(t) - T(y,t))$$

Equilibrium Temperature solution

$$T(y) = \frac{1}{B+C}(Qs(y)(1-\alpha(y,\eta)) - A + C\bar{T})$$

Latitude of permafrost line

 $61^{\circ}N$

Potential Carbon Emissions

Environ. Res. Lett. 9 (2014) 085003 K Schaefer <i>et al</i>									
Table 2. Projections of cumulative emissions from thawing permafrost, with CO ₂ equivalents in parentheses ⁸ .									
Study	2100	Permafrost car- bon emissions (Gt C)2200	2300	Flux uncer- tainty (%)	Temperature increase (K)2100	Initial carbon stock (Gt C)	Permafrost area loss (%)2100	Scenario	
Zhuang et al	37 (46)	nac	na	3%	na	na		A2	
Dutta et al (2006)	40 (50)	na	na	na	na	460		5 °C Siberia	
Burke et al (2013)	50 (62) ^e	na	99 (124) ^e	41%	na	850	76 ± 20	RCP8.5	
Koven et al (2011)	62 (78)	na	na	11%	na	504	30	A2	
Schneider von Deimling et al (2012)	63 (79)	302 (378)	380 (476)	16%	0.13 ± 0.10	800	57 ± 20	RCP8.5	
Schuur et al (2009) ^b	85 (107)	na	na	15%	na	818		A2	
Schaphoff et al [2013]	98 (122)	na	226 (283) ^b	23%	na	952	24	5 °C global	
Gruber et al (2004)	100 (125)	na	na	na	na	400		2 °C global	
Schaefer et al (2011)	104 (130)	190 (238)	na	36%	na	313	30 ± 10	AIB	
Burke et al (2012)	150 (188)	na	na	67%	0.22 ± 0.14	951	65	RCP8.5	
Schuur	158	na	345	24%	na	1488	55 ± 5^{a}	RCP8.5	
et al (2013)	(198)		(432)						
MacDougall et al (2012)	174 (218)	na	na	61%	0.27 ± 0.16	1026	56±3	RCP8.5	
Harden et al (2012)	218 (273) ^e	na	436 (546) ^e	85%	na	1060	74	RCP8.5	
Raupach and Canadell (2008) ^d	347 (435)	na	na	na	0.7	500		A2	

Carbon in Top Three Meters of Soil: Schuur 2019

$(Total Carbon in Permafrost)(\frac{Change in Permafrost Surface Area}{Original Permafrost Surface Area}) = Carbon emissions$

Receding Permafrost line

Potential Carbon Emissions

- To estimate how much carbon would be released from the permafrost if the global mean temperature rose by 2 recall that the surface area is proportional to y, the sine of the latitude. With a current permafrost line at y_p we have that the proportion of the globe covered by permafrost is $1 y_p = 0.125$
- Then the proportion of the permafrost melted is given by:

$$\frac{\Delta y}{1 - y_p} = \frac{0.027}{0.125} = 0.216$$

• Therefore an estimate of amount of carbon released

$$1400\frac{\Delta y}{1-y_p} = 1400\frac{0.027}{0.125} = 302$$
GtC

• In comparison, the total fossil fuel emission since 1751 are 375 GtC.

Heat Equation

$$rac{\partial T_y(z,t)}{\partial t} = k rac{\partial^2 T_y(z,t)}{\partial z^2}, \quad t > 0, \quad 0 \le z \le I$$

Heat Equation

$$rac{\partial \mathcal{T}_y(z,t)}{\partial t} = k rac{\partial^2 \mathcal{T}_y(z,t)}{\partial z^2}, \quad t>0, \quad 0\leq z\leq I$$

Heat Equation Version 2

$$\frac{\partial E}{\partial t} = \frac{\partial q}{\partial z}$$
$$q = \kappa(T) \frac{\partial T}{\partial z}$$
$$\kappa(T) = \begin{cases} \kappa_1 & T \ge 0\\ \kappa_2 & T < 0 \end{cases}$$

Heat Equation

$$rac{\partial T_y(z,t)}{\partial t} = k rac{\partial^2 T_y(z,t)}{\partial z^2}, \quad t > 0, \quad 0 \le z \le I$$

Variable/ Parameter	Value	Units	Description
Z	-	m	Soil depth
I	1,000	m	Depth assumption
М	[10,35]	C°	Heat source range from the convective portion of the mantle
М	60	C°	Heat source from the convective portion of the mantle used in simulation
k	[75,828]	C°	Thermal diffusivity range
$k = \frac{K}{\rho c}$	700	C°	Thermal diffusivity used in simulation
ρς	0.5	$\frac{cal}{cm^3K}$	Volumetric heat capacity of the medium
K	[5,55]	$\frac{W}{mK}$	Thermal conductivity
F	0	C°	Temperature forcing

Surface Boundary Condition via sinusoidal fit

$$T_y(0,t;y) = -5 - 20\cos(2\pi t) + F$$

Source: CRU CL v2.0

Heat Equation

$$rac{\partial T_y(z,t)}{\partial t} = k rac{\partial^2 T_y(z,t)}{\partial z^2}, \quad t > 0, \quad 0 \le z \le I$$

Surface Boundary Condition via sinusoidal fit

$$T_y(0, t; y) = -5 - 20\cos(2\pi t) + F$$

Lower Boundary Condition

$$T_y(l,t;y) = \mathsf{M} = 60^{\circ}\mathsf{C}$$

Heat Equation

$$rac{\partial T_y(z,t)}{\partial t} = k rac{\partial^2 T_y(z,t)}{\partial z^2}, \quad t > 0, \quad 0 \le z \le I$$

Linear Initial Condition

$$T_y(z,0) = \frac{M - T(y,0)}{l}z + T(y,0)$$

Temperature Profile Permafrost

Heat Equation

$$rac{\partial \mathcal{T}_y(z,t)}{\partial t} = k rac{\partial^2 \mathcal{T}_y(z,t)}{\partial z^2}, \quad t>0, \quad 0\leq z\leq l$$

Permafrost Crater

a) 09.06.2013

b) 15.06.2014

Source: Buldovicz 2018

Permafrost Crater

"Crater 1" - the first reported crater in 2014 on the Yamal peninsula. Source: Forbes $_{_{\rm 28/36}}$

Future Work

Budyko with Heat Equation

$$R\frac{\partial T(y,0,t)}{\partial t} = (1 - \alpha(y,\eta))Qs(y) - (A + BT(y,0,t) + C(\bar{T}(z,t) - T(y,0,t))$$
$$\frac{\partial T_y(z,t)}{\partial t} = k\frac{\partial^2 T_y(z,t)}{\partial z^2}, \quad t > 0, \quad 0 \le z \le l$$

Future Work

Coefficients for Outgoing Longwave Radiation

- Caldeira and Kasting investigated the effect of varying amounts of carbon dioxide concentration in the atmosphere, measured by its partial pressure, *pCO*₂, on the outgoing longwave radiation terms. They used a climate model that simulates the vertical profile of atmospheric temperature under the assumption of radiative-convective equilibrium.
- Using results from 2,000 calculation rounds of this radiative-convective model with different carbon dioxide partial pressures, they fitted the constants A and B as a function of $\varphi = \ln(\frac{pCO_2}{(pCO_2)_{ref}})$, where $(pCO_2)_{ref}$ is a reference value corresponding to the present value of CO_2 at 300 parts per million.

Coefficients for Outgoing Longwave Radiation

Polynomial fit

$$A = -326.4 + 9.161\varphi - 3.164\varphi^2 + 0.5468\varphi^3$$

$$B = 1.953 - 0.04866 arphi + 0.01309 arphi^2 - 0.002577 arphi^3$$

Current Work

Temperature independent outgoing longwave radiation

$$\bar{A} = A - \int f(G(y))dy$$

$$\bar{b}(y) = \begin{cases} -Dz_p(y) + \alpha & z_p(y) \ge 0 \\ 0 & z_p(y) < 0 \end{cases}$$

- With inspiration from the work of Caldeira and Kasting, we propose to use satellite data to compute the coefficients for outgoing longwave radiation.
- Exploring other formulations for the heat equation.

Current Work

Budyko with Heat Equation

$$R\frac{\partial T(y,0,t)}{\partial t} = (1 - \alpha(y,\eta))Qs(y) - (A + BT(y,0,t) + C(\bar{T}(z,t) - T(y,0,t))$$
$$\frac{\partial T_y(z,t)}{\partial t} = k\frac{\partial^2 T_y(z,t)}{\partial z^2}, \quad t > 0, \quad 0 \le z \le l$$

References

Kaitlin Hill and Richard McGehee (2018)

Heat conduction through permafrost and its potential for explosive behavior preprint arXiv:1810.12370

John Nguyen and Aileen Zebrowski (2020)

Adapting the Budyko Model to Analyze Permafrost Recession and Potential for Carbon Feedback SIAM Undergraduate Research Online volume 14

Boris K Biskaborn, et al (2019)

Permafrost is warming at a global scale *Nature communications*, volume 10

Richard McGehee and Esther Widiasih (2014)

PA quadratic approximation to Budyko's ice-albedo feedback model with ice line dynamics SIAM Journal on Applied Dynamical Systems, volume 13