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The Day After Tomorrow/Film synopsis

After climatologist Jack Hall (Dennis Quaid) is
largely ignored by U.N. officials when presenting
his environmental concerns, his research proves
true when an enormous "superstorm" develops,

setting off catastrophic natural disasters
throughout the world. Trying to get to his son, Sam
(Jake Gyllenhaal), who is trapped in New York with
his friend Laura (Emmy Rossum) and others, Jack
and his crew must travel by foot from Philadelphia,
braving the elements, to get to Sam before it's too
late.
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Dansgaard-Oeschger Events

“Global warming” can cause the
Northern Hemisphere to cool.

Melting ice can lower the salinity of the
North Atlantic, causing a decrease in
the flow of the Atlantic Meridional
Overturning Circulation (AMOC),
slowing the heat transfer to the
Northern Hemisphere.

This phenomenon is believed to have
caused the Younger Dryas.

Richard McGehee, University of Minnesota
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The Day After Tomorrow/Science

The events depicted in the film are based on real
science: that planetary warming can cause parts of
the Northern Hemisphere to become colder.

Most of the events in the film are scientifically
impossible or greatly exaggerated.
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@he Washington Post

April 11,2018

The oceans’ circulation hasn’t been this sluggish in 1,000
years. That’s bad news.

The Atlantic Ocean circulation that carries
warmth into the Northern Hemisphere’s high
latitudes is slowing down because of climate
change, a team of scientists asserted
Wednesday, suggesting one of the most feared
consequences is already coming to pass.

Nature volume 556, pages191-196 (2018)
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Coll Feri ‘?“g“sl‘ X 21025 . . Gulf Stream current at 'record low' with
ollapse of critical Atantic currentis no potentially devastating consequences for

longer low-likelihood, study finds weather, warn scientists

o o . ) Ind has collapsed i the distant pass
Sc hocking’ discovery uts in _
carb issi toavoid ic fallout ~ g ‘) /g The Atlantic meridional overturning circulation (AMOC), the
e system of currents that transports warm water from the tropics
/ via the Gulf Stream to the North Atlantic, plays a major role in
o regulating the world’s climate.
. M/ e/ e A fictional depiction of AMOC’s collapse was portrayed in
L " / The Day After Tomorrow, and while the film’s events were
exaggerated, scientists say severe weather events are likely to
result from the ongoing changes.

https://wiw. theguardian. con/environment/2025 /aug/28/co . \\‘
1-at: longer-low-
Likelihood-study
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Recent (last 400 Kyr) Temperature Cycles Heinrich and Dansgaard-Oeschger events

Vostok Ice Core Data

What's with these oscillations?
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J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature 399, 429-436. http://www.pik-potsdam.de/~stefan/sampleimages.html
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Heinrich and Dansgaard-Oeschger events
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What caused the oscillations?
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atmosphere |TA I Sa

mixing with 1
atmosphere kr kg
Y Y
temperature X shallow ocean T(t), s(t)
T f =k (T~ T) - k(p)T Y
S=ks(S4=5)~k(p)S k
salinity p=—aT+7S
/ To. So
densit mixing with
g deep ocean deep ocean Ty=5,=0

Pierre Welander, Dynamics of Atmospheres and Oceans 6 (1982).
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T=kp(T,~T)~k(p)T

S=kg(S,-5)—k(p)S Ta || Sa
p=-ol+yS [
kr ks
Welander chose scientifically reasonable values and Y
dimensionless variables and constants T(1), S{t)
T=1-T—k(p)T k
. 0, p<e
§=p(1-85)-k(p)S K(p) = {1
. P>E
p=—0T+S To. So
a=0.8
B=05
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What caused the D-O oscillations?

They could be self-oscillations in the natural dynamics
of ocean circulation.

Pierre Welander, A simple heat-salt
oscillator, Dynamics of Atmospheres
and Oceans 6 (1982) 233-242.

R/V Weelander is a 23-foot-long Beach Master
work boat, informally named in honor of
Professor Pierre Welander (1925—1996).
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T=k (T=T)=k()T
S=ks(S,=S)-k(p)S

p=—oT+yS
The function k 1.2
t pee Kp)=k
kpy=q,
1, P>E
0.8
» P=E
AN
04 k(p)=ko
0.2
02 04 06 08 1 1.2
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T=1-T-k(p)T
. K(p) = 0, p<e
$=B(1-5)~kp)s n=i s
p=—0ol+S§

12 / Rest point for k=0

— (T.8)=(11
1 +
0.8
12
0.6
04 | Restpoint fork=1:
+ (T.8)=(1/2.5/(1+ B))
0.2
02 04 06 08 1 1.2
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T=1-T—k(p)T 0 )

. , P<E
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Filippov Approach

Roughly

* The Euclidean space is partitioned

. Fill .
AL Riproy by a finite number of sets.

* The boundaries are codimension 1. i
) A.F. Filippov*
* The vector field can be thought of

as a finite number of vector fields,
each defined and smooth on a
partition set, including the
boundary.
* The individual vector fields take
different values on the boundaries.

Kluwer Academic Publishers

*https://alchetron.con/Aleksei-Fedorovich-Filippov
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sliding region

(attracting) discontinuity boundary

£= £i(x) /
/ L
/

crossing region . .
crossing region

Richard McGehee, University of Minnesota
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T=1-T-k(p)T 0
X , p<é&
§=p(1-5)-K(p)S k(p)={l Z>€
p=—al +S ’
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The function k

ko, p<e

k(p)={k]’ poe

Welander's model is a Filippov system.

Welander's Model

T=ky (T=T)=k()T
S=ks(S,-S)-k(p)S
p=—oT+yS

Kp) =k

0.8

04 k(p)=ko
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crossing region

sliding region
(repelling)
) discontinuity boundary
X=fi(x)
: SN
7 \ ~ R / \
/ \
. \
¥=fr(x) \
\
N\ \ crossing region

\
invisible tangency

36
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T=1-T—k(p)T
§=p(1-8)-k(p)$
p=-al+S
£=0.025
0.01 0.01
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0.005 sliding interval 0.005
n J— n Py
a 0 = a 0
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T=1-T-k(p)T

§=B(1-5)-k(p)S
p=-al +S
£=-0.02
0.01 0.01
repelling
0.005 sliding interval 0.005
2 0 S 2 0
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Section Map

Follow the solution from when it crosses the
discontinuity line until the next time it crosses the line.

T ¢(T)

Not 1-1 for an attracting sliding region

H(Ty) = 9(T3)

oTy) /

41
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T=1-T-k(p)T
§=p(1-8)~k(p)s
p=—al+S
£=0
0.01 0.01
attracting
0.005 fused focus 0.005
a0 A\ R
-0.005 -0.005
-0.01 -0.01
05 06 07 08 09 1 05 06 07 08 09 1
T T

As ¢ goes from positive
to negative, two invisible
tangencies pass through
each other. The sliding
region goes from
attracting to repelling
through an attracting
fused focus at
£=0.
Looks like a supercritical
Hopf bifurcation.

sliding interval

-
) -
repelling _— o1

Welander's Model
T=1-T-kpT S
§=p(1-85)-k(p)s k(p>={l e
p=-al+S ’
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k =0 tangency
~

y sliding interval
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Multi-valued for an repelling sliding region

Welander's Model
Section Map

T ()

7
2 Ty

) Loy om

//‘—\1’\’\
o
T

42
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T=1-T-k(p)T
$=pB(1-S)-k(p)S
p=—al+S§

Follow the solution from when it
crosses the discontinuity line (p=¢)
until the next time it crosses the line.

Use T as a coordinate on the line.

T ¢.(T) ®

43
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0, p<e

k(p)={1 e
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Section Map
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7=k (T4=T)~kP)T
S=ks(S4=5)~k(p)S
p=-al +yS Ta Sa
Smooth dependence on density: Singular limit: 1
1 1 ky, p<e kT ks
k( ):[7tan"[—p_£]+—j ko +k k :{ o Y~
el et Pl e T, st)

Welander assumed that the self-oscillations he found in
his discontinuous model would hold held for a nearby
smooth system.

To. So

Juliann Leifeld, PhD 2016:

Welander's assumption
was correct, for small e.
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Recent (last 400 Kyr) Temperature Cycles

Vostok Ice Core Data

Explained by Welander?

%0 400 10 300 250 200 150 400 50 0
tima ()

J.R. Petit, et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature 399, 429-436.
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After Los Angeles and Tokoyo were
decimated, and as a tidal wave was
about to inundate Manhattan, a
conversation ensued between the
Vice President of the United States
and the leading paleoclimatologist.
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T=kr (T4 =T)=k(p)T
§=ks(S4=5)=k(p)S
p=-aT +yS Ta Sa
Smooth dependence on density: Singular limit: 1
k <& — k_T k,
k(p):[ltan" (L'S)%](kow) k(p)= { o ’ A
" ‘ e T(1), s(t)
Carvalho and Gouveia showed uniqueness e o o o [ e ]

Pltude in polynomial ang
31 planar vector feids

of the Filippov periodic orbit for large .

Yagor Carvalho

To. So

Luis Gouveia

Postdocs, 2023
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Moral
Surprisingly, the moral of the
film was NOT that everyone
should study the Welander
model.
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should stick to science and leave

Welander's Model

Moral

Vice President: "Maybe you

policy to us."

Scientist: "Well, we tried that approach.
You didn't want to hear about the science
when it could have made a difference."




