Midterm Exam

October 9, 2008

Closed book exam. Books, notes, and electronic devices may not be used.

- (36) **1.** Define each of the following statements or notation.
 - (4) **a.** \mathcal{M} is a σ -algebra on the set X.
 - (4) **b.** μ is a measure on the measurable space (X, \mathcal{M}) .
 - (4) **c.** $f: X \to \mathbb{R}$ is measurable.
 - (4) **d.** $\varphi: X \to \mathbb{R}$ is simple.
 - (4) **e.** $\int \varphi d\mu$, where φ is a nonnegative measurable simple function.
 - (4) **f.** $\int f d\mu$, where f is a nonnegative measurable function.
 - (4) **g.** $f \in L^1$.
 - (4) **h.** $f_n \to f$ almost everywhere.
 - (4) **i.** $f_n \to f$ in L^1 .

- (25) **2.**
 - (10) **a.** State the Monotone Convergence Theorem, and give an example to show that monotonicity is a necessary hypothesis.

(10) **b.** State Fatou's Lemma, and give an example to show that the inequality cannot be replace with equality.

(20) **3.** If (X, \mathcal{M}, μ) is a measure space, and if $\{f_n\}$ is a sequence of measurable functions on X, then $\{x: \lim f_n(x) \text{ exists}\}$ is a measurable set.

(25) **4.** Suppose that $E \subset \mathbb{R}$ has finite Lebesgue measure. Show that $m(E \cap [x,\infty)) \to 0$ as $x \to \infty$.