Midterm Exam Solutions

October 10, 2008

- (36) **1.** Define each of the following statements or notation.
 - (4) **a.** \mathcal{M} is a σ -algebra on the set X.

 If $\mathcal{M} \subset \mathcal{P}(X)$ is nonempty and closed under complements and countable unions, then \mathcal{M} is a σ -algebra.
 - (4) **b.** μ is a measure on the measurable space (X, \mathcal{M}) . If $\mu: \mathcal{M} \to \overline{\mathbb{R}}$ is countably additive and satisfies $\mu(\emptyset) = 0$, then μ is a measure.
 - (4) **c.** $f: X \to \mathbb{R}$ is measurable. If the inverse image of every Borel set in \mathbb{R} is a measurable set in X, then is f is measurable.
 - (4) **d.** $\varphi: X \to \mathbb{R}$ is simple. If the image of $\varphi: X \to \mathbb{R}$ is finite, then φ is simple.
 - (4) **e.** $\int \varphi d\mu$, where φ is a nonnegative measurable simple function. If $\varphi = \sum_{k=1}^{n} a_n \chi_{E_n}$ is the standard representation of φ , then $\int \varphi d\mu = \sum_{k=1}^{n} a_k \mu(E_k)$
 - (4) **f.** $\int f d\mu$, where f is a nonnegative measurable function. $\int f d\mu = \sup \left\{ \int \varphi d\mu : 0 \le \varphi \le f \text{ and } \varphi \text{ is a measurable simple function} \right\}.$
 - (4) **g.** $f \in L^1$. If f is a measurable function satisfying $\int |f| d\mu < \infty$, then $f \in L^1$.
 - (4) **h.** $f_n \to f$ almost everywhere. If $f_n(x) \to f(x)$ for all $x \in E$, where $\mu(E^c) = 0$, then $f_n \to f$ almost everywhere.
 - (4) **i.** $f_n \to f$ in L^1 .

 If $f_n \in L^1$, for every n, if $f \in L^1$, and if $\int |f_n f| d\mu \to 0$, then $f_n \to f$ in L^1 .

- (20) **2.**
 - (10) **a.** State the Monotone Convergence Theorem, and give an example to show that monotonicity is a necessary hypothesis.

Theorem. If $\left\{f_n\right\}$ is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and if $f = \lim_{n \to \infty} f_n$, then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Example. Let $f_n = n\chi_{(0,1/n)}$. Then $f = \lim_{n \to \infty} f_n = 0$, and $\int f_n d\mu = 1$, for all n. $\left\{f_n\right\}$ is not monotone, and

$$\int f d\mu = 0 \neq 1 = \lim_{n \to \infty} \int f_n d\mu.$$

(10) **b.** State Fatou's Lemma, and give an example to show that the inequality cannot be replace with equality.

Lemma. If $\{f_n\}$ is a sequence in L^+ , then

$$\int \left(\liminf_{n \to \infty} f_n \right) d\mu = \liminf_{n \to \infty} \int f_n d\mu.$$

Example. Let $f_n = n\chi_{(0,1/n)}$. Then $f = \liminf_{n \to \infty} f_n = 0$, and $\int f_n d\mu = 1$, for all $f_n = n\chi_{(0,1/n)}$.

$$\int f d\mu = 0 \neq 1 = \liminf_{n \to \infty} \int f_n d\mu.$$

(20) **3.** If (X, \mathcal{M}, μ) is a measure space, and if $\{f_n\}$ is a sequence of measurable functions on X, then $\{x: \lim f_n(x) \text{ exists}\}$ is a measurable set.

Solution. Let $E = \{x : \lim f_n(x) \text{ exists} \}$, and let

$$g_1(x) = \liminf_{n \to \infty} f_n(x),$$

$$g_2(x) = \limsup_{n \to \infty} f_n(x).$$

Then $\,g_{\scriptscriptstyle 1}\,$ and $\,g_{\scriptscriptstyle 2}\,$ are $\,\overline{\mathbb{R}}\,$ -valued measurable functions, and

$$E = \{x : g_1(x) = g_2(x)\}.$$

Let

$$A = \left\{ x : g_1(x) > -\infty \right\} \cap \left\{ x : g_2(x) < \infty \right\}.$$

Note that A is measurable. Since $g_1 \le g_2$, we can also write

$$A = \left\{ x : -\infty < g_1(x) \le g_2(x) < \infty \right\}.$$

Therefore $g_1:A\to\mathbb{R}$ and $g_2:A\to\mathbb{R}$ are both measurable functions and hence so is g_2-g_1 . It follows that

$$E_1 = \{x \in A : (g_1 - g_2)(x) = 0\} = \{x \in A : g_1(x) = g_2(x)\}$$

is measurable. Now let

$$E_2 = \{x : g_1(x) = g_2(x) = \infty\} = \{x : g_1(x) = \infty\},\$$

$$E_3 = \{x : g_1(x) = g_2(x) = -\infty\} = \{x : g_2(x) = -\infty\}.$$

Both E_2 and E_3 are measurable. Since

$$E = E_1 \cup E_2 \cup E_3$$
,

it follows that E is measurable.

(24) **4.** Suppose that $E \subset \mathbb{R}$ has finite Lebesgue measure. Show that $m(E \cap [x,\infty)) \to 0$ as $x \to \infty$.

Solution. Let

$$E_n = E \cap [n, \infty)$$
, for $n \in \mathbb{N}$.

Then $E_n \supset E \cap [x,\infty)$ whenever $x \ge n$, so it suffices to show that

$$m(E_n) \to 0$$
 as $n \to \infty$

Note that $E_{n+1} \subset E_n$ and that $\bigcap_{n=1}^{\infty} E_n = \emptyset$. Note also that $E_1 \subset E$, and hence that

 $m\!\left(E_{\scriptscriptstyle 1}\right)\!<\!m\!\left(E\right)\!<\!\infty$. Therefore, continuity from below implies that

$$\lim_{n\to\infty} m(E_n) = m\left(\bigcap_{n=1}^{\infty} E_n\right) = m(\varnothing) = 0.$$