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Midterm Exam 
November 21, 2008 

 
Closed book exam.  Books, notes, and electronic devices may not be used. 
 
(24) 1. Define each of the following statements or notation.  For parts (a) through (d), assume that ν  and λ  

are signed measures and μ  is a positive measure on a measurable space ( ),X M . 

(4) a. ν λ⊥  

 

 

 

(4) b. ν  

 

 

 

(4) c. ν μ . 

 

 

 

(4) d. d
d
ν
μ

 

 

 

 

 

(4) e. :F →  is of bounded variation.  

 

 

 

 

(4) f. :F →  is absolutely continuous.  
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(20) 2.  

(10) a. State Fubini’s Theorem for 1L  functions. 

 

 

 

 

 

 

 

 

 

 

(10) b. You may use the following formula: 

  
( ) ( )

1 11 1
2 2 2 2

2 22 2 2 2
0 00 0

4 4
x y x ydx dy dy dx
x y x y

π π⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= − ≠ =
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⌠ ⌠⌠ ⌠
⎮ ⎮⎮ ⎮⎮ ⎮⎮ ⎮⌡ ⌡⌡ ⌡

 

  Explain why this formula does not contradict Fubini’s Theorem.  
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(20) 3.  
(10) a. State the Fundamental Theorem of Calculus for Lebesgue integrals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10) b. Give an example of a continuous increasing function [ ]: 0,1F →  such that  

  ( ) ( ) ( )
1

0
1 0F F F t dt′− ≠ ∫  
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(20) 4. Let X Y= = , ( )M = N = P , μ ν= = counting measure.  Define  

  ( )
1 if ,

, 1 if 1,
0 otherwise.

m n
f m n m n

=⎧⎪= − = +⎨
⎪⎩

  

  Show that ( )f d μ ν× = ∞∫  and that f d dμ ν∫∫  and f d dν μ∫∫  exist and are unequal. 
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(16) 5. Suppose that [ ]: ,F a b →  and [ ]: ,G a b →  are absolutely continuous.  Show that FG  is 
absolutely continuous. 

 

 


