Midterm Exam

November 21, 2008

Closed book exam. Books, notes, and electronic devices may not be used.

- (24) **1.** Define each of the following statements or notation. For parts (a) through (d), assume that ν and λ are signed measures and μ is a positive measure on a measurable space (X, \mathcal{M}) .
 - (4) **a.** $v \perp \lambda$
 - (4) **b.** $|\nu|$
 - (4) **c.** $v \ll \mu$.
 - (4) **d.** $\frac{dv}{du}$

(4) **e.** $F: \mathbb{R} \to \mathbb{R}$ is of bounded variation.

(4) **f.** $F: \mathbb{R} \to \mathbb{R}$ is absolutely continuous.

- (20) **2.**
 - (10) **a.** State Fubini's Theorem for L^1 functions.

(10) **b.** You may use the following formula:

$$\int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2} - y^{2}}{\left(x^{2} + y^{2}\right)^{2}} dx \right) dy = -\frac{\pi}{4} \neq \frac{\pi}{4} = \int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2} - y^{2}}{\left(x^{2} + y^{2}\right)^{2}} dy \right) dx$$

Explain why this formula does not contradict Fubini's Theorem.

- **(20) 3.**
 - (10) **a.** State the Fundamental Theorem of Calculus for Lebesgue integrals.

(10) **b.** Give an example of a continuous increasing function $F:[0,1] \to \mathbb{R}$ such that

$$F(1) - F(0) \neq \int_0^1 F'(t) dt$$

(20) **4.** Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$, $\mu = \nu = \text{counting measure}$. Define

$$f(m,n) = \begin{cases} 1 & \text{if } m = n, \\ -1 & \text{if } m = n+1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that $\int |f| d(\mu \times \nu) = \infty$ and that $\iint f d\mu d\nu$ and $\iint f d\nu d\mu$ exist and are unequal.

(16) **5.** Suppose that $F:[a,b] \to \mathbb{R}$ and $G:[a,b] \to \mathbb{R}$ are absolutely continuous. Show that FG is absolutely continuous.