Midterm Exam Solutions

November 21, 2008

- (24) **1.** Define each of the following statements or notation. For parts (a) through (d), assume that ν and λ are signed measures and μ is a positive measure on a measurable space (X, \mathcal{M}) .
 - (4) **a.** $v \perp \lambda$

Solution. There exist $E \in \mathcal{M}$ and $F \in \mathcal{M}$, with $E \cap F = \emptyset$ and $E \cup F = X$, such that E is null for ν and F is null for λ .

(4) **b.** $|\nu|$

Solution. $|\nu| = \nu^+ + \nu^-$, where $\nu = \nu^+ \nu^-$ is the Jordan decomposition of ν .

(4) **c.** $v \ll \mu$.

Solution. For every $E \in \mathcal{M}$, $\mu(E) = 0 \implies \nu(E) = 0$.

(4) **d.** $\frac{dv}{du}$

Solution. $v \ll \mu$ and $\frac{dv}{d\mu} = f: X \to \mathbb{R}$ is an extended μ -integrable function satisfying

$$dv = f d\mu$$

(4) **e.** $F: \mathbb{R} \to \mathbb{R}$ is of bounded variation.

Solution. $\sup \left\{ \sum_{k=1}^{n} \left| F\left(x_{k}\right) - F\left(x_{k-1}\right) \right| : n \in \mathbb{N}, -\infty < x_{0} < \cdots < x_{n} < \infty \right\} < \infty$

(4) **f.** $F: \mathbb{R} \to \mathbb{R}$ is absolutely continuous.

Solution. For every $\varepsilon > 0$, there exists a $\delta > 0$ such that, for any finite set of disjoint intervals $(a_1, b_1), \dots, (a_n, b_n)$,

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \Rightarrow \quad \sum_{k=1}^{n} |F(b_k) - F(a_k)| < \varepsilon.$$

- (20) **2.**
 - (10) **a.** State Fubini's Theorem for L^1 functions.

Solution. Let (X,\mathcal{M},μ) and (Y,\mathcal{N},ν) be σ -finite measure spaces. If $f\in L^1(\mu\times\nu)$, then $f_x\in L^1(\nu)$ for a.e. $x\in X$, $f^y\in L^1(\mu)$ for a.e. $y\in Y$, $\int f_x d\nu\in L^1(\mu)$, $\int f^y d\mu\in L^1(\nu)$, and $\int fd(\mu\times\nu)=\iint f\,d\mu d\nu=\iint f\,d\nu d\mu.$

(10) **b.** You may use the following formula:

$$\int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2} - y^{2}}{\left(x^{2} + y^{2}\right)^{2}} dx \right) dy = -\frac{\pi}{4} \neq \frac{\pi}{4} = \int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2} - y^{2}}{\left(x^{2} + y^{2}\right)^{2}} dy \right) dx$$

Explain why this formula does not contradict Fubini's Theorem.

Solution. The formula does not contradict Fubini's Theorem because the function

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

is not in $L^1([0,1]\times[0,1])$. To see this, note that |f| is symmetric about the line x=y. Therefore, by Tonelli's Theorem,

$$\iint_{[0,1]\times[0,1]} |f| dm^2 = 2 \int_0^1 \left(\int_0^y \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2} dx \right) dy = 2 \int_0^1 \left[\frac{x}{x^2 + y^2} \right]_{x=0}^{x=y} dy = 2 \int_0^1 \frac{1}{2y} dy = \infty$$

- **(20) 3.**
 - (10) **a.** State the Fundamental Theorem of Calculus for Lebesgue integrals.

Solution. If $F:[a,b] \to \mathbb{R}$, then the following statements are equivalent.

- a. F is absolutely continuous on [a,b].
- b. $F(x)-F(a)=\int_a^x f(t)dt$ for some $f \in L^1([a,b],m)$.
- c. F is differentiable a.e. on [a,b], $F' \in L^1([a,b],m)$, and $F(x) F(a) = \int_a^x F'(t) dt$.

(10) **b.** Give an example of a continuous increasing function $F:[0,1] \to \mathbb{R}$ such that

$$F(1) - F(0) \neq \int_0^1 F'(t) dt$$

Solution. Let F be the middle third Cantor function. That is, $F:[0,1] \to [0,1]$ is a continuous increasing function such that F is constant on every interval in C^c , where C is the middle third Cantor set. Since m(C) = 0, F' = 0 a.e. Therefore,

$$F(1)-F(0)=1-0=1\neq 0=\int_{0}^{1}F'(t)dt.$$

(20) **4.** Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$, $\mu = \nu = \text{counting measure}$. Define

$$f(m,n) = \begin{cases} 1 & \text{if } m = n, \\ -1 & \text{if } m = n+1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that $\int |f| d(\mu \times \nu) = \infty$ and that $\iint f d\mu d\nu$ and $\iint f d\nu d\mu$ exist and are unequal.

Solution. Since μ and ν are σ -finite and since all functions are measurable for $\mathcal{M}\otimes\mathcal{N}=\mathcal{P}(\mathbb{N}\times\mathbb{N})$, Tonelli's Theorem implies that

$$\int |f|d(\mu \times \nu) = \int \left(\int |f|d\mu\right)d\nu = \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |f(m,n)|\right) = \sum_{n=1}^{\infty} \left(\sum_{m=n}^{n+1} 1\right) = \sum_{n=1}^{\infty} 2 = \infty.$$

On the other hand,

$$\int \left(\int f d\mu \right) d\nu = \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} f(m,n) \right) = \sum_{n=1}^{\infty} \left(\sum_{m=n}^{n} 1 + \sum_{m=n+1}^{n+1} (-1) \right) = \sum_{n=1}^{\infty} 0 = 0,$$

while

$$\int \left(\int f dv \right) d\mu = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} f(m,n) \right) = 1 + \sum_{m=2}^{\infty} \left(\sum_{n=m-1}^{m-1} (-1) + \sum_{n=m}^{m} 1 \right) = 1 + \sum_{m=2}^{\infty} 0 = 1.$$

(16) **5.** Suppose that $F:[a,b] \to \mathbb{R}$ and $G:[a,b] \to \mathbb{R}$ are absolutely continuous. Show that FG is absolutely continuous.

Solution. First note that

$$|F(x)G(x) - F(y)G(y)| = |F(x)G(x) - F(x)G(y) + F(x)G(y) - F(y)G(y)|$$

$$\leq |F(x)G(x) - F(x)G(y)| + |F(x)G(y) - F(y)G(y)|$$

$$\leq |F(x)||G(x) - G(y)| + |G(y)||F(x) - F(y)|.$$

Since F and G are absolutely continuous, they are continuous. Since continuous functions on compact sets are bounded, F and G are bounded on [a,b]. Therefore, there exists an M such that

$$F(x) \le M$$
 and $G(x) \le M$ for all $x \in [a,b]$,

which implies that

$$|FG(x)-FG(y)| \le M |G(x)-G(y)| + M |F(x)-F(y)|.$$

for all $x, y \in [a,b]$. Given $\varepsilon > 0$, choose $\delta > 0$ so that

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \Rightarrow \quad \sum_{k=1}^{n} |F(b_k) - F(a_k)| < \frac{\varepsilon}{2M}$$

and

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \Rightarrow \quad \sum_{k=1}^{n} |G(b_k) - G(a_k)| < \frac{\varepsilon}{2M}$$

for any finite set of disjoint intervals $(a_1,b_1),...,(a_n,b_n)$. Therefore, $\sum_{k=1}^n (b_k-a_k) < \delta$ implies that

$$\begin{split} \sum_{k=1}^{n} \left| FG(b_{k}) - FG(a_{k}) \right| &\leq \sum_{k=1}^{n} \left(M \left| G(b_{k}) - G(a_{k}) \right| + M \left| F(b_{k}) - F(a_{k}) \right| \right) \\ &\leq M \sum_{k=1}^{n} \left| G(b_{k}) - G(a_{k}) \right| + M \sum_{k=1}^{n} \left| F(b_{k}) - F(a_{k}) \right| \\ &< M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} = \varepsilon, \end{split}$$

which shows that FG is absolutely continuous.