Final Exam

December 15, 2008

Closed book exam. Books, notes, and electronic devices may not be used. Answers should be complete, concise, and mathematically rigorous.

- (48) **1.** Define each of the following statements or notation.
 - (4) **a.** \mathcal{M} is a σ -algebra on the set X.

(4) **b.** \mathcal{T} is a topology on the set X.

(4) **c.** $f: X \to \mathbb{R}$ is measurable, where (X, \mathcal{M}) is a measurable space.

(4) **d.** $f: X \to \mathbb{R}$ is continuous, where (X, \mathcal{T}) is a topological space.

(4) **e.** $f \in L^1(X,\mathbb{R})$.

- (4) **f.** $f \in BC(X,\mathbb{R})$.
- (4) **g.** $f_n \to f$ in $L^1(X, \mathbb{R})$.
- (4) $\mathbf{h} \quad f_n \to f \text{ in } BC(X, \mathbb{R}).$
- (4) **i.** $v \ll \mu$.
- (4) **j.** $F: \mathbb{R} \to \mathbb{R}$ is absolutely continuous.
- (4) **k.** (X, \mathcal{T}) is a Hausdorff space.
- (4) **l.** (X,\mathcal{T}) is a separable topological space.

(16) **2.** Suppose that $f_1, f_2 ...$ and f are in $L^1(\mathbb{R}, \mathbb{R}) \cap BC(\mathbb{R}, \mathbb{R})$. Discuss the relation between the statements " $f_n \to f$ in $L^1(\mathbb{R}, \mathbb{R})$ " and " $f_n \to f$ in $BC(\mathbb{R}, \mathbb{R})$ ". In particular, does either one imply the other?

(20) **3.** State the Dominated Convergence Theorem, and give an example to show that the conclusion is false without the hypothesis of a dominating function.

(15) **4.** Let (X, \mathcal{M}, μ) be a measure space, and let $\{f_n\}$ be a sequence of measurable functions on X. Show that $\{x: \lim f_n(x) \text{ exists}\}$ is a measurable set.

(15) **5.** Let $f: \mathbb{R} \to \mathbb{R}$ be an L^1 function. Show that $\int_x^\infty f(t)dt \to 0$ as $x \to \infty$.

(15) **6.** Give an example of a continuous increasing function $F:[0,1] \to \mathbb{R}$ such that

$$F(1) - F(0) \neq \int_0^1 F'(t) dt$$

(15) 7. Suppose that $F:[a,b] \to \mathbb{R}$ and $G:[a,b] \to \mathbb{R}$ are absolutely continuous. Show that FG is absolutely continuous.

- **(20) 8.**
 - (10) **a.** State Fubini's Theorem for L^1 functions.

(10) **b.** Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$, $\mu = \nu = \text{counting measure}$. Define

$$f(m,n) = \begin{cases} 1 & \text{if } m = n, \\ -1 & \text{if } m = n+1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f satisfies neither the hypotheses nor the conclusions of Fubini's Theorem.

(16) **9.** Let

$$f(x) = \begin{cases} \frac{1}{x}, & \text{if } x > 0, \\ 0, & \text{if } x \le 0, \end{cases}$$

and let $v(E) = \int_{E} f(x) dx$ for Lebesgue measurable E.

(8) **a.** Is ν absolutely continuous with respect to Lebesgue measure?

(8) **b.** Is f absolutely continuous on the open interval (0,1)?

- (20) **10.** Let $X = \{1, ..., N\}$, and let $\mathcal{T} = \{U_n : n = 0, ..., N+1\}$, where $U_n = \{k \in X : k > n\}$
 - (5) **a.** Show that (X, \mathcal{T}) is a topological space.

(5) **b.** Is there a metric on X that generates the topology \mathcal{T} ?

(5) **c.** Is X connected?

(5) **d.** Is the function $f: X \to \mathbb{R}: f(n) = n$ continuous?