Midterm Exam Solutions

November 23, 2009

(20) 1.

- (4) **a.** Let ν and λ be signed measures on a measurable space (X, \mathcal{M}) . Define $\nu \perp \lambda$.
 - **Solution.** There exist $E \in \mathcal{M}$ and $F \in \mathcal{M}$, with $E \cap F = \emptyset$ and $E \cup F = X$, such that E is null for ν and F is null for λ .
- (4) **b.** State the Jordan Decomposition Theorem for signed measures.
 - **The Jordan Decomposition Theorem.** If ν is a signed measure, there exist unique positive measures ν^+ and ν^- such that $\nu = \nu^+ \nu^-$ and $\nu^+ \perp \nu^-$.
- (4) **c.** Let ν be a signed measure on a measurable space (X, \mathcal{M}) . Define the total variation $|\nu|$ of ν . **Solution.** $|\nu| = \nu^+ + \nu^-$, where $\nu = \nu^+ \nu^-$ is the Jordan decomposition of ν .
- (4) **d.** Let ν be signed a measure and μ a positive measure on a measurable space (X, \mathcal{M}) . Define $\nu \ll \mu$.

Solution. For every $E \in \mathcal{M}$, $\mu(E) = 0 \implies \nu(E) = 0$.

- (4) **e.** Show that $|v| \ll \mu \implies v \ll \mu$.
 - **Solution.** Let $E \in \mathcal{M}$ satisfy $\mu(E) = 0$, and let $\nu = \nu^+ \nu^-$ be the Jordan decomposition of ν . Since $|\nu| \ll \mu$, we know that $|\nu|(E) = 0$. Therefore $\nu^+(E) + \nu^-(E) = |\nu|(E) = 0$. Since ν^+ and ν^- are both positive measures, we have $\nu^+(E) = \nu^-(E) = 0$. Therefore, $\nu(E) = \nu^+(E) \nu^-(E) = 0$, which implies that $\nu \ll \mu$.

(20) 2.

- (10) **a.** State the Lebesgue-Radon-Nikodym Theorem.
 - The Lebesgue-Radon-Nikodym Theorem. Let ν be a σ -finite signed measure and let μ be a σ -finite measure on a measurable space (X,\mathcal{M}) . There exist unique σ -finite signed measures λ , ρ on (X,\mathcal{M}) such that $\lambda \perp \mu$, $\rho \ll \mu$, and $\nu = \lambda + \rho$. Furthermore, there is an extended μ -integrable function $f: X \to \mathbb{R}$ such that $d\rho = f d\mu$, where f is unique up to sets of μ -measure zero.

(10) **b.** Let μ be the Lebesgue-Stieltjes measure associated with $F(x) = x + \chi_{[0,\infty)}(x)$. Find the Lebesgue decomposition of μ with respect to Lebesgue measure on \mathbb{R} .

Solution. Let λ be the Dirac measure at x = 0, i.e.,

$$\lambda(E) = \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{cases}$$

Then the Lebesgue decomposition of μ is $\mu = \lambda + m$, where m is Lebesgue measure on $\mathbb R$.

Justification: Let $-\infty < a < b < \infty$. If b < 0, then

$$\lambda((a,b]) + m((a,b]) = 0 + b - a = b - a + \chi_{[0,\infty)}(b) - \chi_{[0,\infty)}(a) = F(b) - F(a)$$

while, if $b \ge 0$, then

$$\lambda((a,b]) + m((a,b]) = 1 + b - a = b - a + \chi_{[0,\infty)}(b) - \chi_{[0,\infty)}(a) = F(b) - F(a).$$

In either case, $(\lambda+m)\big((a,b]\big)=F\big(b\big)-F\big(a\big)$. Since μ is the unique measure satisfying $\mu\big((a,b]\big)=F\big(b\big)-F\big(a\big)$, we must have $\mu=\lambda+m$. Clearly, $m\ll m$. Since λ is null on $\mathbb{R}-\{0\}$ while m is null on $\{0\}$, we have $\lambda\perp m$, which implies that $\mu=\lambda+m$ is the Lebesgue decomposition of μ .

- (20) **3.** Let $f_n:[0,1] \to \mathbb{R}$ be a sequence of measurable functions, and let $f:[0,1] \to \mathbb{R}$ be a measurable function. Prove or disprove:
 - (10) **a.** If $f_n \to f$ a.e., then $f_n \to f$ in L^1 .

Counterexample. Let $f_n = n\chi_{(0,1/n)}$. Then $f_n(x) \to 0$, for all $x \in [0,1]$, hence $f_n \to 0$ a.e. But $\int_0^1 \! \left| f_n(x) - 0 \right| dx = \int_0^1 \! n\chi_{(0,1/n)}(x) dx = 1$, for all n, so f_n does not converge to 0 in L^1 .

(10) **b.** If $f_n \to f$ in L^1 , then $f_n \to f$ a.e.

Counterexample. Let $g_{jk} = \chi_{\left[j/2^k,(j+1)/2^k\right)}, \ j=0,\dots,2^k-1, \ k=0,1,\dots$, and let $f_n=g_{jk}$, where $n=2^k+j$. Then $\int_0^1 g_{jk}\left(x\right)dx=2^{-k}$, so $\int_0^1 \left|f_n\left(x\right)-0\right|dx\to 0$ as $n\to\infty$, which implies that $f_n\to 0$ in L^1 . However, for all $x\in [0,1)$, $f_n\left(x\right)=1$ for infinitely many n, and $f_n\left(x\right)=0$ for infinitely many n. Therefore f_n does not converge to 0 a.e.

- **(20) 4.**
 - (5) **a.** State Tonelli's Theorem for functions in L^+ .

Tonelli's Theorem. Let (X,\mathcal{M}) and (X,\mathcal{M}) be σ -finite measure spaces, let $f \in L^+(X \times Y)$, let $g(x) = \int f_x dv$, and let $h(y) = \int f^y d\mu$. Then $g \in L^+(X)$, $h \in L^+(Y)$, and $\int f \, d(\mu \times \nu) = \int g \, d\mu = \int h \, d\nu$.

For parts (b), (c), and (d), let X = Y = [0,1] with the σ -algebra of Borel measurable sets. Let m be Lebesgue measure on X, and let ν be counting measure on Y. Let $D = \{(x,x) : x \in [0,1]\}$.

(5) **b.** Show that $\iint \chi_D dm dv = 0$.

Solution.

$$\iint \chi_D dm dv = \int \left(\int \left(\chi_D \right)^y dm \right) dv (y) = \int \left(\int \chi_{\{y\}} dm \right) dv (y) = \int m \left(\{y\} \right) dv (y) = \int 0 dv = 0$$

(5) **c.** Show that $\iint \chi_D dv dm = 1$.

Solution.

$$\iint \chi_D dv dm = \int \left(\int \left(\chi_D \right)_x dv \right) dm(x) = \int \left(\int \chi_{\{x\}} dv \right) dm(x) = \int v(\{x\}) dm(x) = \int 1 dm = m(X) = 1$$

(5) **d.** Explain why parts (b) and (c) do not contradict Tonelli's Theorem.

Solution. Counting measure is not σ – finite on [0,1].

- (20) 5. Let $F:[a,b] \to \mathbb{R}$, where $-\infty < a < b < \infty$.
 - (5) a. Define "F is of bounded variation on [a,b]."

Solution. F is of bounded variation on [a,b] if

$$\sup \left\{ \sum_{k=1}^{n} \left| F(x_k) - F(x_{k-1}) \right| : n \in \mathbb{N}, a = x_0 < \dots < x_n = b \right\} < \infty.$$

(5) b. Define "F is absolutely continuous on [a,b]."

Solution. F is absolutely continuous on [a,b] if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\sum_{k=1}^{N} (b_k - a_k) < \partial \quad \Rightarrow \quad \sum_{k=1}^{N} |F(b_k) - F(a_k)| < \varepsilon,$$

for every finite set $(a_1,b_1),...,(a_N,b_N)$ of subintervals of [a,b].

(5) c. Prove or disprove: If F is absolutely continuous on [a,b], then F is uniformly continuous on [a,b].

Proof. To establish uniform continuity, we must show that, for every $\varepsilon > 0$, there exists $\delta > 0$ such that, for all $x, y \in [a,b]$

$$|x-y| < \partial \implies |F(x)-F(y)| < \varepsilon$$
,

If we write the interval spanned by x and y as (a_1,b_1) , this condition is implied by the condition for absolute continuity, with N=1.

- (5) d. Prove or disprove: If F is continuous and of bounded variation on [a,b], then F is absolutely continuous on [a,b].
 - **Counterexample.** Let F be the middle third Cantor function on [0,1] Then F is nondecreasing and bounded, so F is of bounded variation on [0,1]. However, F' is zero almost everywhere, which implies that

$$F(1)-F(0)=1\neq 0=\int_0^1 F'(t)dt$$

which means that F does not satisfy the fundamental theorem of calculus, which implies that F is not absolutely continuous.