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Midterm Exam Solutions 
November 23, 2009 

 
(20) 1.  

(4) a. Let ν  and λ  be signed measures on a measurable space ( ),X M .  Define ν λ⊥ . 

Solution.  There exist E∈M  and F ∈M , with E F∩ =∅  and E F X∪ = , such that E  is 
null for ν  and F  is null for λ . 

 

(4) b.  State the Jordan Decomposition Theorem for signed measures. 

The Jordan Decomposition Theorem.  If ν  is a signed measure, there exist unique 
positive measures ν +  and ν −  such that ν ν ν+ −= −  and ν ν+ −⊥ . 

 

(4) c. Let ν  be a signed measure on a measurable space ( ),X M .  Define the total variation ν  of ν . 

Solution.  ν ν ν+ −= + , where ν ν ν+ −= −  is the Jordan decomposition of ν . 
 

(4) d. Let ν  be signed a measure and μ  a positive measure on a measurable space ( ),X M .  Define 
ν μ� . 

Solution.  For every E∈M ,    ( ) ( )0 0.E Eμ ν= ⇒ =  

 

(4) e. Show that       ν μ ν μ⇒� � . 

Solution.  Let E∈M  satisfy ( ) 0Eμ = , and let ν ν ν+ −= −  be the Jordan decomposition of 
ν .  Since ν μ� , we know that ( ) 0Eν = .  Therefore ( ) ( ) ( ) 0E E Eν ν ν+ −+ = = .  Since 
ν +  and ν −  are both positive measures, we have ( ) ( ) 0E Eν ν+ −= = .  Therefore, 

( ) ( ) ( ) 0E E Eν ν ν+ −= − = , which implies that ν μ� . 
 
 

(20) 2. 

(10) a.  State the Lebesgue-Radon-Nikodym Theorem. 

The Lebesgue-Radon-Nikodym Theorem.  Let ν  be a σ − finite signed measure and let μ  
be a σ − finite measure on a measurable space ( ),X M .  There exist unique σ − finite 
signed measures λ , ρ  on ( ),X M  such that λ μ⊥ , ρ μ� , and ν λ ρ= + .  
Furthermore, there is an extended μ − integrable function :f X →\  such that 
d f dρ μ= , where f  is unique up to sets of μ −measure zero. 
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(10) b. Let μ  be the Lebesgue-Stieltjes measure associated with ( ) [ ) ( )0,F x x xχ ∞= + .  Find the 
Lebesgue decomposition of μ  with respect to Lebesgue measure on \ . 

Solution.  Let λ  be the Dirac measure at 0x = , i.e.,  

 ( ) {1, if ,
0, if .

x EE x Eλ ∈=
∉

 

 Then the Lebesgue decomposition of μ  is mμ λ= + , where m  is Lebesgue measure 
on \ . 

Justification:  Let a b−∞ < < < ∞ .  If 0b < , then  

 ( ]( ) ( ]( ) [ ) ( ) [ ) ( ) ( ) ( )0, 0,, , 0a b m a b b a b a b a F b F aλ χ χ∞ ∞+ = + − = − + − = − , 

 while, if 0b ≥ , then 

 ( ]( ) ( ]( ) [ ) ( ) [ ) ( ) ( ) ( )0, 0,, , 1a b m a b b a b a b a F b F aλ χ χ∞ ∞+ = + − = − + − = − . 

 In either case, ( ) ( ]( ) ( ) ( ),m a b F b F aλ + = − .  Since μ  is the unique measure satisfying 

( ]( ) ( ) ( ),a b F b F aμ = − , we must have mμ λ= + .  Clearly, m m� .  Since λ  is null on 

{ }0−\  while m  is null on { }0 , we have mλ ⊥ , which implies that mμ λ= +  is the 
Lebesgue decomposition of μ . 

 
 
 

(20) 3. Let [ ]: 0,1nf →\  be a sequence of measurable functions, and let [ ]: 0,1f →\  be a measurable 
function.  Prove or disprove: 

(10) a. If nf f→  a.e., then nf f→  in 1L . 

Counterexample.  Let ( )0,1n nf nχ= .  Then ( ) 0nf x → , for all [ ]0,1x∈ , hence 0nf →  a.e.  But 

( ) ( ) ( )
1 1

0,10 0
0 1n nf x dx n x dxχ− = =∫ ∫ , for all n , so nf  does not converge to 0  in 1L . 

 

(10) b. If nf f→  in 1L , then nf f→  a.e. 

Counterexample.  Let 
( ) )2 , 1 2

, 0, ,2 1, 0,1,k k
k

jk j j
g j kχ

⎡ +⎣
= = − =… … , and let n jkf g= , where 

2kn j= + .  Then ( )
1

0
2 k

jkg x dx −=∫ , so ( )
1

0
0 0nf x dx− →∫  as n →∞ , which implies that 

0nf →  in 1L .  However, for all [ )0,1x∈ , ( ) 1nf x =  for infinitely many n , and ( ) 0nf x =  for 
infinitely many n .  Therefore  nf  does not converge to 0  a.e. 
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(20) 4.  

(5) a. State Tonelli’s Theorem for functions in L+ . 

Tonelli’s Theorem.  Let ( ),X M  and ( ),X M  be σ − finite measure spaces, let 

( )f L X Y+∈ × , let ( ) xg x f dν= ∫ , and let ( ) yh y f dμ= ∫ .  Then ( )g L X+∈ , ( )h L Y+∈ , and  

 ( )f d g d hdμ ν μ υ× = =∫ ∫ ∫ . 

 

  For parts (b), (c), and (d), let [ ]0,1X Y= =  with the σ-algebra of Borel measurable sets.  Let m be 
Lebesgue measure on X , and let ν  be counting measure on Y .  Let ( ) [ ]{ }, : 0,1D x x x= ∈ .  

(5) b. Show that 0Ddmdχ ν =∫∫ . 

Solution.   

 ( )( ) ( ) { }( ) ( ) { }( ) ( ) 0 0y
D D ydmd dm d y dm d y m y d y dχ ν χ ν χ ν ν ν= = = = =∫∫ ∫ ∫ ∫ ∫ ∫ ∫  

 

(5) c. Show that 1Dd dmχ ν =∫∫ . 

Solution.   

 ( )( ) ( ) { }( ) ( ) { }( ) ( ) ( )1 1D D xx
d dm d dm x d dm x x dm x dm m Xχ ν χ ν χ ν ν= = = = = =∫∫ ∫ ∫ ∫ ∫ ∫ ∫  

 

(5) d. Explain why parts (b) and (c) do not contradict Tonelli’s Theorem. 

Solution.  Counting measure is not σ − finite on [ ]0,1 . 
 

(20) 5. Let [ ]: ,F a b →\ , where a b−∞ < < < ∞ . 

(5) a. Define “ F  is of bounded variation on [ ],a b .” 

Solution.  F  is of bounded variation on [ ],a b  if 

 ( ) ( )1 0
1

sup : , .
n

k k n
k

F x F x n a x x b−
=

⎧ ⎫
− ∈ = < < = < ∞⎨ ⎬

⎩ ⎭
∑ ` "  

 

(5) b. Define “ F  is absolutely continuous on [ ],a b .” 

Solution.  F  is absolutely continuous on [ ],a b  if, for every 0ε > , there exists 0δ >  such 
that  

 ( ) ( ) ( )
1 1

N N

k k k k
k k

b a F b F a ε
= =

− < ∂ ⇒ − <∑ ∑ , 

 for every finite set ( ) ( )1 1, , , ,N Na b a b…  of subintervals of [ ],a b . 
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(5) c. Prove or disprove:  If F  is absolutely continuous on [ ],a b , then F  is uniformly continuous on 
[ ],a b . 

Proof.  To establish uniform continuity, we must show that, for every 0ε > , there exists 
0δ >  such that, for all [ ], ,x y a b∈  

 ( ) ( )x y F x F y ε− < ∂ ⇒ − < , 

 If we write the interval spanned by x  and y  as ( )1 1,a b , this condition is implied by the 
condition for absolute continuity, with 1N = . 

 

(5) d. Prove or disprove:  If F  is continuous and of bounded variation on [ ],a b , then F  is absolutely 
continuous on [ ],a b . 

Counterexample.  Let F  be the middle third Cantor function on [ ]0,1   Then F  is 
nondecreasing and bounded, so F  is of bounded variation on [ ]0,1 .  However, F ′  is 
zero almost everywhere, which implies that 

 ( ) ( ) ( )
1

0
1 0 1 0 ,F F F t dt′− = ≠ = ∫  

 which means that F  does not satisfy the fundamental theorem of calculus, which implies 
that F  is not absolutely continuous. 

 
 
 
 
 
 
 


