Math 8601 September 9, 2009

University of Minnesota School of Mathematics

Real Analysis

Wikipedia

Real analysis is a branch of mathematical analysis dealing with the set of real numbers.

Analysis has its beginnings in the rigorous formulation of calculus.

Calculus (Latin, calculus, a small stone used for counting) is a branch of mathematics that includes the study of limits, derivatives, integrals, and infinite series, and constitutes a major part of modern university

Math 8601/02 = Freshman Calculus redone abstractly and rigorously.

Math 8601 September 9, 2009

University of Minnesota School of Mathematics

Real Analysis

Folland

The name "real analysis" is something of an anachronism. Originally applied to the theory of functions of a real variable, it has come to encompass several subjects of a more general and abstract nature that underlie much of modern analysis. ... [These include] measure and integration theory, point set topology, and functional analysis

Math 8601/02 = measure and integration theory, point set topology, functional analysis ...

Math 8601 September 9, 2009

University of Minnesota School of Mathematics

University of Minnesota School of Mathematics

Numbers

 \mathbb{N} = the set of positive integers = $\{1, 2, 3, \ldots\}$

 \mathbb{Z} = the set of integers

 \mathbb{Q} = the set of rational numbers

 \mathbb{R} = the set of real numbers

 \mathbb{C} = the set of complex numbers

Math 8601 September 9, 2009

University of Minnesota School of Mathematics

Numbers

Why do we need integers?

To solve the equation

$$x + 1 = 0$$
.

Why do we need rational numbers?

To solve the equation

$$2x-1=0$$
.

Why do we need algebraic numbers?

To solve the equation

$$x^2 - 2 = 0$$
.

Math 8601 September 9, 2009

Numbers

Why do we need complex numbers?

To solve the equation

$$x^2 + 1 = 0.$$

Why do we need real numbers?

To take limits

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

and to sum series

$$\sum_{n=0}^{\infty} \frac{1}{n!}.$$

Math 8601 September 9, 2009

University of Minnesota School of Mathematics

Fibonacci Sequence

$$a_0 = a_1 = 1$$
, $a_{n+1} = a_n + a_{n-1}$

$$\frac{a_{n+1}}{a} = 1 + \frac{a_{n-1}}{a}$$

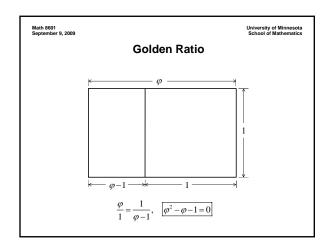
Let
$$x_n = \frac{a_n}{a_{n-1}}$$
, $n = 1, 2, K$.

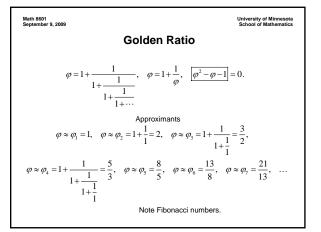
Then
$$x_{n+1} = 1 + \frac{1}{x_n}$$

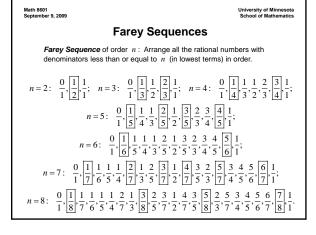
Then
$$x_{n+1} = 1 + \frac{1}{x_n}$$

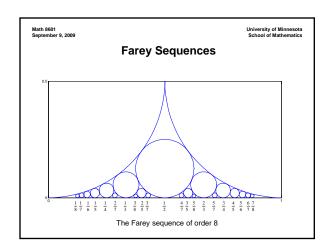
$$\lim_{n \to \infty} x_n = \varphi, \text{ where } \varphi = 1 + \frac{1}{\varphi},$$

or
$$\varphi^2 - \varphi - 1 = 0$$
, the "golden ratio".









Math 8601 September 9, 2009 University of Minnesota School of Mathematics

Farey Sequences

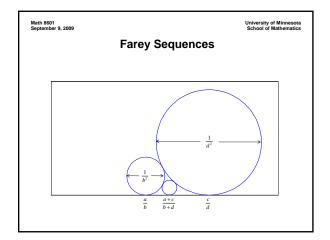
Exercise

If $\frac{a}{b}$ and $\frac{c}{d}$ are adjacent numbers in a Farey sequence, and if

 C_1 is a circle of diameter $\frac{1}{b^2}$ tangent to the x-axis at $\frac{a}{b}$, and if

 C_2 is a circle of diameter $\frac{1}{d^2}$ tangent to the x-axis at $\frac{c}{d}$, then

- (1) C_1 and C_2 are tangent, and
- (2) the circle of diameter $\frac{1}{\left(b+d\right)^2}$ tangent to the x-axis at $\frac{a+c}{b+d}$ is tangent to both C_1 and C_2 .



Math 8601 September 9, 2009

Diophantine Approximation

For each rational $\frac{p}{q} \in [0,1]$ and for C > 0 define the interval

$$\begin{split} I_{p/q}\left(C\right) &= \left(\frac{p}{q} - \frac{C}{q^2}, \frac{p}{q} - \frac{C}{q^2}\right), \text{ and let} \\ V_C &= \bigcup_{p/q=\{0,1\}} I_{p/q}\left(C\right). \end{split}$$

Note that $V_{\scriptscriptstyle C}$ is an open subset of [0,1] containing all the rationals.

If $C \ge \frac{1}{2}$, then V_C contains all numbers in [0,1].

What about smaller values of $\ C$?

Does $V_{\mathcal{C}}$ contain the golden ratio φ ?

September 9, 2009

Diophantine Approximation

Let $f(x) = x^2 - x - 1$. Then $f(\varphi) = 0$, and $f\left(\frac{p}{q}\right) = f\left(\frac{p}{q}\right) - f(\varphi) = \left(\frac{p}{q}\right)^2 - \frac{p}{q} - 1 - (\varphi^2 - \varphi - 1) = \left(\frac{p}{q} - \varphi\right) \left(\frac{p}{q} + \varphi - 1\right).$ $\left|f\left(\frac{p}{q}\right)\right| \le M \left|\frac{p}{q} - \varphi\right|, \text{ for } \frac{p}{q} \in [1, 2].$ But $\left|q^2 f\left(\frac{p}{q}\right)\right| = \left|p^2 - pq - q^2\right| \ge 1$, so $Mq^2 \left|\frac{p}{q} - \varphi\right| \ge 1, \text{ so } \left|\frac{p}{q} - \varphi\right| \ge \frac{1}{Mq^2},$

Math 8601 September 9, 2009 University of Minnesota School of Mathematics

University of Minnesota School of Mathematics

Diophantine Approximation

Exercise

If y is an algebraic number of degree n, i.e., y is the zero of an irreducible polynomial of degree n, then there is a C>0 such that

$$\left| y - \frac{p}{q} \right| \ge \frac{C}{q^n}$$
, for every rational $\frac{p}{q}$.

Math 8601 September 9, 2009 University of Minnesota School of Mathematics

Diophantine Approximation

As before, for each rational $\frac{p}{q} \in [0,1]$ and for C > 0 define the interval

$$I_{p/q}(C) = \left(\frac{p}{q} - \frac{C}{q^n}, \frac{p}{q} - \frac{C}{q^n}\right), \text{ and let}$$

$$V_C = \bigcup_{p/q \in [0,1]} I_{p/q}(C).$$

Note that V_C is an open subset of [0,1] containing all the rationals. For small C, V_C misses a lot of algebraic numbers. What else does it miss?

Math 8601 September 9, 2009 University of Minnesota School of Mathematics

Diophantine Approximation

A Little Measure Theory

$$\mu(I_{p/q}(C)) = \frac{2C}{q^n}.$$

For each q>1, there are at most q rationals in the interval $\left[0,1\right]$ with denominator equal to q .

Therefore
$$\mu(V_C) \le \sum_{q=1}^{\infty} q^{\frac{2C}{q^n}} = 2C \sum_{q=1}^{\infty} \frac{1}{q^{n-1}} < \infty \text{ for } n \ge 3.$$

Thus we have constructed an open set of arbitrarily small measure containing all the rationals in an interval.

Math 8601 September 9, 2009 University of Minnesota School of Mathematics

Liouville Numbers

Definition

A Liouville number is a real number x such that, for every positive integer n ,

there exists a rational number $\frac{p}{q}$, with q > 1, such that

$$0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n}.$$

Exercise

Liouville numbers exist and are transcendental (not algebraic).

Math 8601 September 9, 2009

University of Minnesota School of Mathematics

Morals

The real numbers have a lot of structure.

They are much more interesting than a homogeneous line.

Real Analysis doesn't have to be boring.