NSF PROJECT SUMMARY: MAX ENGELSTEIN

Overview: Free Boundary Problems (FBPs) are a class of problems in which a function, u, satisfies a
partial differential equation on a domain, ), which itself may depend on u. Alt and Caffarelli, in [AC81],
drew an analogy between the regularity of the free boundary of minimizers to the energy, J(v) = [ |Vo| +
X{w>0) dx, and the regularity of minimal surfaces. This observation shaped subsequent study of free boundary
problems, especially those which arise in a variational context, that is to say, as the minimizer of some energy
functional (e.g. the obstacle problem, [Caf98]). Researchers working on FBPs adopted many tools and
techniques originally developed to study minimal surfaces, such as monotonicity formulas and epiperimetric
inequalities (see, e.g., [GP09], [We99a]).

On the other hand, there are many FBPs to which geometric techniques have not yet been sucessfully
adapted, often because these problems cannot be stated in terms of a minimized energy (or an associated
flow). The purpose of this project is to use harmonic analysis and geometric measure theory (GMT) to adapt
ideas from geometric analysis to the study of free boundary problems which cannot be expressed varia-
tionally. The PI plans to study three broad categories of such problems; two-phase problems for harmonic
measure, parabolic FBPs and almost-minimizers (in the sense of [DaT15]). The PI believes that a mix of
ideas from geometric analysis, GMT and harmonic analysis should yield new insights into these problems.

Intellectual Merit: The three categories of FBPs above are all important areas of research; FBPs for
harmonic measure are connected to questions in potential theory and the structure of rough sets amongst
other areas (see [Tor10]). Parabolic problems are used to model a wide range of phenomena, both in the
real world (e.g. tumor growth, see [QPV14]) and in other areas of mathematics (e.g. geometric flows,
see [DH99]). Finally, almost-minimization is a widely studied concept (e.g., [AIm68]) which can model
measurement errors and has several applications in pure mathematics (e.g. partition problems [Alm76]).

The PI’s work on two-phase free boundary problems ([Eng16a], [BET15]) has shown how estimates from
geometric measure theory and harmonic analysis can be used to adapt tools from geometric analysis (such
as Lojasiewicz inequalities and monotonicity formulas) to free boundary problems for harmonic measure.
Further work will focus on adapting other important tools such as epiperimetric inequalities and on applying
these methods in different contexts (e.g. proving non-degeneracy for other non-variational FBPs).

For parabolic problems, the PI is inspired by a program of David Jerison and collaborators (see [DeJ09],
[DeJ11], [JS15], [JKal4]) which relates global minimizers to the Alt-Caffarelli functional above to global
minimal surfaces. The PI believes that this analogy can be extended to the parabolic case and that mean
curvature flow will provide great insights into the study of parabolic FBPs. The PI's study of global solutions
to parabolic problems ([Engl5], [Engl6b]), as well as recent important advances in mean curvature flow
(e.g. [CM135]) indicate that the time is right to develop these connections.

Finally, the PI’s work in progress with Guy David and Tatiana Toro on almost-minimizers to the Alt-
Caftarelli functional ([DET16]), represents an early step in a larger program to understand almost-minimizers
to singular energy functionals. This work proves the regularity of the one-phase free boundary, but future
work should extend this to two-phase, variable coefficient, vectorial and higher co-dimension settings (some
of which are still being understood for minimizers, see [CSY16]). These results are should have connections
to many other FBPs, for example, optimal domains for eigenvalue functions (see e.g. [MTV16]).

Broader Impacts: The PI is engaged with the broader mathematical research community as evidenced
by his active collaborations, participation in international conferences and invited seminar talks. The PI has
also been exposed to several different mathematical communities (GMT, harmonic analysis and geometric
analysis), and plans to use this wide range of exposure to better facilitate interdisciplinary research, e.g. by
organizing conferences that bridge these three areas.

Furthermore, the PI has been involved in the development of young mathematicians through his teaching
at MathILy (a summer program for talented high schoolers), the University of Chicago’s Research Expe-
rience for Undegraduates and University of Chicago’s Directed Reading Program. The PI also has a track
record of working with students from underrepresented groups at a variety of levels, from high school to
beginning graduate school. At Cambridge he plans to continue activities in this vein, as well as supervise
undergraduate research through MIT’s Undergraduate Research Opportunities Program.
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