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We present a new technique for studying the infinitesimal behavior of energy min-
imizers near the points where the minimizer exhibits non-smooth behavior. To
avoid further vaguaries, we focus our attention on minimizers to the functional,

(1)

∫
|∇u|2 + χ{u>0},

though the technique described below is quite general and has yielded similar
results in the setting of (almost-)area minimizing currents (c.f. [7]) .

We are interested in what is called the “free boundary”, ∂{u > 0}. In [2], Alt
and Caffarelli proved the following dichotomy; let x0 ∈ ∂{u > 0}, then either the
free boundary in a neighborhood of x0 can be written as the graph of an analytic
function, or there is no r > 0 such that Br(x0) ∩ ∂{u > 0} is contained in a δr-
neighborhood of an (n − 1)-plane (for some δ > 0). The former points are called
regular, and the latter, singular.

We can rephrase this result in terms of parameterization; the free boundary
near regular points is parameterized over an (n− 1)-plane by a smooth function.
The long-term goal of our investigation (and a central problem in the subject of
regularity theory) is to extend this parameterization to singular points. The main
theorem of this talk does this for a class of singular points:

Theorem 1. [Main Theorem in [6]] Let b ∈ W 1,2(B1) be a 1-homogenous min-
imizer to (1), such that ∂{b > 0} is smooth away from 0. Assume that u is a

minimizer and rj ↓ 0, x0 ∈ ∂{u > 0} are such that ∂{u>0}−x0

rj
→ ∂{b > 0}.

Then limr↓0
∂{u>0}−x0

r = ∂{b > 0} and there exists some r0 > 0 such that

∂{u > 0} ∩Br0(x0) can be written as the C1,log image of Br0(0) ∩ ∂{b > 0}.

Let us make three quick remarks; first if ∂{u>0}−x0

rj
→ S for some set S, we call S

a blow-up of ∂{u > 0} at x0. Alternatively, we can examine urj ,x0(x) ≡ u(rjx+x0)
rj

and refer to limj urj ,x0
= v(x) as the blowup. Note that S = ∂{v > 0} in this

scenario. The theorem above is an example of a “uniqueness of blow-ups” result,
more on this below. Second, the assumption that b is 1-homogeneous is redundant;
it is a result of Weiss [15] that if b is a blowup of a minimizer, then b must be
1-homogenous. The final remark is that the regularity of the parameterization
depends on the “symmetries” of the cone b. Imprecisely, if the only deformations of
b which preserve the energy (1) to second order are given by ambient isometries of
the space, then we call b integrable through rotations and the parameterization
given by Theorem 1 is C1,α. Otherwise, the stated C1,log regularity is optimal.
We note that the only known one-homogenous minimizers to (1) were constructed
by De Silva and Jerison [5] and each of these are integrable through rotations.

As mentioned above, a central question is the uniqueness of blow-ups; the limit
u(rjx+x0)

rj
exists up to subsequence by compactness, but in order to parameterize
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the free boundary over the blow-up it must be the case that the limit is independent
of the subsequence rj ↓ 0. Theorem 1 is the only known uniqueness of blowups
result in the setting of (1), but similar questions have been investigated for obstacle
problems ([14], [9]), harmonic maps ([12]) and minimal surfaces ([12], [1], [13]).
Uniqueness of blow-ups is not always true; Brian White constructs harmonic maps
from R4 → N where N is a C∞ four-manifold such that there is an isolated critical
point with a continuum of blow-ups at that point, see [17].

The main tool in proving Theorem 1 is what is called an epiperimetric inequality.
In [15], Weiss proved that

W (u, x0, r) ≡
1

rn

∫
Br(x0)

|∇u|2 + χ{u>0}dx−
1

rn+1

∫
∂Br(x0)

u2dσ,

is monotone increasing in r as long as u is a minimizer to (1) and that the differ-
ence, W (u, x0, r)−W (u, x0, s), measures how far u is from being one-homogeneous
in the annulus Br(x0)\Bs(x0). Thus to prove a uniqueness of blowups result like
Theorem 1, it suffices to bound the growth of r 7→W (u, x0, r) from above. This is
the role of an epiperimetric inequality (see Theorem 2 below), which says, roughly,
that the difference in energy between the one-homogeneous and minimizing exten-
sions of a trace, c ∈ L2(∂B1), is proportional to the gap between c and the “closest”
trace of a one-homogeneous minimizer (where the gap is measured by W ).

Epiperimetric inequalities have been used to prove uniqueness of blow-ups and
regularity in minimal surfaces [11, 13, 16] and free boundary problems [14, 8, 10].
Recently, the second and third authors, with Maria Colombo [3, 4], have pioneered
the concept of a log-epiperimetric inequality, in which the gap (alluded to above)
has non-linear dependence, which in turn gives a C1,log rate of blow-up.

Before we state our epiperimetric inequality, let us briefly outline one critical
way in which ours differs from those mentioned above. Our epiperimetric inequal-
ity is the first to treat blow-ups which are not integrable through rotations. In
order for the minimizing extension to be quantitatively better than the homoge-
neous one, one often needs to identify which trace of a homogeneous minimizer
is “closest” to the given trace. The condition of being integrable through rota-
tions means that all the “nearby” traces of homogeneous minimizers are simply
rotations of each other, which makes it easier to find the closest one through an
implicit function theorem argument (see [16]).

In order to prove a log-epiperimetic inequality at singularities which are not
integrable through rotations, we had to find nearby problematic traces by hand.
To do so, we borrowed a powerful idea from L. Simon [12], and used a Lyaponov-
Schmidt reduction to identify the closest “problematic” trace and used gradient
flow to improve its energy. We then invoked the  Lojasiewicz inequality to show
that this energy improvement was quantitative.

Let us end with a statement of our epiperimetric inequality. For space consid-
erations we take x0 = 0 and r = 1 and refer to W (f, x0, r) simply as W (f):

Theorem 2. [Epiperimetric inequality in [6]] Let b ∈ H1(B1) be a one-homogeneous
minimizer of (1) with an isolated singularity at the origin. There exist constants
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ε = ε(d, b) > 0, γ = γ(d, b) ∈ [0, 1) and δ0 = δ0(d, b) > 0, depending on b and on
the dimension d, such that the following holds.

If c ∈ H1(∂B1,R+) is such that there exists ζ ∈ C2,α(∂{b > 0} ∩ Sn−1) such
that ∂{c > 0} is the graph (in the sphere) of ζ over ∂{b > 0} ∩ Sn−1 and

(2) ‖ζ‖C2,α ≤ Cd‖ζ‖L2 < δ , and ‖c− b‖L2(∂B1) < δ ,

then there exists a function h ∈ H1(B1,R+) such that h = c on ∂B1 and

(3) W (h)−W (b) ≤
(

1− ε
∣∣W (z)−W (b)

∣∣γ)(W (z)−W (b)
)
,

where z is the 1-homogeneous extension of c to B1.
In the case where b is integrable through rotations, we can take γ = 0 in (3)

above.
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